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Abstract: In the complex and ever-changing manufacturing environment, maintaining the long-term
steady and efficient work of the assembly line is the ultimate goal pursued by relevant enterprises, the
foundation of which is a balanced load. Therefore, this paper carries out research on the two-sided
assembly line balance problem (TALBP) for load balancing. At first, a mathematical programming
model is established with the objectives of optimizing the line efficiency, smoothness index, and
completion time smoothness index of the two-sided assembly line (TAL). Secondly, a deep rein-
forcement learning algorithm combining distributed proximal policy optimization (DPPO) and the
convolutional neural network (CNN) is proposed. Based on the distributed reinforcement learning
agent structure assisted by the marker layer, the task assignment states of the two-sided assembly
and decisions of selecting tasks are defined. Task assignment logic and reward function are de-
signed according to the optimization objectives to guide task selection and assignment. Finally, the
performance of the proposed algorithm is verified on the benchmark problem.

Keywords: two-sided assembly line; load balancing; deep reinforcement learning; distributed
multiple processes

1. Introduction

An assembly line (AL) is an arrangement of workstations in a streamlined manner
according to the product assembly process sequence for the organization and the arrange-
ment of production. A workstation is an assembly unit that focuses on a specific segment
of production, and the workpiece is assembled in all the workstations to form a complete
product. Due to the assembly line adopting the flow operation mode, the assembly op-
eration process is standardized, and the assembly workers are generally fixed in a single
station or several adjacent stations for repeated operations, which increases the utilization
rate of workers, thus greatly improving production efficiency [1].

In the two-sided assembly line (TAL), the left and right sides of the same workstation
can independently execute assembly of the same product with different processes in parallel,
as shown in Figure 1. These are called mated stations [2]. Compared with the one-sided
AL, the TAL can effectively shorten the length of theAL, improve the utilization rate of
auxiliary tools, reduce the time loss caused by the movement of workers between various
stations, and reduce the transportation cost of assembly parts [2].

To balance the TAL is to distribute a group of tasks evenly to each station as far as
possible under certain constraints to pursue the optimization of one or more objectives [3].
However, after the assembly line is put into operation, the original balance parameters, such
as cycle time, operation content, operation time, and assembly process, may change with
the improvement of assembly workers’ technology, product upgrades, customer demand
change, etc. In such cases, the original assembly line balance may be disrupted, prohibiting
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the assembly line from being a stable, efficient, and high-quality operation, and thus greatly
reducing the economic benefits of the relevant enterprises. Therefore, it is necessary to
optimize and improve the original balancing scheme, which involves reassigning tasks to
achieve the assembly line load balance and improve the operation efficiency of the TAL.
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Figure 1. Two-sided assembly line.

TALBP is one of the NP-hard problems belonging to combinatorial optimization [4].
Since it was proposed in 1993 [5], it has been widely studied. The main research methods
include exact algorithm, heuristic algorithm, and meta-heuristic algorithm [1,2]. Although
the exact algorithm can obtain the optimal solution, its solving speed is slow and can can
be used for small-sized problems; the heuristic algorithm is fast, simple, and efficient, but
the solution results cannot reach the global optimal; and the meta-heuristic algorithm is
relatively fast and effective, but the iterative search process is usually time-consuming
and needs to be solved iteratively for each problem case. Moreover, these traditional
optimization algorithms rarely make use of historical information to adjust behavior and
cannot effectively use historical solving experience for learning; hence, there is great room
for improvement in terms of solving large-scale problems.

In addition, different cases of problems have the same combinatorial optimization
structure (the objective function or the coefficient of constraint conditions); there are only
differences in specific values; for example, improving assembly workers’ skills will reduce
the working time of tasks, but the correlation between tasks does not change. As an artificial
intelligence algorithm closer to the way of human thinking, the deep reinforcement learning
algorithm has deep association learning ability compared with the traditional optimization
algorithm. When solving the cases at a same scale, historical experience of different cases—
that is, existing task assignment schemes—can be associated and learned, the essential
information of problems can be mined, and task assignment strategies can be obtained and
automatically updated to achieve efficient solutions to similar cases. Moreover, the deep
reinforcement learning algorithm has higher adaptability to the complex and ever-changing
production environment, which is easy to adjust so as to alter the solution. In addition,
although deep reinforcement learning algorithms have begun to be tried in solving such
AL balancing problems [6,7], they are currently used to optimize simulation models and
resource allocation. Therefore, this paper carries out the study on load balancing of TAL
based on deep reinforcement learning for the first time.

The remaining sections are introduced as follows. Section 2 provides a literature
review for the load balancing-oriented TALBP and deep reinforcement learning. Section 3
shows the mathematical model of load balancing-oriented TALBP. Section 4 describes the
deep reinforcement learning algorithm combining distributed proximal policy optimization
(DPPO) and convolutional neural network (CNN). The experimental verification is carried
out in Section 5 and conclusions and future work avenues are presented in Section 6.

2. Literature Review
2.1. Two-Sided Assembly Line Balance Oriented to Load Balancing

According to different production stages and research objectives, TALBPs are mainly
divided into two categories [8]. The first type of balancing problem occurs in the design
and planning stage, the aim was to explore that how to use the minimum number of
workstations and/or stations to achieve production under the premise of a given cycle
time. For this type problem and its variants, many scholars have designed exact algo-
rithms [9,10], heuristic algorithms [11,12], and meta-heuristic algorithms [13,14]. With the
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assembly line officially put to use, some potential problems (task assignment, resource
allocation, etc.) that could not be predicted in time in the design stage of the assembly line
become increasingly obvious. Moreover, assembly workers’ skills, product configuration,
and customer demands may also change, and thus the task content and/or operation time
changes and the original balancing plan needs to be further optimized. The second type of
balance problem occurs in this stage, which is the problem of how to obtain a better cycle
time by optimizing task assignment under the premise of definite workstations [15–17].
However, the above studies did not consider load balancing, which is the initial goal of
balance research [5] and the source of maintaining the stable and efficient operation of the
assembly line [18,19].

Considering the importance of load balancing, some scholars have specifically studied
this kind of problem and defined it as the third type of balance problem—that is, how to
optimize task assignment and balance the load of all stations as much as possible under the
premise of fixed cycle time and line length. Ozcan and Toklu [20] used the assembly line
smoothness index to measure load balancing and combined it with assembly line efficiency
as optimization objectives to build a mathematical model of TAL load balancing. The
minimum deviation method (MDM) was used to combine multi-objective problems into
single-objective problems, and a tabu search algorithm was proposed. Lan and Yee [21]
designed a nonlinear integer programming model to maximize the smoothness of the line
for the third-type TALBP and solved it using Lingo. Purnomo and Wee [22] designed a
harmonic search (HS), combining non-inferior sorting rules for TALBP considering zone
constraints. The goal was to optimize the production efficiency and balance the load of sta-
tions. Li et al. [23] used an improved version of teaching and learning optimization (ITLBO)
to balance multi-constraint and multi-objective TAL. The goals were the optimization of
assembly line efficiency, assembly line smoothness, and total associated unit production
costs. Li et al. [24] proposed an iterative local search algorithm (ILS) to realize the load
balancing of TALs. A heuristic algorithm was applied to obtain the better initial population;
the local search and disturbance factors were used iteratively until a local optimal solution
was found. This algorithm also applies the priority decoding method based on the combi-
nation of orientation selection rules and task selection rules to reduce the load difference
between the left and right stations of a workstation as far as possible so as to ensure that
the sequence-related waiting time is reduced to a certain extent. Wu et al. [25] used a
hybrid algorithm based on variable neighborhood search and gravity search for the TALBP
considering zone constraints to achieve load balancing among workstations and reduce
the series-dependent completion time of tasks as much as possible. Buyukozkan et al. [26]
provided the dictionary bottleneck hybrid TALBP, balancing the load of all workstations
by gradually minimizing the weighted load of the workstations with the maximum load
and finally achieving the load balancing of all workstations on the assembly line. Yadav
and Agrawal [27] measured load balancing by the idle time length on the workstations
and established the related mathematical model. A branch and bound algorithm was
programmed in the Lingo solver for this problem, and load balancing schemes of various
benchmark problems were explored. After that, the workload maximization of stations was
used as the measure of load balance [28], an exact algorithm was designed, and its effec-
tiveness was verified through an engineering project. Abdullah Make and Ab Rashid [29]
carried out a study on load balancing of TALs in automobile assembly workshops and
designed a particle swarm optimization algorithm. To obtain a better task assignment
scheme, in addition to cycle time and stations, the influences and constraints of workers’
skill levels, tools, and equipment on assembly task assignment were also considered.

To sum up, current research on the load balancing of TALs is still mainly focused on
the optimization design and solution of the traditional algorithm (i.e., exact, heuristic, and
meta-heuristic algorithms), and as far as we know, there is no research on load balancing-
oriented TALBP based on deep reinforcement learning, which is more suitable for complex
and variable manufacturing processes. In addition, for multi-objective optimization, most
of them are converted into single objectives by mathematical programming methods. The
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operation involved weighted coefficient or unified dimensions; that is, the search direction
is delimited artificially, which reduces the search space and cannot guarantee the optimality
of the solution.

2.2. Deep Reinforcement Learning

The reinforcement learning algorithm (RLA) could be used to obtain optimal strategies
for sequencing decision problems [30]. As shown in Figure 2, the agent of RLA interacts
with the environment continuously, observes the environment state st, makes a decision
action at, and obtains the feedback (reward) rt from the environment, then adjusts the
strategy according to the feedback information from the environment so that the subsequent
output decision action can meet the expectation.
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The deep learning algorithm (DLA) is a method by which to gradually acquire the
whole picture of things through multi-level learning and abstracting from simple to com-
plex [31]. The deep reinforcement learning algorithm (DRLA) generated by the combination
of reinforcement learning (RL) and deep learning (DL) shows strong data processing and
environment interaction abilities in terms of self-adaptation and self-learning, has rapid
decision-making abilities combined with offline training and online decision-making, and
highly versatile generalization ability, which can better solve complex problems [32].

In 2015, DeepMind [33] proposed the first DRLA—the Deep Q-learning Network
(DQN). It combined deep neural networks with reinforcement learning and applied them
to the research of games, Go (i.e., weiqi) and other fields, achieving impressive results. Since
then, research on various deep reinforcement learning methods has been rapidly carried
out, and the applications have expanded from games to other fields [34–36]. At present,
for combinatorial optimization, deep reinforcement learning algorithms have already
penetrated into the classic travel salesman problem [37], the path optimization problem [38],
the packing problem [39], the maximum cutting problem [40], and other operational
research problems. At the same time, some scholars, aiming to solve practical production
problems, have also begun to introduce the deep reinforcement learning algorithm into
the research of manufacturing problems [41]. In the area of AL balancing, Li et al. [6]
focused on the research of balancing AL in the digital domain, and designed a DRLA
with the support of deep deterministic policy gradient (DDPG) to enhance the operation
and simulation effect of the assembly line digital twin model. Lv et al. [7] combined the
sequencing problem with the assembly line balance problem and proposed a new version
of DRLA on the basis of DDPG, in which an iterative interaction mechanism between task
assembly time and station load were designed to achieve production task sequencing and
worker allocation layer by layer. The objective was minimizing the work overload.

Although there have been some preliminary achievements in solving combinatorial
optimization problems by DRLA, to the best of our knowledge, there are no studies of the
deep reinforcement learning algorithm for the TALBP so far.
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3. Mathematical Model for Load Balancing-Oriented TALBP
3.1. Assumptions

(1) The assembly line task assignment scheme is available, and the specific task assign-
ment is known;

(2) The product variety is unique, and the processes are determined;
(3) Cycle time is deterministic;
(4) Execution time of takes and precedence relationship between tasks are known;
(5) Buffers, parallel stations and tasks are not considered.

3.2. Parameters

ns: Number of workstations.
nm: Number of stations.
I: Task set, I = {1, 2, . . . , i, . . . , m}.
J: Workstation set, J = {1, 2, . . . , j, . . . , n}.
(j, k): the specific station of the workstation j, i.e., the operating orientation of the

station, k = 1, represents left station, k = 2, represents right station.
AL: Task set that can only be assembled in the left station, AL ⊂ I.
AR: Task set that can only be assembled in the right station, AR ⊂ I.
AE: Task set that can be assembled in both left and right stations, AE ⊂ I.
P(i): Task set that contains all immediate precedence tasks of task i.
Pa(i): Task set that contains all precedence tasks of task i.
S(i): Task set that contains all immediate successor tasks of task i.
Sa(i): Task set that contains all successor tasks of task i.
PC: Set of tasks without precedence tasks.
C(i): Task set opposite to operating orientation of task i. C(i) = AL, i ∈ AR; C(i) = AR,

i ∈ AL; C(i) = Φ, i ∈ AE.
K(i): Set of operating orientation indication of a task i. K(i) = {1}, i ∈ AL; K(i) = {2},

i ∈ AR; K(i) = {1, 2}, i ∈ AE.
ts
i : Start time of the task i.

t f
i : Finish time of the task i.

ti: Operation time of the task i, ti = t f
i − ts

i .
ct: Cycle time.
µ: A constant with a larger value.
xijk = {0, 1}: If the task i is assigned to the workstation (j, k), the value is 1, otherwise

it is 0.
zip = {0, 1}: If task i and task p are assigned to the same workstation, the task i is

assigned earlier than task p, the value is 1, otherwise 0.

3.3. Mathematical Model

Equations (1)–(3) are the objective functions, and their calculation formulae are shown
in Equations (4)–(6). STjk = ∑i∈Sjk

ti, is the total working time of tasks which are assigned
to station (j,k), and STmax= max

{
STjk

}
is the maximum one of them. Ct(j, k) represents the

completion time of station (j,k), and Ctmax= max{Ct(j, k)} is the maximum thereof. Equation (7)
indicates that any task can only be assigned to one station. Equations (8) and (9) show cycle
time constraints—that is, the completion time of each station must be less than cycle time.
Equation (10) represents the precedence constraint. Equations (11)–(13) represent sequence-
dependent constraints. Equations (14)–(17) give the definition of each variable.

maxLE (1)

minSI (2)
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minCSI (3)

LE =

nm
∑

i=1
ti

ct ∗ nm
× 100% (4)

SI =

√√√√√ ∑
j∈J

2
∑

k=1
(STmax − STjk)

2

nm
(5)

CSI =

√√√√√ ∑
j∈J

2
∑

k=1
(Ctmax − Ct(j, k)2)

nm
(6)

∑
j∈J

∑
k∈K(i)

xijk = 1, ∀i ∈ I (7)

t f
i ≤ ct, ∀i ∈ I (8)

t f ≥ ti, ∀i ∈ I (9)

∑
g∈J

∑
k∈K(i)

gxhjk ≤ ∑
j∈J

∑
k∈K(i)

jxijk, ∀i ∈ I − P0, h ∈ P(i) (10)

t f − t f
h + µ(1− ∑

k∈K(h)
xhjk) + µ(1− ∑

k∈K(i)
xijk) ≥ ti, ∀i ∈ I − P0, h ∈ P(i), j ∈ J (11)

t f
p − t f

i + µ(1− xpjk) + µ(1− xijk) + µ(1− zip) ≥ tp, ∀i ∈ I,
p ∈ {r|r ∈ I − (Pa(i) ∪ Sa(i) ∪ C(i)), i ≺ r}, j ∈ J, k ∈ K(i) ∪ K(p)

(12)

t f
i − t f

p + µ(1− xpjk) + µ(1− xijk) + µzip ≥ ti, ∀i ∈ I,
p ∈ {r|r ∈ I − (Pa(i) ∪ Sa(i) ∪ C(i)), i ≺ r}, j ∈ J, k ∈ K(i) ∪ K(p)

(13)

xij1 = {0, 1}, i ∈ AL, j ∈ J (14)

xij2 = {0, 1}, i ∈ AR, j ∈ J (15)

xijk = {0, 1}, i ∈ AE, j ∈ J (16)

zip = {0, 1}, ∀i ∈ I, p ∈ {r|r ∈ I − (Pa(i) ∪ Sa(i) ∪ C(i)), i ≺ r} (17)

4. Deep Reinforcement Learning Algorithm Based on DPPO and CNN (DPPO–CNN)
4.1. DPPO–CNN Agent

The architecture of DPPO–CNN with distributed multiple processes is shown Figure 3;
the main process and m subprocess are turned on simultaneously. The main process is
responsible for network training and update (gradient calculation and update), while
the subprocess is only responsible for data acquisition without gradient calculation. The
main process includes the experience pool and the main Actor–Critic network, and each
subprocess includes the child Actor–Critic network. The Actor network is used to make
task assignment decisions at based on the environmental status st of the TAL, while the
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Critic network is used to evaluate the quality of task allocation decisions at. Actor–Critic
network structures are shown in Figures 4 and 5.
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Figure 4. Actor network.

(1) Initialize the main Actor–Critic network of the main process and send its parameters
to each subprocess through an orbit.

(2) The child Actor–Critic network of the subprocess loads the main Actor–Critic
network and then interacts with the environment and transmits interactive trajectory (state
matrix s, task assignment decisions a, reward function r) to the main process through an
orbit.

(3) The main process stores the interaction experience of all subprocesses in the
experience pool. When the amount of experience stored in the experience pool exceeds the
capacity of the experience pool, it is packaged as a training set to train the main Actor–Critic
network.

(4) Transfer the updated main Actor–Critic network to each subprocess again and go
back to (1).
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The Actor network is the strategy network, which approximates the optimal task
assignment strategy pθ(at|st) by using the neural network with parameter θ. The network
structure is shown in Figure 4, including a two-layer convolutional network and a three-
layer fully connected network. The dimensional matrix M× N is the input of the network
at time t corresponding to the environmental status st. M is the number of feature vectors,
and N is the number of total assembly tasks. After the matrix is input, two layers of
convolution operations are carried out on it. The convolution Kernel size is as follows:
Kernel = (1, 3). The feature vector obtained after convolution is flattened and input into the
three fully connected layers. The number of nodes in the first two layers is 256, and the
number of nodes in the last layer is N. Then, it is normalized by the SoftMax function and
outputs pθ(at|st) , which is the probability of output task to be assigned at when the Actor
policy network is in the status st.

The Critic network is evaluation network, which approximates the optimal strategy
evaluation value vΨ(st|at) by using the neural network with parameter Ψ. The network
structure is shown in Figure 5. In this paper, the first several layers of the Critic network
structure are the same as that of the Actor network structure, but the last layer is the
linear regression layer; that is, the SoftMax layer in the Actor network is replaced with
vΨ(st|at) = f (h(t); Ψ) = ω ∗ h(t) + b , where vΨ(st|at) is the output of the Critic network
at time t and h(t) is the output of the previous fully connected layer. Ψ is the parameter of
the internal unit node of the network, including the weight ω and the bias item b.

In each subprocess, the learning process is shown in Figure 6. The agent observes
environmental status st of task assignment, makes the selection decision, and outputs
the task to be assigned at and updates the status and gives back the reward rt after the
assignment of task at. The agent can solve the problem through continuous interaction with
the environment. After each problem is solved, the trajectory of the interaction between
the agent and the environment (including status, decision task, and reward) is stored in the
experience pool. These dates are preprocessed to obtain training data in the experience pool.
The interaction between the agent and the environment is suspended when the amount
of data stored in the experience pool reaches its capacity limit. Parts of the training data
are selected randomly by the agent from the experience pool, the network (task allocation
strategy) is updated, and the experience is learned. The higher reward value is obtained
through repeated trial and error, and eventually, the maximization of the cumulative reward
and the optimization of the task allocation strategy can both be realized.
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4.2. Task Assignment State of TAL

As shown in Table 1, there are 18 task assignment state features for the load balancing-
oriented TALBP considered. Values of features 1–5 represent the related sequence numbers
tasks; features 6–18 represent the overall situation of task assignment scheme of TAL; in
particular, values of state features 11–16 are rounded.

Table 1. Task assignment state of TAL.

No. Features Description

1 PTime A task with the longest operation time in the set of tasks without
precedence tasks

2 MFlow A task with the largest spare time caused by matched task in the set of
tasks without precedence tasks

3 SucNum A task with the largest number of successor tasks in the set of tasks
without precedence tasks

4 AllSucNum A task with the largest number of successor tasks

5 MTNum A task with the smallest number of matched tasks in the set of tasks
without precedence tasks

6 Side
The operating orientation of a task with the smallest sequence number
in the set of tasks without precedence tasks (0 is E type of tasks; 1 is
non-E type of tasks)

7 FAN The number of tasks can be selected at present
8 NPN The number of tasks without predecessors at present
9 NER The number of remaining E type of tasks

10 NR The number of remaining non-E type of tasks

11 LRDiffoverAE The load difference of remaining non-E type of tasks/the average time
of remaining E type of tasks

12 RToverAveptO Remaining spare time of current station/the average time of tasks of
current station

13 RToverAveptT Remaining spare time of matched station/the average time of tasks of
matched station

14 OPToverRemain The operation time/remaining time of tasks
15 ARPW Improved position weight
16 RRPW Reverse position weight

17 PreNum A task with the largest number of immediate successor tasks in the set
of tasks without precedence tasks

18 AllPreNum A task with the smallest number of precedence tasks

Original state feature information is abstracted and preprocessed by one-hot encod-
ing to give it two-dimensional arrangement feature information, which is suitable for
subsequent processing by convolutional neural network. If the number of tasks in TAL
is N, the matrix with dimension 18 × N, as the environment state st, can be obtained
after preprocessing.

Figure 7 shows the two types of the initial state matrix of P16 (Figure 8), and the state
feature value of the initial state is shown in Table 2 (Figure 9).
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Figure 7. State matrix of P16: (a) state matrix s1 generated for third column of Table 2; (b) state
matrix s2 generated for fourth column of Table 2.
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Figure 8. P16.

Table 2. Each state feature value of the initial state for P16.

No. Features
State Feature Value
(Task Assignment

Scheme I)

State Feature Value
(Task Assignment

Scheme II)

1 PTime 1 1
2 MFlow 1 1
3 SucNum 1 1
4 AllSucNum 1 1
5 MTNum 1 1
6 ARPW 1 1
7 RRPW 1 1
8 PreNum 1 1
9 AllPreNum 1 1
10 Side 0 0
11 FAN 2 1
12 NPN 2 2
13 NER 10 9
14 NR 6 6
15 LRDiffoverAE 1 1
16 RToverAveptO 3 3
17 RToverAveptT 3 2
18 OPToverRemain 1 1
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Figure 9. Task assignment schemes of P16: (a) task assignment scheme I; (b) task assignment
scheme II.

4.3. Decision of Selecting Tasks

The mask layer is introduced to ensure that only the tasks that meet the constraints
of precedence, operation orientation, and sequence dependence can be selected. Take the
P16 problem as an example; the network parameters θ of the agent Actor strategy adopt
orthogonal initialization. In the state s1 of task assignment in the TAL environment, the
output pθ(a1|s1) is shown in Figure 9. At this time, if sampling is conducted according
to the probability distribution, the task to be assigned is 3, which does not satisfy the
precedence constraint. After processing at the mark layer—as shown in Figure 10—only
task 1 and task 2 satisfy constraints, i.e., they can be selected. At this time, if sampling is
conducted according to probability distribution, task 2 can be selected to be assigned.
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4.4. Task Assignment

Task assignment procedure is shown in Figure 11 and the contents are as follows.
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Step 1: Initialize to generate the initial state of the TAL environment.
Step 2: Start a new workstation and set the earliest assignable task time of to 0.
Step 3: Generate a task set At without precedence tasks; alternatively, all of its prece-

dence tasks have already been assigned, according to precedence constraint.
Step 4: Select the station (left or right) with a smallest start time as the assigned

station m. If the start time is the same, choose the left station.
Step 5: Check whether the current workstation is the last one. If yes, perform Step 6;

otherwise, turn to Step 7.
Step 6: Generate the set of assignable tasks Bt for station m.
Generate rules are as follows: (1) select the task without real-time predecessors;

(2) select the task for which the completion time of its immediate predecessors is less
than the earliest task-assignable time of the station; (3) select the task whose operating
orientation is the same as the operating edge of station m.

Step 7. Check whether the task output by the agent is in the set Bt. If it is, turn to
Step 11; otherwise, go to Step 8.

Step 8. If At is an empty set, stop this algorithm; otherwise, perform Step 9.
Step 9. If the earliest task assignable time of station (t1) is earlier than the earliest task

assignable time of the mated station (t2), t1 = t2, and return to Step 5; otherwise, perform
Step 10.

Step 10. If both sides of the station have been scanned, start a new workstation and
return to Step 2; otherwise, scan the other side and return to Step 5.

Step 11. Assign the selected task by DPPO–CNN agent.
Step 12. Update the number of immediate predecessors and their related completion

time of all the unassigned tasks, the earliest task assignable time of station m, and the
assembly line state; then, return to Step 3.

4.5. Reward Function

Reinforcement learning agents can achieve the optimal task assignment strategy
pθ(at|st) by maximizing cumulative rewards (rsum) and then realize the optimization objec-
tives. Sparse reward is adopted by the traditional deep reinforcement learning algorithm,
i.e., rewards r1, r2, . . . , rn−1 are all equal to 0 until all tasks have been assigned. The
environment gives feedback reward rn to the agent; then, the accumulate reward rsum = rn.
This is an easy way to converge the algorithm because for many tasks, the agent can obtain
positive samples with a certain probability by conducting random exploration in the envi-
ronment, and the positive samples occupy a relatively significant proportion of the total
samples at the early stage of learning.

However, with the increase in task complexity, the probability of obtaining positive
samples through random exploration becomes small, and the sparse feedback signals
cannot indicate the exploration direction for the agent. The algorithm will be difficult
to converge or the convergence speed will be very slow. To overcome this problem, it is
necessary to add other reward items or punishment items to make the reward function
become dense, and to guide the agent to explore the environment more efficiently [39].
In this paper, for objective LE, if both the operation time of the tasks and the number
of stations are determined, the smaller the ct, the higher the LE. For objective SI, if the
workloads of tasks which are assigned to a station are substantially equal to cycle time of
that station, the difference between the STmax and the STi will be small, and so will the SI.
Similarly, for objective CSI, if the completion time of a station is substantially equal, the
value of CSI is small, which means the operation of the assembly line is stable and balanced.
Therefore, the values of SI and CSI will decrease if the idle time of each station is reduced.

There are two types of idle time that can be generated on a two-sided assembly line
due to its parallel structure and the sequence-dependent relationship of its tasks, as shown
in Figure 12: (1) End idle time—If the completion time of the current station will exceed
the cycle time when the new task is assigned to the current station, the new task has to be
assigned to the next station. In this case, the completion time of the current station will be
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less than the cycle time, and the time difference between the completion time of the current
station and cycle time is the end idle time. As shown in Figure 12, on workstation 1, after
task 5 is completed, task 4 needs to be assigned, but if the operation time of task 4 is 9,
whether it is assigned to the left or right stations of workstation 1, the completion time will
exceed cycle time 18; therefore, task 4 has to be assigned to workstation 2, and there has to be
idle time at the end of the left and right stations of workstation 1. (2) Sequence-dependent
idle time—If sequence-related tasks are assigned to the left and right stations of the same
workstation, due to the absolute sequence constraint between them, this may lead to a
situation in which some tasks may have to sit idle and wait, and this kind of idle time inside
stations is called sequence-dependent idle time. As shown in Figure 12, on workstation 2,
task 7, assigned to right station, can not be started from time 0 because its immediate
precedent, task 4, is assigned to left station of the same workstation. Task 7 has to wait
before task 4 is completed; therefore, there are nine time unitsof sequence-dependent idle
time before task 7, which is caused by task 4.
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Moreover, the logic of task assignment in this paper may cause the cycle time of the
last workstation to be much larger than that of all other workstations, as shown in Figure 12.
Due to fewer tasks being assigned to the first two stations, more tasks are assigned to the
last workstation (3), resulting in the overloading of the completion time of workstation 3.
Therefore, the difference between the actual cycle time of the last station (i.e., its completion
time) and the ideal cycle time should be controlled.

Under these conditions, the reward function is set as follows during the task assign-
ment process:

(1) If a task is the last task at the current station and there is end idle time at the current
station, the reward function r is calculated as Equation (18):

r = − (end idle time o f the current station); (18)

(2) If there is idle time in the station caused by a between thesequence-dependent
relationship of tasks, i.e., sequence-dependent idle time, the reward function r is calculated
as Equation (19):

r = − (sequence− dependent idle time); (19)

(3) If all tasks have been assigned in the last station, the reward function r is calculated
as Equation (20):

r = −( le
LE

+
SI
si

+
CSI
csi

+ ctactual − ctideal), (20)

where ctactual represents the actual cycle time of the last station (i.e., its completion time)
and ctideal represents the ideal cycle time;

(4) The other state is equal to 0, as shown in Equation (21):

r = 0. (21)
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4.6. Overall Flow of DPPO–CNN

The overall flow of the proposed DPPO–CNN for TALBP-BL (Algorithm 1) is as follows.

Algorithm 1 Load balancing-oriented TALBP based on DPPO–CNN

1: Initializes the Actor–Critic network parameters θ, ϕ for the main process, maximum iteration
number, experience pool capacity buffer size, maximum experience pool capacity max buffer size,
batch data size, number of network updates of each round epoch; Subprocess Actor–Critic
network parameters θ, ϕ.
2: for each episode do:
3: t = 1.
4: The main process empties the experience pool, sends its Actor–Critic network parameters θ, ϕ

to each child process; each sub-process bilateral assembly line environment 1, 2, 3, . . . , m is
initialized, generates states S1

t , S2
t , S1

t , . . . , Sm
t ; each agent 1, 2, 3, . . . , m loads the network

parameters of the main process.
5: while buffer size < max buffer size do:
6: while all tasks of m’s respective bilateral assembly lines have not been allocated do:
7: Agent 1, 2, 3, . . . , m observes the environment status S1

t , S2
t , S1

t , . . . , Sm
t , respectively, and takes

the tasks a1
t , a2

t , a1
t , . . . , am

t to be assigned according to strategy pθ(at|st) .
8: Environment 1, 2, 3, . . . , m allocates tasks a1

t , a2
t , a1

t , . . . , am
t separately, and feedback reward r1

t ,
r2

t , r1
t , . . . , rm

t .
9: t = t + 1.
10: Environment 1, 2, 3, . . . , m update states S1

t , S2
t , S1

t , . . . , Sm
t .

11: end while
12: Agent 1, 2, 3, . . . , m stores the interactive trajectory (solving experience) τ1, τ2, τ3, . . . , τm,
respectively, in the experience pool and packages it as training data.
13: end while
14: for epoch in {1, 2, . . . , epochs} do:
15: Randomly extract the training data with the size of batch size from the experience pool.
16: Calculate the network loss function of the actor strategy of the master process; evaluate the
critic loss function of the master process.
17: Update the main process Actor’s policy network pθ(at|st) .
18: Update the main process Critic’s evaluation network vϕ(st, at).
19: end for
20: θold, ϕold ← θ, ϕ .
21: end for

5. Experimental Verification and Discussions
5.1. Implementation of the DPPO–CNN

In this paper, 59 instances of the benchmark problem (P9 [42] (Figure A1), P12 [42]
(Figure A1), P16 [6] (Figure 8), P24 [42] (Figure A1), P65 [6] (Figure A2), P148 [5,6] (Table A1),
and P205 [6] (Table A2)) are utilized to test the performance of the proposed DPPO–CNN. In
addition, the DPPO–CNN algorithm is programmed in Python 3.6 and runs on a personal
computer with Ubuntu 20.04LTS, 2.90 GHz CPU frequency, and the 16 g memory.

The parameters of DPPO–CNN are mainly decided according to the empirical values
and the actual data of the agent interaction process, as listed in Table 3.
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Table 3. Parameters of DPPO–CNN.

Parameter Value Parameter Value

Number of hidden layers on the Actor
and Critic network 256 Learning rate of the

Actor network 10−4

Activation function of hidden layers
on the Actor and Critic network Leaky Relu Learning rate of the

Critic network 2 × 10−4

Activation function of output layers
on the Actor network Softmax Sample size 256

Activation function of output layers
on the Critic network Leaky Relu Maximum capacity of

the experience pool 4096

Convolution kernel of convolution
layers on the Actor and Critic network (1, 3) Study times per

round 8

Initialize network parameters Orthogonal
initialization

Return discount
factor 0.99

Optimizer Adam Cutting coefficient 0.2

5.2. Verification of DPPO–CNN in Term of Model Training

To verify the performance of distributed multiple processes of DPPO–CNN, the model
training results of DPPO–CNN are compared with the deep reinforcement learning with
single process, named the PPO–CNN, which uses the same parameters, state matrix, and
reward function. To clarify the effect of distributed multiple processes, P16 is used as the
representative of small-scale cases and P65 as the representative of large-scale cases for
detailed explanation, as shown in Figures 13 and 14.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 26 
 

Table 3. Parameters of DPPO–CNN. 

Parameter Value Parameter Value 

Number of hidden layers on 

the Actor and Critic 

network 

256 
Learning rate of the Actor 

network 
10−4 

Activation function of 

hidden layers on the Actor 

and Critic network 

Leaky Relu 
Learning rate of the Critic 

network 
2 × 10−4 

Activation function of 

output layers on the Actor 

network 

Softmax Sample size 256 

Activation function of 

output layers on the Critic 

network 

Leaky Relu 
Maximum capacity of the 

experience pool 
4096 

Convolution kernel of 

convolution layers on the 

Actor and Critic network 

(1, 3) Study times per round 8 

Initialize network 

parameters 

Orthogonal 

initialization 
Return discount factor 0.99 

Optimizer Adam Cutting coefficient 0.2 

5.2. Verification of DPPO–CNN in Term of Model Training 

To verify the performance of distributed multiple processes of DPPO–CNN, the 

model training results of DPPO–CNN are compared with the deep reinforcement learning 

with single process, named the PPO–CNN, which uses the same parameters, state matrix, 

and reward function. To clarify the effect of distributed multiple processes, P16 is used as 

the representative of small-scale cases and P65 as the representative of large-scale cases 

for detailed explanation, as shown in Figures 13 and 14. 

   

(a) (b) (c) 

Figure 13. Comparison between DPPO–CNN and PPO–CNN in term of model training (P16): (a) 

cumulative reward curves; (b) loss curves of the Actor network; (c) loss curves of the Critic network. 
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Critic network.

Figure 13a shows the cumulative reward curves of DPPO–CNN and PPO–CNN for
P16; we can see that: (1) the cumulative rewards of both DPPO–CNN and PPO–CNN
are increasing gradually, and they converge after 60 rounds of training; this verifies the
effectiveness of our algorithm indirectly; (2) the cumulative reward curve of DPPO–CNN
algorithm is rising faster than that of PPO–CNN algorithm, which shows that DPPO–CNN
is better than PPO–CNN; (3) the gap is not obvious because of P16 is relatively simple and
both algorithms can obtain a good solution strategy quickly. However, from the related
results of large-scale case P65 (Figure 14a,b), the advantages of DPPO–CNN are very
prominent; the convergance of PPO–CNN needs 1200 rounds of training, whereas that of
DPPO–CNN only needs 600 rounds. The study concludes that the distributed architecture
designed in this paper is helpful in solving large-scale cases. A similar conclusion can be
also obtained from the comparison between DPPO–CNN and PPO–CNN in terms of loss
curves in P16 and P65, respectively, as shown in Figure 13b,c and Figure 14c,d.
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5.3. Verification of DPPO–CNN in Term of Solutions

The trained Actor–Critic network model of the DPPO–CNN agent is saved and utilized
to solve the load balancing-oriented TALBP of all 59 instances with different scales. Both
DPPO–CNN and PPO–CNN algorithms are ran 20 times for problem instance and the best
results are record and exhibited in Table 4.

As can be seen from Table 4, the solution of the DPPO–CNN algorithm is superior
to that of the PPO-TALBP algorithm in 49 cases out of all 59 test cases, which shows
the absolute advantage of DPPO–CNN. Furthermore, (1) both DPPO–CNN and PPO–
CNN perform well in solving the load balancing-oriented TALBP, especially in small-
scale cases (P9, P12, P16, and P24), which shows that the main architecture of the deep
reinforcement learning algorithm combining distributed proximal policy optimization
(DPPO) and the convolutional neural network (CNN) is tenable; (2) DPPO–CNN has
outstanding performance in solving large-scale cases (P65, P148, and P205). Take P148
with cycle time 255 as an example, LE = 91.34%, SI = 34.17, and CSI = 26.78 obtained
by PPO–CNN, while LE = 99.53%, SI = 1.98, and CSI = 1.98 obtained by DPPO–CNN.
Obviously, both SI and SCI decrease significantly, which means the load is more balanced.
In addition, through calculation, it is found that in large-scale cases (P65, P148, and P205)
that the solutions obtained by DPPO–CNN have an average increase of 7.89% in LE, an
average decrease of 76.71% in SI, and an average decrease of 74.92% in CSI compared
to the solutions obtained by PPO–CNN. (3) Although both DPPO–CNN and PPO–CNN
perform excellently in terms of calculation time, the solution speed of DPPO–CNN is
significantly better than that of PPO–CNN. For example, each kind of P65 instance can be
resolved by DPPO–CNN within 0.04 s, while PPO–CNN resolves them 0.1 s; the calculation
time here refers to the online solving time of the instance after the training is complete.
Considering the fact that model training time makes up the majority of the running time of
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deep reinforcement learning algorithms, the comparison of the offline training time of the
proposed DPPO–CNN and PPO–CNN is shown in Table 5. We can see that compared with
PPO–CNN, DPPO–CNN also performs better in terms of offline training time.

Table 4. Result comparison.

Instance ct ns PPO-CNN DPPO–CNN
LE SI CSI Time(s) LE SI CSI Time(s)

P9 3 3 94.44% 0.41 0.41 0.004 94.44% 0.41 0.41 0.001
4 3 85.00% 1.87 1.87 0.004 94.44% 0.41 0.41 0.001
5 2 85.00% 1.12 1.12 0.004 85.00% 1.12 1.12 0.001
6 2 70.83% 2.50 1.58 0.005 85.00% 1.12 1.12 0001
7 2 60.71% 3.57 3.57 0.005 85.00% 1.12 1.12 0.001

P12 4 4 78.13% 1.37 1.37 0.007 78.13% 1.37 1.37 0.002
5 3 83.33% 1.23 0.91 0.007 83.33% 1.23 0.91 0.002
6 3 83.33% 2.97 2.97 0.008 83.33% 1.23 0.91 0.002
7 2 89.29% 1.12 1.12 0.008 89.29% 1.12 1.12 0.003
8 2 78.13% 1.94 1.23 0.008 89.29% 1.12 1.12 0.003
9 2 69.44% 3.35 1.87 0.009 89.29% 1.12 1.12 0.003

P16 15 4 78.095% 7.18 7.09 0.009 78.095% 7.18 7.09 0.003
16 3 85.42% 2.94 2.52 0.009 85.42% 2.94 2.52 0.004
18 3 75.93% 4.97 2.55 0.010 85.42% 2.94 2.52 0.004
19 3 71.73% 5.86 2.38 0.011 85.42% 2.94 2.52 0.006
20 3 68.33% 6.81 2.83 0.011 85.42% 2.94 2.52 0.006
21 3 65.08% 8.56 6.18 0.012 85.42% 2.94 2.52 0.007
22 2 93.18% 1.87 1.58 0.013 93.18% 1.87 1.58 0.007

P24 18 4 97.22% 0.71 0.61 0.014 97.22% 0.71 0.61 0.009
20 4 87.5% 2.92 2.03 0.015 97.22% 0.71 0.61 0.009
24 3 97.22% 1.00 0.71 0.017 97.22% 1.00 0.71 0.010
25 3 95.33% 2.52 2.52 0.017 97.22% 1.00 0.71 0.010
30 3 77.78% 7.92 5.21 0.020 97.22% 1.00 0.71 0.013
35 2 100% 0.00 0.00 0.020 100% 0.00 0.00 0.014
40 2 87.50% 6.82 2.55 0.020 100% 0.00 0.00 0.014

P65 326 8 97.76% 9.99 9.94 0.076 98.36% 8.79 8.79 0.024
381 7 95.59% 27.42 25.03 0.079 98.98% 6.10 6.10 0.027
435 6 97.68% 12.37 11.58 0.083 99.28% 4.59 4.59 0.030
490 6 86.72% 102.11 40.07 0.087 99.28% 4.59 4.59 0.032
512 5 99.59% 2.70 2.70 0.092 99.59% 2.70 2.70 0.037
544 5 93.73% 43.76 36.76 0.100 99.59% 2.70 2.70 0.038

P148 204 13 96.61% 9.52 9.52 0.175 99.53% 1.66 1.66 0.094
228 12 93.64% 22.61 17.38 0.181 99.30% 2.43 2.43 0.097
255 11 91.34% 34.17 26.78 0.193 99.53% 1.98 1.98 0.101
306 9 93.03% 32.58 20.76 0.211 99.35% 2.08 2.08 0.113
357 8 89.71% 57.34 52.67 0.242 99.46% 2.18 2.18 0.118
378 7 96.83% 20.44 5.09 0.256 99.73% 2.00 2.00 0.123
408 7 89.71% 72.79 31.40 0.263 99.73% 2.00 2.00 0.127
454 6 94.05% 40.96 13.82 0.271 99.77% 1.58 1.58 0.136
459 6 93.03% 41.95 33.69 0.281 99.77% 1.58 1.58 0.144
510 6 83.73% 133.08 128.98 0.297 99.77% 1.58 1.58 0.149

P205 1133 11 93.66% 103.255 76.98 0.761 98.44% 24.44 16.49 0.391
1275 10 91.55% 157.90 108.27 0.783 98.34% 26.75 19.20 0.420
1322 9 98.11% 35.00 29.71 0.789 98.70% 29.50 12.09 0.438
1455 9 89.14% 202.97 119.14 0.821 98.70% 29.50 12.09 0.445
1510 8 96.63% 63.64 34.84 0.843 98.85% 25.94 17.83 0.461
1650 8 88.43% 265.00 96.17 0.855 98.85% 25.94 17.83 0.474
1699 7 98.15% 46.30 19.52 0.857 98.79% 30.93 13.99 0.480
1888 7 88.32% 374.85 253.90 0.864 98.79% 30.93 13.99 0.499
1920 7 86.85% 447.20 371.80 0.869 98.79% 30.93 13.99 0.502
2077 6 93.67% 197.45 121.67 0.888 98.90% 36.08 11.42 0.518
2100 6 92.64% 205.35 157.83 0.891 98.90% 36.08 11.42 0.523
2266 6 85.85% 459.64 395.98 0.907 98.90% 36.08 11.42 0.542
2300 6 84.58% 516.95 456.03 0.912 98.90% 36.08 11.42 0.549
2454 5 95.13% 219.16 63.68 0.920 99.08% 34.69 11.02 0.558
2500 5 93.38% 251.86 112.88 0.944 99.08% 34.69 11.02 0.565
2643 5 88.33% 419.17 277.99 0.952 99.08% 34.69 11.02 0.577
2800 5 83.38% 683.82 659.15 0.981 99.08% 34.69 11.02 0.582
2832 5 82.43% 735.43 711.63 0.992 99.08% 34.69 11.02 0.589
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Table 5. Comparison of the offline training times of DPPO–CNN and PPO–CNN.

Instance
Training Time (h)

DPPO–CNN PPO-CNN

P9 0.15 0.10
P12 0.20 0.12
P16 0.35 0.20
P24 0.50 0.35
P65 1.00 0.68

P148 1.50 0.95
P205 4.00 2.34

6. Conclusions and Future Work Avenues

In this article, the load balancing-oriented TALBP has been studied and a deep rein-
forcement learning algorithm combining distributed proximal policy optimization (DPPO)
and convolutional neural network (CNN) has been presented. To the best of our knowl-
edge, this is the first attempt to solve the load balancing-oriented TALBP based on deep
reinforcement learning. A mathematical model with objectives of optimizing line efficiency
(LE), smoothness index (SI), and completion time smoothness index (CSI) is provided.
In the proposed deep reinforcement learning algorithm, distributed multiple processes
have been proposed to improve the search speed and capability of solutions. A total of
18 task assignment state features for the load balancing-oriented TALBP environment have
been considered, which ensure that the agent can obtain more useful information from the
environment and perform optimal selection as completely as possible, and different reward
functions according to objectives and their implicit information have been proposed to
guide good solution direction. Fianlly, the performance of the proposed algorithm has been
verified on all scales of benchmark instances via a comparison with the single-process deep
reinforcement learning algorithm in terms of model training and solution results.

Although the proposed algorithm performs better in this study, there is still the
possibility of improvement; for example, we could directly obtainin the Pareto-optimal
solution set using the deep reinforcement learning algorithm and/or extend the application
of the proposed algorithm to other versions of the TALBP or other types of assembly lines,
such as linear and parallel assembly lines, as well as similar production planning problems,
such as the two-sided disassembly line balancing problem [43], the assembly sequence
problem [44], and so on.
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Table A1. P148.

NO. Time Side Immediate
Sucessors NO. Time Side Immediate Sucessors

1 16 E 5, 6, 7, 8 75 101 E 88, 97
2 30 E 3 76 5 E 77
3 7 E 4, 5, 6, 7 77 28 E 78
4 47 E 8 78 8 E 79
5 29 E 14 79 111 E 80
6 8 E 9 80 7 E 81
7 39 E 14 81 26 E 106
8 37 E 10 82 10 E 83, 89, 143, 146
9 32 E 14 83 21 E
10 29 E 14 84 26 E 85
11 17 E 12 85 20 E
12 11 E 13 86 21 E
13 32 E 87 47 E
14 15 E 15, 16 88 23 E 111
15 53 L 17 89 13 E 90
16 53 R 17 90 19 E 79
17 8 E 18, 19 91 115 E 105
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Table A1. Cont.

NO. Time Side Immediate
Sucessors NO. Time Side Immediate Sucessors

18 24 L 20 92 35 E 135
19 24 R 20 93 26 L
20 8 E 21, 22, 23, 24 94 46 E
21 7 R 25, 26, 27, 28 95 20 E 101
22 8 L 25, 26, 27, 28 96 31 E 104
23 14 L 25, 26, 27, 28 97 19 E
24 13 R 25, 26, 27, 28 98 34 E 101
25 10 R 29 99 51 E 100
26 25 R 29 100 39 E 101
27 11 L 29 101 30 E 102, 103
28 25 L 29 102 26 E 127
29 11 E 31 103 13 E 127
30 29 R 104 45 E
31 25 E 36 105 58 E 119
32 10 L 34 106 28 E 107
33 14 R 35 107 8 E 108
34 41 L 36 108 43 E 109
35 42 R 36 109 40 E 110
36 47 R 37 110 34 E
37 7 R 38, 45 111 23 E 112
38 80 R 39 112 162 L 113
39 7 R 40 113 11 L 114, 116, 120, 123, 128
40 41 R 41, 48, 55 114 19 E 115
41 47 R 115 14 E 125
42 16 L 43 116 31 E 117
43 32 L 44 117 32 E 118
44 66 L 118 26 E 126
45 80 L 46 119 55 E
46 7 L 47 120 31 E 121
47 41 L 48, 49, 55 121 32 E 122
48 13 E 122 26 E 126
49 47 L 123 19 E 124
50 33 E 51 124 14 E 125
51 34 L 53,69 125 19 E
52 11 L 53 126 48 E
53 118 L 127 55 E
54 25 L 133 128 8 L 129
55 7 R 54, 72, 76, 87, 88 129 11 L 130
56 28 E 73 130 27 L 131, 137
57 12 L 79 131 18 L
58 52 L 84, 86 132 36 E 135
59 14 E 75, 87 133 23 L 135
60 3 E 134 20 R 135
61 3 E 62 135 46 E 136
62 8 E 63 136 64 E
63 16 E 67 137 22 L
64 33 R 65, 71, 72 138 15 E 139
65 8 E 66,99 139 34 E 140
66 18 E 67 140 22 E
67 10 E 68 141 151 L 142
68 14 E 95,98 142 148 R 143, 146, 147, 148
69 28 R 82 143 64 L
70 11 R 71 144 170 L 145
71 118 R 145 137 R 147, 148
72 25 R 134 146 64 R
73 40 E 84, 86, 87, 88, 96 147 78 L
74 40 E 75 148 78 R
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Table A2. P205.

NO. Time Side Immediate Sucessors NO. Time Side Immediate Sucessors

1 692 E 36 104 68 R 113
2 42 E 3, 4 105 232 L 106, 107
3 261 R 5 106 122 L 108
4 261 L 5 107 151 E 108
5 157 E 7, 13 108 31 L 113
6 90 E 36 109 97 E 113
7 54 R 8 110 308 R 113
8 67 R 9 111 116 L 113
9 30 R 10 112 312 R 113

10 106 R 11 113 34 E

114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 161,
162, 163, 169, 171, 174, 203,
204, 205

11 32 R 12 114 128 L 160
12 62 R 36 115 54 E 160
13 54 L 14 116 175 R 160
14 67 L 15 117 55 E 160
15 30 L 16 118 306 E 126
16 106 L 17 119 59 E 126
17 32 L 18 120 59 E 126
18 62 L 36 121 66 E 126
19 56 E 36 122 66 E 126
20 67 E 22 123 23 E 126
21 86 E 22 124 244 E 125
22 37 E 23 125 54 E 126
23 41 E 24, 34 126 294 R 127, 128, 129
24 72 E 26, 27, 28 127 84 E 135
25 86 R 28 128 61 E 135
26 16 L 35 129 57 E 135
27 51 R 35 130 38 R 136
28 66 R 29 131 944 E 132
29 41 R 30, 33 132 511 R 133
30 72 R 31, 32 133 625 R 189
31 51 R 35 134 445 R 189

32 16 R 35 135 68 L
136, 137, 138, 139, 140, 141,
142, 144, 145, 147, 148, 149,
150, 151, 152, 153, 158

33 15 R 35 136 53 L 189
34 15 L 35 137 49 E 160
35 85 E 36 138 92 E 160

36 59 E 37, 40, 41, 42, 62, 69, 72, 75, 83,
110, 111, 112 139 236 E 160

37 23 L 38 140 116 L 143
38 13 L 39 141 265 L 143
39 19 L 45 142 149 L 143
40 108 E 43, 54 143 74 L 160
41 214 E 92 144 332 E 160
42 80 E 43, 54 145 324 E 146
43 37 L 44 146 104 L 160
44 84 L 45 147 51 L 160
45 18 L 46, 48, 51, 53 148 58 R 160
46 12 L 47 149 67 R 160
47 29 L 92 150 49 R 160
48 37 L 49 151 107 E 160
49 13 L 50 152 38 L 160
50 70 L 92 153 27 L 154
51 217 L 52 154 68 E 155
52 72 L 92 155 207 E 156
53 85 L 92 156 202 E 157
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Table A2. Cont.

NO. Time Side Immediate Sucessors NO. Time Side Immediate Sucessors

54 43 R 55 157 83 E 189
55 97 R 56, 59, 61 158 35 R 159
56 37 R 57 159 58 R 189
57 13 R 58 160 42 E 164, 170, 178, 179, 184
58 35 R 92 161 68 R 167
59 217 R 60 162 68 R 165
60 72 R 92 163 68 R 164
61 85 R 92 164 103 R 165
62 25 E 63 165 103 R 166
63 37 E 64 166 103 R 167
64 37 E 65, 68 167 103 R 168
65 103 E 66 168 103 R 177
66 140 E 67 169 68 L 170
67 49 E 80 170 103 L 172
68 35 E 80 171 68 L 172
69 51 E 70 172 103 L 173
70 88 E 71 173 103 L 175
71 53 E 73 174 68 L 175
72 144 E 73 175 103 L 176
73 337 E 74 176 103 L 177
74 107 E 76 177 10 E 185, 186, 187, 188, 194, 195
75 371 E 92 178 187 E 180
76 97 E 77, 78, 79 179 134 L 180
77 166 E 80, 82 180 89 L 181, 183
78 92 L 80 181 58 L 182
79 92 R 80 182 49 L
80 106 E 81 183 134 L
81 49 E 84 184 53 L
82 92 E 92 185 334 E 189
83 371 E 92 186 24 R 189
84 87 E 85 187 76 R 189
85 162 E 86, 88, 90 188 76 L 189
86 96 E 87 189 192 E 190, 191, 193
87 79 E 92 190 98 E
88 96 E 89 191 258 R 192
89 42 E 92 192 165 E
90 88 R 91 193 38 R
91 90 R 92 194 115 E 197
92 97 R 93, 94, 95, 96, 97, 98, 99 195 83 L 196
93 270 R 135 196 56 R 197
94 452 E 135 197 29 R 198, 199, 201
95 48 R 113 198 303 R
96 338 E 113 199 18 R 200
97 34 E 100 200 29 R
98 65 E 100 201 154 L 202
99 50 E 100 202 90 L
100 112 E 101, 103, 105, 109, 130, 131, 134 203 93 L
101 48 E 102 204 94 E
102 117 E 113 205 165 E
103 50 E 104
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