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Featured Application: Considering the theoretical contribution of the study to science, the use of
graphs in monitoring leaks in pipelines and the application of graph-based machine learning for
detection represent a novel approach in the literature. The datasets generated in this study will
be made available to other scientists, serving as a foundation for further research and offering
various benefits. When assessing the impact of this work on social life, it becomes crucial to
utilize water resources effectively and efficiently due to increasing demand resulting from both
global warming and urbanization. Ensuring the sustainability of our world heavily relies on
this aspect.

Abstract: This study aims to predict leaks in water-carrying pipelines by monitoring pressure drops.
Timely detection of leaks is crucial for prompt intervention and repair efforts. In this research, we
represent the network structure of pipelines using graph representations. Consequently, we propose
a machine learning model called Graph Convolutional Neural Network (GCN) that leverages graph-
type data structures for leak prediction. Conventional machine learning models often overlook the
dependencies between nodes and edges in graph structures, which are critical in complex systems
like pipelines. GCN offers an advantage in capturing the intricate relationships among connections in
pipelines. To assess the predictive performance of our proposed GCN model, we compare it against
the Support Vector Machine (SVM) model, a widely used traditional machine learning approach.
In this study, we conducted experimental studies to collect the required pressure and flow data to
train the GCN and SVM models. The obtained results were visualized and analyzed to evaluate
their respective performances. The GCN model achieved a performance rate of 94%, while the SVM
model achieved 87%. These results demonstrated the potential of the GCN model in accurately
detecting water leaks in pipeline systems. The findings hold significant implications for water
resource management and environmental protection. The knowledge acquired from this study can
serve as a foundation for predicting leaks in pipelines that transport gas and oil.

Keywords: graph convolutional network; graph machine learning; leakage detection

1. Introduction

Due to the development of the industry, the need to transport water resources to
cities through pipelines has arisen during urbanization, both from dams and underground
sources. The demand for water resources is increasing due to population growth, while
water resources are decreasing due to global warming. Given the increasing demand and
reduced resources, it is essential to transport water resources without loss. Open or closed
pipeline networks are used to transport and distribute water resources. Failures in pipeline
networks are common and significant and a global problem. Failures in pipeline networks
may occur in two ways: leaks and blockages. This study focuses on the detection of water
leaks in pipeline networks. Pipeline leaks that arise from pressure or temperature changes,
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corrosion, wear and tear, and third-party damages [1] may lead to critical problems in
pipeline transportation systems. Accurately detecting water leaks in pipeline networks is
essential for avoiding the economic impacts of losses and protecting the environment [2].
Therefore, it is crucial to detect and repair pipeline network failures rapidly. Timely
and accurate intervention in pipeline failures is a critical decision-making problem. Two
main approaches are used to detect failures in pipeline networks: physical inspection
and mathematical model simulation. Physical methods are costly due to the production
stoppage, although they accurately identify the location and size of the failure. On the
other hand, the mathematical approach theoretically detects leaks and is, therefore, much
less expensive [3]. Various methods are used to detect leaks in pipeline networks. Some of
these methods include acoustic methods [4,5], negative pressure wave measurement [6,7],
measurement of input and output values of pressure and fluid velocity [8–10], vibration
analysis, distributed fiber optic sensing, infrared cameras, and lidar systems [11]. Many
machine learning algorithms based on convolutional neural networks and artificial neural
networks are used for leakage detection and classification [12]. Many studies have been
conducted to detect and localize pipeline system leaks [13,14]. A growing body of literature
on using machine learning applications for leak detection in pipelines [15,16]. However,
studies on machine learning methods for leak detection in pipelines are still limited and
have remained under-researched [17].

A literature review reveals that studies have been conducted on detecting leaks in
pipelines using machine learning methods, which can be categorized into five main ap-
proaches. Machine learning models employed in the studies in the literature are as follows:

1. For the negative pressure wave (NPW) method, a wireless sensor network-based
machine learning (WML) algorithm was utilized [18].

2. The acoustic-based model, including support vector machines (SVM) [19], neural
networks [20], artificial neural networks (ANNs), as well as SVM [21], and the combi-
nation of SVM with Relevance Vector Machine (RVM) [22], was employed for leak
detection methods.

3. The thermal infrared (IR) camera-based method utilized the immune neural net-
work [23] and convolutional neural network (CNN) approaches [24] for leak detection.
Some studies specifically focused on the application of these methods in petroleum
pipelines.

4. Pressure-monitoring methods employed the sparrow search algorithm (SPSA) and
CNN [25] for leak detection in petroleum pipelines, while a deep-learning method
called Deeppipe was also used [26]

5. The fluid transient waves method utilized artificial neural networks (ANNs) [27] and
a machine learning (ML)-based framework [28].

This academic literature review highlights the utilization of various machine learning
algorithms to detect leaks in pipelines, which demonstrates the successful application of
different methods and encourages further research to achieve improved results in leak
detection techniques. Using machine learning algorithms, accuracy rates for pipeline fault
diagnosis have been reported to range from 78.51% to 99%. Representing many complex
systems encountered in real life theoretically can be challenging. These complex systems
can be described using graph structures.

Many structures, such as airline, banking, social, medical, and supply chain structures,
can be expressed using graph structures. It is feasible to depict intricate systems through
graphs, such as distribution networks with multiple pipeline convergence or divergence
points. In the literature, pipeline networks have been represented using graphs, and the
spatial correlations of the pipeline network have been captured using the GCN model [29].
In this study, pipelines carrying water have been represented using graphs. The pressure
values at certain points on the pipeline were visualized over time by modeling and observ-
ing pressure drops. This study used the graph-based machine learning algorithm GCN to
detect pipeline leakage situations.
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Pipeline networks are often not limited to a single pipeline; significantly, in systems
like water distribution networks, there are structures where multiple pipelines converge
or diverge. Representing these complex structures with graph data structures provides
advantages compared to traditional data structures. Conventional machine learning models
(SVM, ANNs) often overlook the inherent dependencies among nodes and edges in pipeline
networks. However, it is crucial to acknowledge that a leakage occurrence in one pipeline
can have cascading effects on interconnected pipelines. In light of this, this study proposes
an approach that leverages graph data structures to effectively represent pipeline networks,
accompanied by the utilization of graph convolutional networks (GCN) as a graph-based
machine learning model. By incorporating GCN, the model can effectively capture and
contain the interdependencies between nodes and edges, thereby enhancing the accuracy
and predictive capabilities specifically tailored to the domain of pipeline networks. The
studies on GCN in the literature generally focus on object recognition and classification.
The GCN algorithm has achieved accuracy rates of 75% in urban pipeline networks [30],
94% in image processing [31], 88% in customer product recommendation [32], and 86% in
fault detection on steam turbines [33].

This study aims to predict leaks by monitoring pressure drops in water-carrying
pipelines, with a specific focus on accurately detecting pipeline leaks. In this research,
we represent the network structure of pipelines using graph representations. The graph
convolutional neural network (GCN) model is utilized. GCN offer an advantage in cap-
turing the intricate relationships among connections in pipelines. The data required for
the GCN algorithm were collected from a test set using experimental methods, wherein a
leakage scenario was deliberately created. Two datasets, edge and node, were specifically
constructed for this purpose. The performance of the GCN algorithm in leak detection was
compared with existing studies in the literature. The primary objective was to evaluate the
performance of GCN in graph-based machine learning and perform a comparative analysis
with traditional machine learning methods, explicitly employing the Support Vector Ma-
chine (SVM) algorithm as a reference. Given the escalating demand for water resources and
the concurrent decline in availability, preventing leaks in pipeline transportation systems
has become paramount. Detecting leaks facilitates prompt intervention, maintenance, and
repair, minimizing economic losses and mitigating environmental impact. The findings
of this study highlight the efficacy of the GCN algorithm in water leakage detection and
underscore the potential of graph-based machine learning in tackling intricate problems.

2. Materials and Methods

This study utilized the graph-based machine learning algorithms GCN and SVM.
These algorithms were implemented using StellarGraph, Pandas, Numpy, Sklearn, Ten-
sorflow, IPython, matplotlib, and Pyvis libraries based on Python. The performance
evaluations of the GCN and SVM algorithms were conducted using a confusion matrix,
accuracy, precision, recall, and f1 scoring methods. The GCN algorithms were implemented
using early-stopping methods to prevent overfitting.

2.1. Graph Convolutional Networks

Graph Convolutional Networks (GCN) is a current artificial neural network research
topic. The GCN model is derived from graph theory and convolution theorems to apply
machine learning to data represented by graphs. In general, a node is represented by com-
bining its attributes with the attributes of its neighbors [34]. GCN learns the representation
of a node by propagating neighbor information based on the graph structure. A GCN is
a multilayer neural network that operates directly on a graph and induces embedding
vectors of nodes based on the properties of their neighborhoods. Formally, consider a graph
G = (V, E) [35], where V and E are sets of nodes and edges, respectively [36].
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The GCN algorithm was proposed by Kipf et al. [37], and its working principle for a
single layer is expressed in Equation (1) below.

Z = σ

(
D̃
− 1

2 Ã D̃
− 1

2 X W
)
= σ

(
Â X W

)
(1)

Ã = A + I (2)

The expression Ã given in Equation (2) is the normalized adjacency matrix with self-
loops. The degree of the normalized adjacency matrix is denoted by D̃ii in Equation (3).

D̃ii = ∑j Ãij (3)

“σ” in Equation (1) represents the activation function. In this study, tanh and Softmax
functions were used as activation functions. “W” is the trainable weight matrix. “X”
represents the input features of nodes and edges in the graph structure (pressure and
flow rate values from sensors). “Z” is the output of the GCN layer containing first-degree
neighborhood information of all nodes. If k layers are used in the GCN algorithm, the
output of Z contains k-degree neighborhood (spatial) information. Therefore, the hidden-
layer data of GCN can provide more preliminary information for model training, enabling
trained hidden-layer neurons to have a more profound feature expression ability [38]. The
difference between GCN and classical machine learning algorithms lies in the ability of
GCN to directly operate on graph data structures and effectively utilize neighborhood
information to model the graph structure. With these capabilities, GCN can better capture
patterns and relationships in graph data, enabling more accurate predictions.

The application stages of the Graph Convolutional Networks (GCN) algorithm can be
defined in 11 steps:

1. Initialize the initial node feature matrix Z0 = X.
2. Determine the number of GCN layers (K) (16, 16).
3. Create weight matrices (Wk) for each GCN layer with random initial values.
4. Define an activation function (σ = tanh).
5. Perform the graph convolution operation: Zk+1 = σ(D−1 ×A × Zk × Wk).
6. Apply additional steps for each GCN layer, such as dropout or normalization.
7. Create the output layer: Zout = softmax(ZK × WK+1).
8. Define the loss function (L), typically cross-entropy.
9. Choose an optimization algorithm (Adam optimizer).
10. Update the weights using the training data: Wk, WK+1 = optimizer. minimize(L).
11. Make predictions on new data using the trained model: Zout_test = softmax(ZK ×

WK+1).

Zk represents the matrix representing the node features; Wk represents the weight ma-
trix, A represents the adjacency matrix representing the graph structure and D represents
the degree matrix. The algorithm updates the node features by utilizing the neighbor-
hood information from the graph structure and uses the softmax activation function for
classification. During the training stage, the weights are updated using an optimization
algorithm, and during the testing stage, the trained model makes predictions on new data.
These steps describe the implementation stages of the Graph Convolutional Networks
(GCN) algorithm, including initializing the node features, determining the number of
layers, creating weight matrices, applying the graph convolution operation, defining the
output layer, defining the loss function, choosing an optimization algorithm, updating the
weights during training, and making predictions on new data during testing. Table 1 below
gives the parameters of the GCN model used in this study.
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Table 1. Parameters of the GCN model.

GCN Model Parameters

Layer sizes (16, 16)
Epochs 70

Optimization method Adam (lr = 0.01)
Loss function Categorical cross-entropy

Activation functions Tanh, Softmax
Drop out 0.4%

Model train/rest rate 0.24%
Verbose 2

2.2. Support Vector Machines

Support Vector Machines (SVM) are an efficient alternative to supervised classifica-
tion [39]. The foundation of SVM was developed by Vapnik [40] and has gained acceptance
due to its various attractive features and promising performance. The formulation em-
bodies the structural risk minimization principle and is superior to conventional machine
learning methods’ traditional empirical risk minimization principle employed by conven-
tional machine learning methods. The SVM was initially developed to solve classification
problems [41]. During the training process, the SVM model was trained with the param-
eters test size 0.25 and random state 48. Table 2 below gives the parameters of the SVM
model used in this study.

Table 2. Parameters of the SVM model.

SVM Model Parameters

C 1.0
Break ties False
Cache size 200

Class weight None
Coef0 0.0

Decision function shape ovr
Degree 3
Gamma scale
Kernel RBF

2.3. Experimental Setup

This study conducted an experimental investigation to obtain the necessary datasets for
the proposed GCN and SVM algorithms, aiming to predict pipeline leaks. The experimental
design and implementation phase consisted of four main steps, which are provided below.

• Research Design
• Selection of Data Collection Methods
• Data Collection Process
• Data Recording

During the research design phase, the required data to be collected (such as pressure
and flow rate) were determined. The experimental dataset was prepared to be ready for
data collection following the created leak scenario, and the sensors were calibrated. The
limitations and constraints of this research were identified.

The limitations of this experimental research are as follows:

• The system is assumed to be represented by eight pressure sensors and two flow
meters.

• It is assumed that the experimental setup and measurement instruments are unaffected
by external factors, such as heat, vibration, noise, and light.

• It is assumed that the characteristics of the region where the experimental setup is
located, such as altitude, do not affect the precision of the measurements.
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• It is assumed that the PVC pipe type used in the experimental setup represents other
pipe types used in transmission lines.

The limitations of the experimental research are as follows:

• The findings are limited to the data set obtained from the experimental setup.
• The representation of liquid fluids is limited to water, used as the fluid in the experi-

mental setup.
• The pressure measurements are limited to the eight pressure sensors, two flow meters,

and PVC pipes used in the experimental setup.

An experimental setup was designed to create data sets required to operate graph-
based machine learning algorithms. A leakage scenario, which is detailed in the titled
scenario, was made to represent possible leakage situations. Pressure and flow variables
were measured over time through pressure sensors (MPS 500) and flowmeters using the
experimental setup shown in Figure 1 for data collection.

Figure 1. Experimental setup for pressure and flow measurement in the pipeline.

The data collection method and data recording processes were planned. During the
selection of data collection methods, the nature and volume of the data were considered to
determine how the data would be collected. In the data collection process, considerable
attention was paid to collecting the data accurately and consistently. A 12-channel data
acquisition card was used for recording the data. The data acquisition card records ten data
points per second. The recorded data were transferred to electronic spreadsheets, and the
accuracy and integrity of the data were checked. Any instances of incorrect or missing data
were identified and corrected.

For graph-based machine learning algorithms to work, the obtained data must be
represented by nodes and edges that connect these nodes. In the experimental dataset,
the pressure sensors represent the nodes, and the connections between these sensors
represent the edges. A total of eight pressure sensors were used in the dataset. Since the
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measurement intervals of the variables used in the dataset (such as flow rate and pressure)
differed, the dataset was standardized using the Python programming language and the
Sklearn and StandardScaler libraries. Additionally, the dataset was normalized using the
MinMaxScaler library, as artificial intelligence models perform more efficiently with values
ranging between 0 and 1. The experimental setup includes faucets and valves at various
locations for simulating leakage scenarios. Table 3 presents three columns: edge weight,
source (node), and destination (node). The table contains a total of 855 rows representing
the states of leakage (s3a), risk (s3o), and normal (s3n). The expression ‘s3n’ indicates the
absence of leakage or fault, ‘s3o’ indicates the presence of a leakage risk, and ‘s3a’ indicates
the presence of leakage or fault. Edge weights are assigned as 3 for leakage scenarios,
2 for risky scenarios, and 1 for normal scenarios. The expressions A0, A3, . . . , A8 in Table 3
represent the pressure sensors in the experimental dataset, which are the graph nodes.
The expressions _1, _2, _15 in Table 3 represent the values measured at different times
corresponding to the respective nodes.

Table 3. Edge list.

Source Target Edge Weight

s3n_A0_1 s3n_A3_1 1
s3n_A3_2 s3n_A8_2 1

s3o_A8_3 s3o_A9_3 2
s3o_A7_4 s3o_A9_4 2

s3a_A8_15 s3a_A9_15 3
s3a_A7_15 s3a_A8_15 3

Table 4 details 360 rows representing the nodes. The node list has 339 columns
representing the attributes of each node, such as pressure and flow rate. The node names
are encoded as follows: s3n for the case of no leakage, s3o for the risky situation, s3a for the
case of leakage, and A0_time for the zeroth node. For the leakage scenario, the node of the
A0 sensor belonging to the normal state at the first second is represented as s3n_A0_1.

Table 4. Node list.

Nodes Feature-1 . . . Feature-339 System State

s1n_A0_1 1 . . . 1 Normal
s1n_A2_1 0 . . . 0 Normal
s1o_A2_1 0 . . . 1 Risky
s1a_A2_1 0 . . . 0 Leakage

3. Scenario

A scenario was created to represent leakage fault conditions in pipeline systems. Based
on this scenario, the data collection process was carried out using the experimental dataset
described above. Water was used as the fluid in the experimental dataset. Figure 2 shows
the graph and the location of the leakage for the leakage scenario. The graph nodes (A0, A2,
A3, A4, A6, A7, A8, A9) represent the pressure-measurement points in the experimental
dataset. Pressure measurements were taken at eight different points. In the leakage scenario,
the experimental dataset included four pipelines shown in green in Figure 2. Two different
pipe diameters, 1 mm and 3 mm, were used in the transmission lines for the leakage
scenario.
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Figure 2. A scenario diagram was created for measuring the pipeline’s pressure and flow rate.

The conditions of the created scenario are as follows:

1. The scenario was conducted at room temperature.
2. Before data collection, the air in the pipes was purged after operating the experimental

setup.
3. The system was allowed to reach a stable state, and the pipes were completely filled

with water before data collection.
4. The pressure sensors were calibrated.
5. Considering the structure of water distribution networks, pipes with different diame-

ters and heights were selected for the scenario. The location of the leakage point was
chosen so that measurements could be taken both before and after the leakage point
using sensors.

The graph structure depicted in Figure 3 represents the pressure sensors and PVC
water pipes in our experimental setup. The pressure sensors are the graph nodes, while
the water pipes carry the edge attributes. The graph is directed, as there is a flow direction
within the pipelines.
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Figure 3. Graph representation of the scenario created for pressure and flow measurement in the
pipeline.

The expressions A0, A2, A3, A4, A6, A7, A8, and A9 depicted in Figure 3 represent the
pressure sensors present in the experimental dataset given in Figure 1. When the pipeline
network in the experimental dataset is represented as a graph structure, the points A0, A2,
A3, A4, A6, A7, A8, and A9 serve as the nodes of the graph structure. These node points
are recorded by measuring the pressure values over time to create a dataset.

4. Results

Data collected with eight different pressure sensors and flow meters on the experimen-
tal setup were labeled for normal, risky, and leakage scenarios for a 10-s time interval and
sampled in Table 5. The samples of risk and leakage are significantly different from most
other samples regarding characteristics [42]. The data in Table 5 are visualized as a graph
in Figures 4 and 5.

Each color seen in Figures 4 and 5 represents an individual pressure sensor within
the experimental dataset, and their corresponding mappings are as follows: A0 (blue), A4
(red), A6 (orange), A9 (yellow), A3 (green), A2 (violet), A7 (brown), A8 (turquoise).

Using graphs, Figure 4 displays the experiment data (Table 5) representing normal,
leak, and risky scenarios.

The central nodes represented in black show the time information. The colored
nodes connected to the black nodes by edges, A0, A2, . . . and A9 represent the pressure
information obtained from the sensors. The radii of the nodes vary according to the
measured pressure values. In leak scenarios, i.e., in the first, seventh, and eighth central
nodes, the node sizes are very small, as the pressure values are relatively lower than
the normal scenarios. In risky scenarios, i.e., in the fourth and sixth central nodes, it is
observed that the nodes shrink compared to normal scenarios. Figure 5 below illustrates
the clustering of similar nodes (based on node and edge characteristics) using the Python
NetworkX library for the values provided in Table 5, where the nodes are clustered closely
together.



Appl. Sci. 2023, 13, 7427 10 of 16

Table 5. (0–9) second experiment set data labeled as Risky, Normal, and Leakage (flow rate, pressure
[mA]).

Time A0 A2 A3 A4 A6 A7 A8 A9 Flow 1 Flow 2 System State

0 8.5852 7.7438 8.0905 7.9858 8.1753 9.9996 7.0367 9.9996 0.6433 0.6253 Normal

1 2.4679 2.7862 2.7090 2.7395 2.6995 4.5739 3.1051 4.9981 0.6365 0.6253 Leakage

2 8.6276 7.7267 8.0307 7.9724 8.1848 9.9996 7.0370 9.9996 0.6552 0.6298 Normal

3 8.6093 7.7267 8.0447 7.9504 8.1417 9.9996 6.9976 9.9996 0.6799 0.6179 Normal

4 5.0442 4.8980 4.9563 4.9505 4.9908 7.0755 4.7476 7.6266 0.6015 0.6021 Risky

5 8.5580 7.6980 7.9895 7.9409 8.1707 9.9996 7.0004 9.9996 0.6689 0.6253 Normal

6 5.0234 4.9099 4.9774 4.9642 5.0503 7.0767 4.7598 7.6596 0.6021 0.6024 Risky

7 2.5045 2.8204 2.7096 2.7218 2.7200 4.5855 3.1057 4.9801 0.6436 0.6253 Leakage

8 2.4459 2.8164 2.7236 2.7355 2.7081 4.5532 3.0987 4.9758 0.6668 0.6295 Leakage

9 8.5006 7.6895 8.0026 7.9452 8.1314 9.9996 6.9760 9.9996 0.6536 0.6195 Normal
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Figure 4. Graphical representation over time of the data provided in Table 5.

As shown in Figure 5, the sensor values obtained under normal conditions are clus-
tered in a different area than those obtained during leaks and risky situations. The nodes in
Figure 5 are numbered 1, 2, 3, etc. For each period in Table 5, eight sensor or node values
are generated. For time 0, the node numbers are 1, 2, 3, . . . , 8, and for time 1, the nodes
continue from 9, 10, 11, . . . , 16. The leakage situations in Table 5 are given at times 1, 7,
and 8. It can be observed that the sizes of the nodes corresponding to these periods, which
fall between nodes 9 and 16, 57 and 64, and 65 and 72, have shrunk to a size that is too
small to be observed. The parameters related to the performance of the GCN algorithm are
determined as an accuracy score of 0.9420, a loss value of 0.0980, and an f1 score of 0.94.
The summary of the classification of scenarios according to the GCN algorithm is given in
Table 6.
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Table 6. Summary of classification of scenarios according to the GCN algorithm.

System Status Precision Recall f1-Score Sample

Normal 1.00 0.82 1.00 120
Risky 1.00 1.00 0.94 120

Leakage 0.90 0.89 0.95 120
Accuracy 0.94 360

Macro Average 0.97 0.96 0.96 360
Weighted
Average 0.97 0.96 0.96 360

For the leakage situations in Table 6, the f1-score is detected as 95%, the detection
of risky situations with 94% accuracy, and the detection of normal situations with 100%
accuracy. The system’s average leakage, risk, and normal status are detected with a 94.20%
accuracy rate. The real-time monitoring of leakage situations in pipeline networks and the
detection of leakage situations occur at the moment of leakage. This situation causes a waste
of time and water resources during the intervention phase of leakages. It is crucial to detect
leakage situations in pipeline networks at an early stage. The system status being labeled
as risky indicates the need for intervention in case of leaks. The prediction of a possible
significant leakage situation is made in advance. Small interventions or maintenance and
repair can be addressed at this stage before the failure escalates. The graph of the accuracy
and loss values of the GCN algorithm is given in Figure 6.
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The classification of the predicted values of the GCN algorithm for the system’s
risky, leakage and normal states is shown in Figure 7, which was created using the t-SNE
(t-Distributed Stochastic Neighbor Embedding) technique, which is employed for visual-
izing high-dimensional data by assigning each data point a location on a two- or three-
dimensional map [43].
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The X1 and X2 axes in Figure 7 represent the coordinates of the two-dimensional space
generated by the t-SNE algorithm. The positions of the points on the graph are determined
based on the similarities among the data points. The nodes labeled 1 and 2 within the circles
in Figure 7 show the confusion of the algorithm in predicting leakage and risky situations,
indicating that the nodes belonging to these situations have similar characteristics. The
confusion matrix comparing the actual and predicted values of the GCN algorithm for the
system’s risky, leakage, and normal states is shown in Figure 8.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 17 
 

 
Figure 7. Classification of the system’s risky, leakage, and normal states with GCN. 

The X1 and X2 axes in Figure 7 represent the coordinates of the two-dimensional space 
generated by the t-SNE algorithm. The positions of the points on the graph are determined 
based on the similarities among the data points. The nodes labeled 1 and 2 within the 
circles in Figure 7 show the confusion of the algorithm in predicting leakage and risky 
situations, indicating that the nodes belonging to these situations have similar 
characteristics. The confusion matrix comparing the actual and predicted values of the 
GCN algorithm for the system’s risky, leakage, and normal states is shown in Figure 8. 

 
Figure 8. Confusion matrix according to GCN results. 

The matrix compares the actual states with the predicted states obtained from apply-
ing the GCN algorithm in Figure 8. The findings showed that the system confused the 
risky situations with the leakage situations. The performance of the Graph Convolutional 
Network (GCN) algorithm, used for machine learning on graph-structured data, was eval-
uated by employing a classical machine learning algorithm, Support Vector Machine 
(SVM), for predicting leakages in pipeline systems using the same scenario and dataset. 
The parameters related to the performance of the SVM algorithm are determined as an 
accuracy score of 0.8666, a loss value of 0.1333, and an f1 score of 0.8667. The summary of 
the classification of scenarios according to the SVM algorithm is given in Table 7. 

Table 7. Summary of classification of scenarios according to the SVM algorithm. 

System Status Precision Recall f1-Score Sample 
Normal 1.00 1.00 1.00 25 
Risky 0.87 0.77 0.82 35 

Figure 8. Confusion matrix according to GCN results.

The matrix compares the actual states with the predicted states obtained from applying
the GCN algorithm in Figure 8. The findings showed that the system confused the risky
situations with the leakage situations. The performance of the Graph Convolutional
Network (GCN) algorithm, used for machine learning on graph-structured data, was
evaluated by employing a classical machine learning algorithm, Support Vector Machine
(SVM), for predicting leakages in pipeline systems using the same scenario and dataset.
The parameters related to the performance of the SVM algorithm are determined as an
accuracy score of 0.8666, a loss value of 0.1333, and an f1 score of 0.8667. The summary of
the classification of scenarios according to the SVM algorithm is given in Table 7.

Table 7. Summary of classification of scenarios according to the SVM algorithm.

System Status Precision Recall f1-Score Sample

Normal 1.00 1.00 1.00 25
Risky 0.87 0.77 0.82 35

Leakage 0.76 0.87 0.81 30
Accuracy 0.87 90

Macro Average 0.88 0.87 0.87 90

For the leakage situations in Table 7, the f1-score is detected as 81%, the detection
of risky situations with 82% accuracy, and the detection of normal situations with 100%
accuracy. The system’s average leakage, risk, and normal status are detected with an 87.66%
accuracy rate. The SVM algorithm, which solely relies on node features and does not
utilize edge features, has fewer samples than the GCN algorithm. The confusion matrix
comparing the actual and predicted values of the SVM algorithm for the system’s risky,
leakage, and normal states is shown in Figure 9.
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The matrix compares the actual states with the predicted states obtained from applying
the SVM algorithm in Figure 9. The findings showed that the system confused the risky
situations with the leakage situations.

5. Conclusions

When the literature was reviewed, it was found that machine learning algorithms
have been utilized for fault diagnosis in pipeline systems, yielding accuracy rates ranging
from 78.51% to 99%. However, it is worth noting that non-graph-based machine learning
models, such as SVM, ANNs, RVM, CNN, SPSA, and WML, have been predominantly
employed instead of graph-based machine learning models for predicting and detecting
leaks in pipelines.

In this study, the GCN model achieved a detection accuracy of 95% for leak condi-
tions, 94% for risky situations, and 100% for normal situations. The SVM (Support Vector
Machine) model was used as a reference to determine the GCN model’s effectiveness. The
SVM model achieved a detection accuracy of 81% for leaks, 82% for risky conditions, and
100% for normal conditions. Overall, when comparing the performance of the two models
(considering leaks, risky conditions, and normal conditions), SVM achieved an accuracy of
87%, while GCN achieved 94% accuracy.

Based on the findings, the following conclusions have been drawn:

1. The results reveal important implications for water resource management, reduction
of water losses and sustainable living.

2. The GCN model demonstrated high accuracy and performance in predicting pipeline
water leaks, including leaks and risky conditions. The results highlight the effective-
ness of the graph-based machine learning model. The high accuracy of the GCN
model in detecting risky conditions is crucial for early leak detection and preventive
maintenance planning. Situations labeled as risky indicate the need to act to prevent
leaks. Thus, predicting a potential major leak can be made in advance. At this stage,
it is aimed to solve the problem before it grows by performing small interventions or
maintenance and repair.

3. Both GCN and SVM models exhibited equally good performance in detecting normal
conditions.

4. The GCN model outperformed the SVM model when comparing the prediction
results for leaks and risky conditions. The GCN algorithm’s ability to analyze edge
and spatial relationships made a difference in leak detection.

The results indicate the potential of graph-based machine learning methods in solving
complex problems such as detecting water leaks in pipelines. Based on the experience
gained from this study, it is aimed to replicate this study with other graph-based machine



Appl. Sci. 2023, 13, 7427 15 of 16

learning algorithms, such as GraphSAGE, HinSAGE, RGCN GAT, SGC, PPNP, APPNP,
and Cluster-GCN, given the detection of leak locations, and to predict leak and blockage
situations in pipeline systems with gaseous fluids in further studies.
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