friried applied
e sciences

Article

Efficient Roundabout Supervision: Real-Time Vehicle Detection
and Tracking on Nvidia Jetson Nano

Imane Elmanaa 1-2*, My Abdelouahed Sabri *7, Yassine Abouch ? and Abdellah Aarab !

check for
updates

Citation: Elmanaa, I.; Sabri, M.A;
Abouch, Y.; Aarab, A. Efficient
Roundabout Supervision: Real-Time
Vehicle Detection and Tracking on
Nvidia Jetson Nano. Appl. Sci. 2023,
13,7416. https://doi.org/10.3390/
app13137416

Academic Editors: Junchi Yan and

Minghao Guo

Received: 6 April 2023
Revised: 25 May 2023
Accepted: 6 June 2023
Published: 22 June 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 LISAC Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University,
Fes 30000, Morocco

2 DAKAI Laboratory, Nextronic by Aba Technology, Casablanca 20253, Morocco

* Correspondence: imane.elmanaa@usmba.ac.ma (L.E.); abdelouahed.sabri@gmail.com (M.A.S.);
Tel.: +212-634781637 (LE.); +212-600504321 (M.A.S.)

Abstract: In recent years, a significant number of people in Morocco have been commuting daily
to Casablanca, the country’s economic capital. This heavy traffic flow has led to congestion and
accidents during certain times of the day as the city’s roads cannot handle the high volume of
vehicles passing through. To address this issue, it is essential to expand the infrastructure based on
accurate traffic-flow data. In collaboration with the municipality of Bouskoura, a neighboring city of
Casablanca, we proposed installing a smart camera on the primary route connecting the two cities.
This camera would enable us to gather accurate statistics on the number and types of vehicles crossing
the road, which can be used to adapt and redesign the existing infrastructure. We implemented our
system using the YOLOvV7-tiny object detection model to detect and classify the various types of
vehicles (such as trucks, cars, motorcycles, and buses) crossing the main road. Additionally, we used
the Deep SORT tracking method to track each vehicle appearing on the camera and to provide the
total number of each class for each lane, as well as the number of vehicles passing from one lane to
another. Furthermore, we deployed our solution on an embedded system, specifically the Nvidia
Jetson Nano. This allowed us to create a compact and efficient system that is capable of a real-time
processing of camera images, making it suitable for deployment in various scenarios where limited
resources are required. Deploying our solution on the Nvidia Jetson Nano showed promising results,
and we believe that this approach could be applied in similar traffic-surveillance projects to provide
accurate and reliable data for better decision-making.

Keywords: smart camera; YOLOv7-tiny; object detection; Deep SORT; tracking; embedded system;
Nvidia Jetson Nano; vehicle counting

1. Introduction

Bouskoura is a Moroccan city located approximately twenty kilometers south of the
economic capital, Casablanca. Recently, the city has experienced a significant increase
in population, resulting in a rise in road traffic as many individuals commute to and
from Casablanca for work. This has led to direct congestion, particularly at intersections,
resulting in increased travel time, vehicle blockages, and heightened fuel consumption.
Congestion can cause driver stress and frustration [1], which can significantly impact
individuals” performance and efficiency, lowering economic productivity and reducing
the quality of life. Therefore, it is crucial to develop a trafficc-management strategy that
improves the design of existing roads [2].

Deep learning is a rapidly growing subfield of artificial intelligence that has shown a
remarkable ability to learn from vast amounts of data and can solve complex problems with
high accuracy [3,4]. However, this often requires access to powerful computing resources
and significant data storage, making it challenging to deploy deep-learning algorithms in
resource-limited environments [5,6].

Appl. Sci. 2023, 13, 7416. https:/ /doi.org/10.3390/app13137416

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137416
https://doi.org/10.3390/app13137416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5485-486X
https://doi.org/10.3390/app13137416
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137416?type=check_update&version=1

Appl. Sci. 2023,13, 7416

20f16

To address this challenge, our study proposes a solution that leverages deep-learning
techniques to analyze the traffic data collected by our smart camera and to make informed
decisions on which road lanes to expand or extend. By designing our solution with
consideration for resource constraints, we can demonstrate the feasibility of deploying
deep learning in real-world applications with limited resources. Deep learning has already
shown great potential for improving traffic management and our solution provides a
promising avenue for addressing traffic congestion challenges in urban environments.

In this paper, we present an efficient system that leverages modern image processing
and artificial-intelligence technologies to support decision-making regarding which road
lanes to extend or expand. Our system uses a smart camera equipped with an Nvidia Jetson
Nano card to gather statistics. The camera records the number of vehicles by category at
each intersection lane daily and calculates the precise count of vehicles moving from a
certain entrance to a certain exit. All processing is carried out on the card, and the resulting
statistics are then transmitted via the standard IoT messaging protocol MQTT [7] for further
analysis and decision support.

Our initial task was to create an application that could enable us to gather a substantial
dataset to construct our detection and classification model. For data collection, we utilized
an Allwinner A133 embedded card with a Linux system. The card was programmed to
capture video sequences from an IP camera installed at the same intersection. The data
were then stored in an external memory card and transmitted to a server via FTP with a
secondary program.

We used these videos to create a dataset of 13,000 images. For object detection, we
employed YOLOV7 (you only look once, version 7), which is currently the most reliable and
easily deployable model available [8]; it was selected based on these qualities, as well as its
compatibility with the Nvidia Jetson Nano card. The images were manually labeled into
four classes: cars, trucks, motorcycles, and buses. Manual labeling was essential to ensure
the accuracy and precision of the labeled data, resulting in a higher-quality classification
model. By manually labeling the images, we were able to carefully inspect and classify
each object in the images, reducing the likelihood of errors or misclassifications. Our model
of vehicle detection and classification was trained using 7000 images for training, 4000 for
validation, and 2000 for testing. We evaluated the performance of our trained model using
several measures, including a mean average precision (mAP) at a threshold of 0.5 of 91%,
a recall of 84.1%, and a precision of 87.2%. After detection and recognition, we utilized
the Deep SORT algorithm for vehicle tracking. Finally, the counting of vehicles on each
road at the intersection was conducted by using a mathematical formula that calculated the
intersection of two segments to trigger a vehicle count in increments. Finally, we calculated
the number of vehicles passing from one road to another; this calculation was based on
tracking that allows us to identify each vehicle and follow it throughout the scene with the
information found previously, which is the number of vehicles passing through each road.

Our main contribution is the development of a robust and efficient vehicle-counting
solution that can be deployed on the Nvidia Jetson Nano card. We achieved this by
leveraging a large dataset, which was collected with an attention to different scenarios and
conditions. This allowed us to train a high-performing detection model that can detect
vehicles with high accuracy and low latency. In addition to detection, we utilized a tracking
algorithm, Deep SORT, which maintains the identity of each vehicle as it moves throughout
the roundabout, improving the counting accuracy of the system. Our solution offers several
advantages over traditional methods, including speed, accuracy, and scalability. Deploying
the solution on the Nvidia Jetson Nano card ensures low latency and high performance,
making it ideal for real-time applications. In our experimental results, we demonstrated
that our solution outperforms existing methods, achieving high accuracy and low error
rates. We believe that our contribution can pave the way for more efficient and accurate
vehicle-counting systems, which can have significant applications in areas such as traffic
management, security, and surveillance.

Appl. Sci. 2023,13, 7416

30f16

The remainder of this paper is structured as follows: Section 2 presents the previous
works that deal with similar projects, i.e., “counting vehicles in embedded systems”.
Section 3 provides a brief overview of our project, including the cost of the solution and
a detailed description of the overall architecture. Each component of the architecture is
discussed in a separate subsection. Section 4 explains the experimental results. Section 5
includes a discussion and, finally, a conclusion.

2. Related Work

The main objective of our paper is to develop an intelligent camera system capable of
processing a camera feed in real time to calculate the number of vehicles in each category
passing through an intersection, as well as the total number of vehicles passing through
each path. In the literature, we found various pieces of research and projects related to this
problem and we would like to cite some examples.

Abuelgasim et al. [9] presented a vehicle-counting system that utilized the YOLOv5
algorithm for object detection and Deep SORT for tracking. They collected a database of
vehicles with four classes and deployed their system on an Nvidia Jetson Nano card, which
can process at a speed of 15 fps. However, their system was only tested on videos; to truly
evaluate the performance of a solution, it should be tested in real-time conditions under
various lighting and weather conditions. Therefore, to ensure optimal performance, it is
necessary to train a robust model that can handle different lighting and weather conditions.

Duc-Liem et al., 2021 [10] presented a low-cost and effective system that integrated
object detection models to detect, track, and count vehicles. They created a vehicle detection
dataset representing traffic conditions in Vietnam and evaluated several deep learning
models on two different types, a Coral Dev Board that supported TPU and then an Nvidia
Jetson Nano Board that supported GPU. However, their study acknowledged the need to
improve the inference time of the model for optimal performance. To address this limitation,
our work aims to optimize the inference time, thus making a system that is even more
practical for traffic control and management.

Valladares et al., 2021 [11] assessed the performance of Nvidia cards by using machine
learning to count vehicles in real time in the city of Quito, Ecuador. They evaluated
performance based on several factors, including resource utilization (GPU and CPU),
power consumption, the temperature of the card, and the RAM usage during processing.
Additionally, they confirmed the need to increase the precision of their model, as the use of
OpenDataCam for vehicle-counting and identification proved effective, but certain factors
such as camera position, lighting, vehicle size and speed, and traffic flow needed to be
considered. Therefore, it is necessary to find a solution that can adapt to all these conditions.

Yan Han et al., 2017 [12] developed a driving-assistance system utilizing embedded
cards, such as the Nvidia Jetson. The system consists of two components: the first one
utilizes image processing techniques to locate signs, while the second uses a convolutional
neural network (CNN) to classify the detected signs. The proposed system was imple-
mented on the Nvidia Jetson TX1 board with a web camera. Although the system achieved
a high detection accuracy of 96%, the frame rate was low, at 1.6 frames per second (FPS).
Therefore, a faster model is needed to be deployed on the Jetson card.

Zhihui Wang et al., 2020 [13], proposed an integrated solution that combines detection,
tracking, and trajectory modeling algorithms for vehicle detection and counting. They
utilized a GMM-type backward modeling approach along with a machine-learning-based
detector to enhance the accuracy of vehicle detection and counting precision. They also
implemented a trajectory modeling scheme that considers the direction and trajectory
of the vehicles. However, their algorithm still has limitations, such as typical detection
failures, false positives due to dynamic backgrounds or reflections, and missing detections
of vehicles that are too large or too small. Therefore, there is a need to consider more robust
algorithms to overcome these issues.

We have taken into consideration the limitations and difficulties highlighted by pre-
vious studies in the field of vehicle detection and counting. To improve the performance

Appl. Sci. 2023,13, 7416

40f16

of this research, we have proposed the use of alternative algorithms for object detection
and a new method of vehicle-counting that is adaptable to the specific requirements of the
system. Additionally, we have collected a new database of vehicles that considers all the
possible detection difficulties, such as occlusion, illumination variations, or bad weather
conditions, to ensure a more robust and reliable detection and counting system.

3. System Architecture and Test Environment

The proposed traffic-management system aims to analyze the traffic at an intersection
located between Bouskoura and Casablanca. For this purpose, we installed an IP camera
connected to an Nvidia Nano Jetson card, which serves as our processing unit. Figure 1
shows some of the images captured during the installation. Our system functions as a
smart camera capable of detecting and tracking vehicles in real time. One of the most
important features of our camera is that it follows the concept of edge computing, which
means that the analysis is performed directly on the device, and only the counting results
are transmitted. This has two main advantages: first, we do not need to transmit the images,
which reduces bandwidth requirements; second, we respect the privacy of citizens, which
is a crucial consideration for any application deployed in a public place.

Figure 1. Installation images of our smart vehicle counter system.

To provide a practical and informative solution, we have included the current cost
of each piece of equipment used in our system. Table 1 summarizes the estimated cost of
each component:

Table 1. Cost breakdown of equipment used in the solution.

Component Model Cost
IP camera Hikvision Varifocal Motorized Bullet Camera USD 270
Al Processing Unit Nvidia Jetson Nano 4 GB Development Kit USD 214.63
Accessories (cabling, protection, etc.) Approximately USD 200

The system architecture of the proposed traffic management system is composed of
several components, including data acquisition, object detection and classification, object
tracking and identification, counting, and data transmission. The data-acquisition compo-
nent captures video footage of the traffic at each intersection using a smart camera and
statistics are calculated and transmitted via the MQTT protocol. The object detection and
classification component uses the YOLOvV7-tiny algorithm for vehicle identification and
classification. The object tracking and identification component uses the Deep SORT algo-
rithm to track and identify vehicles. The counting component combines image processing
techniques and deep-learning algorithms to count the number of vehicles passing through

Appl. Sci. 2023,13, 7416

50f16

each lane. Finally, the data-transmission component is responsible for transmitting the
processed traffic data to a centralized server for further analysis and decision-making via
the MQTT protocol.

Figure 2 shows the architectural overview of the proposed system, including its
components.

Vehicle detection
Vehicle tracking
Vehicle counting

Number of vehicle for each type in the six lanes
protocole Number of vehicles of all possible routes

i

mcar mmotorbike mbus mtruck

vehicle flow per day
16000

14000
12000
10000

6000

4000

2000 I I
DI—"" _-—I._.-. = N | | -0 .l =_0 - -

2022-12-05 2022-12-06 2022-12-07 2022-12-08 2022-12-09 2022-12-10 2022-12-11 2022-12-12 2022-12-13

1
|
1
|
I
1
|
|
1
|
1
1
: 8000
1
|
1
|
1
|
|
1
|
|
|
1

Figure 2. The proposed architecture for traffic flow detection. Vehicle detecting, tracking, and
counting are directly performed in the Nvidia Jetson Nano.

3.1. Collection and Description of Data

Before deciding to build a custom detection model, we tested several existing models
based on other datasets, such as COCO. However, these models did not meet the desired
level of accuracy due to the constraint of having only one camera covering all the lanes of
the intersection. The camera captures large vehicles that are close but the problem arises
with vehicles in other lanes that are further away and appear smaller in size. To address
this issue, we decided to build a dataset that met our needs by using the same camera
deployed in the intersection. This approach ensured that the detection and tracking were
optimized for the specific camera and consequently improved the accuracy of the counting,
which is the primary purpose of our application.

To build our dataset, we used an embedded system with a Linux system based on
the Allwinner A133 motherboard. We programmed the board to capture video footage
throughout the day from the IP camera installed at the intersection. The videos were stored
on a memory card and sent to the server via FTP with a Python program that removed the
successfully transmitted videos.

We carefully filtered the collected video sequences to obtain images that contained
diversified sets representing different classes (cars, trucks, buses, and motorcycles) at
different times of the day and in varying weather conditions, ensuring that all possible
variations of the real world were included.

The dataset contains 13,000 images, which were manually annotated using the labeling
tool with the text extension of YOLO.

Figure 3 shows the system architecture used for the dataset collection.

Appl. Sci. 2023,13, 7416

6 of 16

]
Iy s . ©]
Live video stream '

7a

Input image

]

-

BEE BARRR

L= T e

Files transfert

— Video frame
(Video sequences) -

extraction

FTP server
Sample of 4 images taken from

Save video sequences in our data-set

the SD card

Figure 3. The architecture of the system used for the dataset collection.

3.2. Object Detection, YOLOv7

To select the best algorithm for our vehicle detection and classification task, we needed
to consider several criteria, including real-time detection with high reliability and deploy-
ment ability on the Nvidia Jetson Nano card. After careful consideration, we chose the
YOLOV7 as the most suitable detection algorithm for our application as it has been suc-
cessfully tested in several real-world applications [8,14,15]. YOLOV? is characterized by a
unique CNN architecture that processes multiple networks separately [8].

In a YOLO model (the general structure [8] of which is represented in Figure 4), the
back part is the part that groups the pixels of the image. The representations of the layers
of the convolutional network are combined and blended in the neck; then, they are passed
to the prediction head. The head is the final part of the CNN, in which our YOLO model
predicts the object classes and locations.

.o O TRNER . ., SRR, .. . SO

=

Output image
Classification

Feature >

U Regression

Figure 4. YOLO network architecture.

We carried out a comparative analysis of YOLOv7 with other YOLO versions, includ-
ing YOLOv4 and YOLOVS5. Our study revealed that YOLOV7 outperforms both YOLOv4
and YOLOVS5 in terms of accuracy, parameters, and computation. Specifically, YOLOv7
showed a 1.5% higher average precision (AP) than YOLOv4-tiny, while reducing the num-
ber of parameters by 75% and computation by 36%. Moreover, the more edge-optimized
version of YOLOv7, YOLOv7-tiny, achieved the same AP as YOLOv4-tiny, while using 39%
fewer parameters and requiring 49% less computation. When compared to YOLOv5-N,
YOLOvV7-tiny demonstrated a 10.7% higher accuracy on AP and was 127 FPS faster [16].

Our custom model for vehicle detection and classification was trained using the trans-
fer learning approach, and it was based on the pretrained weight file of YOLOv7-tiny [17]
and our annotated dataset. We ran YOLOvV7-tiny on the Nvidia Jetson Nano as this model
can work faster on this type of device. Overall, our comparative study and choice of
YOLOv7 demonstrate that it is a highly effective and efficient algorithm for real-time
vehicle detection and classification.

Appl. Sci. 2023,13, 7416

7 of 16

3.3. Vehicle Tracking

In object tracking applications, there is the problem of correctly identifying the same
object over multiple frames of a video. Deep SORT addresses this issue by assigning a
unique identification (ID) to each detected object and by using a combination of appearance
and motion information to track the object over time. To achieve the objective of our project,
which is the counting of vehicles, we need to track all the vehicles accurately, which is a
crucial task in this type of application. The tracking of objects involves detecting the object,
identifying it in a frame, and tracking it across all sequences until it leaves the scene. To
achieve this task, we chose to use the Deep SORT algorithm (simple online and real-time
tracking with a deep association metric), which is a multiobject tracking method. The
Deep SORT algorithm uses the spatial and temporal characteristics of the targets to track
and maintain the identification of all moving objects in all sequences [18] (as shown in
Figure 5). By assigning each detected object a unique ID, Deep SORT ensures that the same
vehicle is consistently identified and tracked across multiple frames, allowing for accurate
vehicle-counting.

Figure 5. Deep SORT algorithm result, a unique ID is given to each class of detected vehicle.

The Deep SORT algorithm consists of the following steps (as is shown in Figure 6):
First, the vehicles are detected using the YOLOv7-tiny. Then comes the multiobject tracking
step, where the Kalman filter predicts the trajectories based on the position and speed of
the target object; meanwhile, the Hungarian algorithm measures the correlation [19].

Deep SORT distinguishes itself by using a combination of two convolutional layers,
followed by six residual blocks and an appearance descriptor [19]. This makes the system
more robust against missing-object occlusions by significantly reducing the number of iden-
tity changes. This combination makes Deep SORT an appropriate choice for applications
requiring real-time monitoring. Furthermore, Deep SORT has been shown to be effective in
handling complex scenarios with significant occlusion, which is a common challenge in
tracking vehicles that are using a roundabout. The algorithm is also capable of tracking
vehicles with varying speeds and trajectories, making it ideal for real-world applications.

Additionally, the ability of Deep SORT to maintain the identity of each vehicle as it
moves throughout the roundabout helps to improve the accuracy of the vehicle-counting
system. Overall, the combination of traditional tracking methods with deep-learning
techniques, the ability to handle complex scenarios, and the ability to maintain the iden-
tity of each vehicle makes Deep SORT a suitable choice for vehicle tracking for vehicles

Appl. Sci. 2023,13, 7416

8 of 16

using a roundabout, and it contributes to the high accuracy of the proposed vehicle-
counting solution.

1
1
: I | DeepSort !
1
| | 1 !
_______________ ':: Difference : ! i___________: .
: : detector : ! I'| Mahalanobis : |
! | distance '
- : : V : ! | : :
1 | | | | !
I |t Kal I I .
WP YOLOv7-Tiny |=P Detection [r=p Pa rdnart1 : Deep I | Hungarian | |
: | redic | Appea.rance I Assignement | |
. : Descriptor | I
i I |
ot ! I
[! I |
| 1 1

Video sequence

Object Detection Multi-Object Tracking

Figure 6. The architecture of the Deep SORT algorithm.

3.4. The Counting of Vehicles at Intersections

The principle used for the counting of vehicles in the different lanes [20] of the intersec-
tion involves drawing virtual custom lines that cut across the six lanes of the roundabout.
Figure 7 shows an illustrative diagram of the method used. Each line drawn must reach
both sides of each lane in a single direction. For the detecting and tracking of vehicles in
different images, the system calculates the intersection between the defined line and the
segment composed of two points: the centroid of the current box of the vehicle and the
centroid of the old box of the same detected vehicle (Figure 8). When the segment crosses
the imaginary line, the system calculates the number of vehicles in increments and detects
the vehicles in the relevant category.

Voie 5

Voie 6

-Virtual count lines

£ 30N b IO

Voie 1

Voie 2

Figure 7. Illustrative diagram of the virtual lines used for counting the vehicles.

Appl. Sci. 2023,13, 7416 9of 16

Centoid of Bounding
box in the current
frame

intersection point \

Centoid of
Bounding box in the
previous frame

Figure 8. The mechanism used to check if a bounding box was intersected by the count line.

To calculate the number of vehicles passing from one lane to another, we recorded
the IDs of the vehicles that crossed each lane. If a certain vehicle with the same ID crossed
two lanes simultaneously, we calculated the number of vehicles, in increments, that were
making this maneuver. For example, if the vehicle identified by the number 1 passes
through lane 3 at first, and then passes through lane 4, we calculated the number, in
increments, of vehicles that passed from lane 3 to lane 4.

In Figure 9, we give an example of the possible trajectories for a vehicle coming from
lane 2. As illustrated in the figure, we can conclude that a vehicle coming from lane 2
can pass through lane 5, lane 3, or lane 1, thus making the following routes V2 — V5,
V2 — V3, and V2 — V1. Additionally, the same principle applies to all the other lanes of
the intersection.

Voie6 Voie5

E9IOA P IIoA

Voiel Voie2

Figure 9. Diagram that illustrates the possible trajectory of vehicles coming from Lane 2.

Appl. Sci. 2023,13, 7416

10 of 16

3.5. Deploy Model for the Nvidia Jetson Nano

The Nvidia Jetson Nano is a small, low-power computer designed for use in embedded
systems and other applications requiring a high computing performance within a compact
form factor. It is based on the Nvidia Jetson platform and is powered by a quad-core
ARM Cortex-A57 CPU and a 128-core Maxwell GPU. It supports a wide range of interfaces
and peripherals, including USB, ethernet, and HDMI [21]. The Nvidia Jetson Nano has
a maximum power consumption of 10 watts, which makes it an energy-efficient solution
for edge computing. It also has a memory bandwidth of 25.6 GB/s, which allows for
fast and efficient data transfer between the CPU and GPU. These parameters make the
Nvidia Jetson Nano a suitable platform for running deep learning models as it can handle
complex computations while maintaining a low power consumption. Additionally, the
Nvidia Jetson Nano is equipped with 4 GB of LPDDR4 memory, which provides sufficient
memory for running deep learning models and handling large datasets. Overall, the Nvidia
Jetson Nano’s power consumption and memory bandwidth parameters make it an excellent
choice for deploying Al solutions at the cutting edge.

4. Results

In this part, we present the performance evaluation of the deployed system, the
performance of the vehicle-detection model trained by YOLOvV7-tiny, the efficiency of the
counting method used, and present the counting accuracy scores.

4.1. Training Results

Our model of vehicle detection and classification was trained using 7000 images for
training, 4000 for validation, and 2000 for testing. We evaluated the performance of our
trained model using several measures, a mAP@.5 of 91%, a recall of 84.1%, and a precision
of 87.2%.

We trained our model using the architecture of the YOLOvV7-tiny model as a starting
point for the training process. The model was trained for 300 epochs, which took 8.715 h
with the use of an Nvidia RTX 3060ti GPU computer. Figure 10 shows the plots of the
functions of losses. It contains the loss of box regression that shows the way in which
the boxes cover the vehicles, and also the capacity to locate the centers of each category
of vehicles. In addition, it includes the classification loss, which represents the ability to
differentiate between the different detected objects, and finally the abjectness loss, which is
the probability that the detected vehicle exists in the ROL

The training results of our pretrained YOLOv7-tiny model for object detection show that
the precision, recall, and mAP increase as the number of epochs increases, indicating that
the training process was effective. On the other hand, the errors in objectness, classification,
and box decreased with the number of epochs, indicating that our model is well-trained.

The precision-recall curve is a graph that shows the trade-off between the precision
and recall for a classifier. In the case of the YOLOv7-tiny model that was trained for vehicle
detection and classification, the precision-recall curve is shown in Figure 11 and it is based
on the precision and recall data obtained for each class (i.e., car, truck, bus, and motorcycle).

From the obtained results, we can calculate the average precision (mAP) for all classes
at a threshold of 0.5. The average precision for all classes is 0.801, which indicates that the
model can detect and classify vehicles with high precision.

4.2. Experimental Results

To evaluate our application that counts vehicles in an intersection in the real world, we
used the Nvidia Jetson Nano as a peripheral computing system. The experimental device
was deployed at the intersection between Bouskoura and Casablanca (see Figure 1). We
used the Nvidia Jetson Nano to perform all the necessary steps in order to conduct the
analysis, detection, tracking, and counting. The final step involved sending the counting
results via MQTT to aid in the decision-making regarding expanding the intersection to
mitigate congestion.

Appl. Sci. 2023,13, 7416

11 0f 16

0.07

0.06

0.05

Confidence Loss

0.04

0.03

0

0.08

0.07

0.06

Confidence Loss

0.05

0

Epoch 200

val Box

Epoch 200
(a)

Objectness Classification Precision Recall
0.018 —eo— results 0.7
0.010 0.8 -
§0.017 8o0.008 0.6
S
2 5 07
80.016 £ 0.006 32 205
8 = g g
£0.015 £0.004 06 0.4
o S s
0.014 0.002 0.3
0.5
o Epoch 790 0 Epoch 200 0 Epoch 200 0 Epoch 200
val Objectness val Classification MAP@0.5 MAP@0.5:0.95
0.014 0.8
0.042
_0.012 0.7 bid
20.041 8
g 20.010 B
§ 0.040 g s 203
£ Fo.008 205 s
S =
=0.039 @
S &0.006 04 0.2
0.038 o'00i
. 0.3 0.1
0 Epoch 200 0 Epoch 200 0 Epoch 200 0 Epoch 200

(b)

(c)

(d)

(e)

Figure 10. The training model results of the pretrained YOLOvZ-tiny for object detection. (a) Coordinate
Loss; (b) Objectness Loss; (c) Classification Loss; (d) Precision; and (e) Recall.

1.0 e —
g —— bus 0.854
= " —— motorbike 0.684
L. —— c¢ar 0.910
= —— truck 0.758
0.8 - N = all classes 0.801 MAP@0.5
0.6
= N
S \
2 !
o
£
0.4
f_l.
0.2 1 \
\
0.0 T T T -
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 11. Precision—recall curve.

The detection, tracking, and counting results were displayed on a monitor connected
via HDMI. We have demonstrated an example of the results obtained with an average
inference execution speed of 16 FPS in Figure 12. In addition, we captured two photos, one
taken during the day and the other taken at night, to showcase the performance of our
algorithm in different lighting conditions. The first photo was captured on 24 October 2022,
at 06:44:26 with low lighting conditions. The other was taken at 13:44:00 on the same
day. These results demonstrate the effectiveness of our solution in detecting and tracking
vehicles under various lighting conditions.

Appl. Sci. 2023,13, 7416

12 of 16

Lane:

Maotarbike:

$#1 ﬁz #> #4+ H#S #E
2 1 <o
o

g @ 9 9 9
g 9

Figure 12. Example of a simulation result.

4.2.1. System Evaluation

To evaluate the performance of our counting system, we use four metrics: precision,
recall, F-measure, and accuracy. These metrics were calculated using the following parame-
ters: true positive (TP), which represents the successfully counted vehicles; false negative
(FN), which represents the vehicles that our system is not able to count; and false positive
(FP), which represents the vehicles that are incorrectly counted.

The mathematical relationships between these parameters and the evaluation metrics

are shown below:
TP

R | 1

Precision TP - FP €))
TP

Recall = TP + EN)

E . 2 x Precision * Recall 3)
-m =
casure Precision + Recall

counted number + real number
real number

Accuracy =1 —

4)

Our system has shown promising results in most of the tested videos. The table
(Figure 13) displays the counting results of a previously tested video, with each of the six
lanes at the intersection represented in the table. However, we did observe instances of
false negatives in lanes 4, 5, and 6, which may be due to the detection not being entirely
reliable, possibly due to the significant distance between the camera and these lanes.

4.2.2. Data Visualization

From the results sent by our smart camera installed at the intersection, we drew the
diagrams below. Figure 14 shows the counting results for the period from 5 December 2022
to 13 December 2022. It also shows the number of cars, trucks, buses, and motorcycles
passing through each lane of the intersection. By analyzing these numbers, we can easily
determine which lanes have the most traffic, as well as which days of the week have the
most traffic. In addition, we specifically chose the days included in the diagrams because
they occurred during rainy weather, and our model has been proven to be reliable in
detecting vehicles in different weather conditions.

Appl. Sci. 2023,13, 7416 13 of 16

o g ey T I ey ey

Car 0.989 0. 0.989
Truck 12 12 12 0 0 1 1 i 1
Motorbike 14 12 12 2 o] 1 0.857 0.922 0.857
Bus 10 10 10 0 0 1 al al 1
2 Car 36 37 36 0 i 0.972 il 0.985 0.972
Truck 10 9 9 1 0 1 0.9 0.947 0.9
Motorbike B 3 3 2 0 1 0.6 0.75 0.6
Bus 12 12 12 0 0 1 il il 1
3 Car 24 23 22 2 i 0.956 0.916 0.936 0.958
Truck 6 5 5 1 0 1 0.833 0.907 0.833
Motorbike 1 1 1 0 0 1 1 1 1
Bus = 3 3 0 0 1 il it 1
4 Car 49 46 46 3 0 1 0.938 0.968 0.938
Truck 10 8 8 2 0 1 0.8 0.888 0.8
Motorbike % 1 1 2 0 1 0.333 0.50 0.333
Bus 2 al al 1 0 1 0.5 0.666 0.5
5 Car 37 33 30 7 2} 0.909 0.810 0.856 0.891
Truck 9 7 7/ 2 0 1 0.777 0.875 0.777
Motorbike 0 0 1] 0 0 0 0 1] 0
Bus 1 2 1 0 ik 0.5 il 0.666 0.5
6 Car 50 47 45 5 2 0.957 0.9 0.927 0.94
Truck 13 12 12 1 0 1 0.923 0.959 0.923
Motorbike S 2 2 1 0 1 0.666 0.799 0.666
Bus 5 3 & 0 i 0.666 1 0.799 1

Figure 13. Tables that represent the counting results for the six lanes of the intersection.

Figure 15 shows the representation of data sent by our system in the form of a pie chart.
The data represent the percentage of each path taken by the vehicles on 8 December 2022.

Lane 1 Lane 4
vehicle flow per day wcar mmolorbike mbus miruck vehicle flow per day
16000 18000
14000 16000
14000
12000 12000
10000 10000
8000 8000
6000
6000
4000
- S I . il
2000 I I I 0 - - = |
& 'S A ®)) ~ ~
9 BT ~—t= . n e t-u il m"&b "L:'O;Q o g w‘@Q -1:{‘}5 2 : w‘ﬂ;\ mo' 'L"O;\
%) o A & & o N & <] g 5 O G & & g & <
o o o & o o o & o w 0 & + s 5 “ * &
& & & g & & & & g 2022-12- 2022-12- | 2022-12- | 2022-12- | 2022-12- | 2022-12- | 2022-12- 2022-12- | 2022-12-
05 06 07 08 09 10 11 12 13
2022-12-05' 2022-12-06 2022-12-07 | 2022-12-08 2022-12-09 | 2022-12-10 | 2022-12-11 20221212 2022-2-13| ' car 315 | 2eer 2 502E T hee | e | e Taer | a2e
ucar 2308 3454 | 2012 7479 108 6965 | 1385 10573 | 4519 | - 5 = - S 5 o A P 2
amolobike 95 113 2 a7 92 37 83 569 202 MONENE
bus 27 2 16 63 92 2 175 108 a8 bus 0 2 3 56 39 7 61 66 3
mtruck 184 261 190 995 1,02 1,005 1,083 0 243 m truck 282 472 329 2,01 1,928 2,129 253 1542 486

mcar mmotorbike wbus wfruck

Figure 14. Cont.

Appl. Sci. 2023, 13, 7416

14 of 16
Lane 2 Lane 5
s vehicle flow per da
vehicle flow per day scar amaloitike i skuck P i
12000
7000
10000 6000
4000 5000
4000
6000 000
4000 2000
1000
2000
I I | I . I LT 1l -
s e = BEm BN x Hu = B - B s >
$ A ® o) ~ a & & A ¥
I S N S A Nl p% ; ; 9
i P’ Y & & © < 5 & & &
& & g g g & & &
+ a + 5 B o L L 2022-12-05 2022-12-06 2022-12-07 2022-12-08 2022-12-00 2022-12-10 2022-12-11 2022-12-122022-12-13
2022-12-05 2022-12-06 2022-12-07 2022-12-08 2022-12-09 2022-12-10 2022-12-11 2022-12-12 20221213 | gcar 1667 172 1388 7161 5020 7342 6453 5.251 277
ucar 2,004 3,84 2,05 8,292 10,08 7823 97%4 6,339 16 < . = = . 7 :
] ;] | : : mmotorbike 0 1 27 120 111 102 148 13 3
smolorbike. 36 162 60 928 1,020 501 1,103 0 253 = 5 = = = = = s 5 =
R 12 16 i 7 n i 104 52 o = truck 23 113 101 904 892 870 984 386 29
a truck 137 121 68 599 521 460 713 408 150
mcar mmotorbike =bus miruck
Lane 3 Lane 6
vehicle flow per day mcar smolorbike =bus = iuck vehicle flow per day P CRESRIGINIIS:8 OUS iR SHick
14000 5000
12000 4500
10000 4000
3500
8000 1000
6000 2500
4000 2000
1500
2000 I I I 1000
0 e - - - - - — 500
o & A & G o an & Re3 o
o & o0 o o o & K3 3 - ® Iy S o © S o S
q’s'b‘l« Wspf 'L&"L 1@"’ q,@} q,&’l q,@"l’ q'@j, q@’w ‘v,g: ’v.(\,' T"\; 4 o ; q;”\-‘ 1‘.{\«' ’v.(\.' Q-
g & o & Lo g <&
2022-12-05 | 2022-12-06 2022-12-07 2022-12-08 | 2022-12-09 2022-12-10 2022-12-11| 2022-12-12| 2022-12-13 2002-12-05 2022-12-06 2022-12-07 2022-12-08 2022-12-09 2022-12-10 2022-12-112022-12-12 2022-12-13
ucar 2581 344 2704 6974 10,20 0078 | 11631 | 7,08 6| [ecar o 5% s Sae o 3131 3044 219 4,060 1861
=molorbike, 2 30 2 L] L 47 87 L 37 smotorbike 58 g 42 66 a7 68 101 % 46
::;k 909 121 185 sga 721 egg sgs 5035 123 = 0 0 ¢ g 0 0 ¢ > -
- mtruck 0 1 0 1 9 5 13 2 3

Figure 14. Results of the count for the period of 5 December 2022 to 13 December 2022.

distribution of vehicles coming from
3.21%

s W6-W1 = W6-W3 =« W6-W5

Voie6 Voie5

lane 6

of

distri

e

s W4-W5 s W4-W1 = W4-W3

4.20%

s W2-W3 = W2-W5

wW2-w1

ing from lane 4

distribution of vehicles coming from lane 2

Figure 15. Pie charts represent the percentage of each path taken by the vehicles on 08/12/2022.

Appl. Sci. 2023,13, 7416 150f 16

5. Discussion

Traffic management plays a crucial role in tracking the growth of cities such as Bousk-
oura, and our system has demonstrated its reliability in the experimental phase. The data
collected are a valuable tool that helps the municipality make informed decisions regarding
changes to the infrastructure, as well as to better understand the impact of opening of a
new shopping center in the city. Specifically, our system has helped the municipality of
Bouskoura to calculate, by class, the number of vehicles that pass through the roundabout.
It can also help to determine the percentage of vehicles from each lane, which has been
instrumental in deciding what lanes to extend and how to manage traffic flow to support
the economic growth of the city. Overall, our data-collection system is an invaluable tool
for the Bouskoura municipality in making informed decisions about traffic management
and infrastructure adaptation to better meet the needs of its growing population.

6. Conclusions

In summary, our proposed vehicle-counting and classification system, which is based
on a combination of a customized YOLOv7-tiny model and the Deep SORT algorithm, offers
several key advantages over existing methods. We demonstrated that our system accurately
counts and tracks vehicles that are using different lanes of a roundabout intersection
while also providing the percentage of the trajectories that are performed by the vehicles.
Moreover, our system can be deployed on the Nvidia Jetson Nano card, which has high
performance and low power consumption, making it suitable for real-world scenarios.
However, our system has certain limitations in accurately detecting vehicles in complex
scenarios that have high occlusion and are under different lighting conditions. Furthermore,
the quality of the input video stream and the camera’s distance from the intersection can
affect our system’s accuracy. To address these limitations and to further improve our
system, we can explore additional deep-learning techniques. We can also consider using
multiple cameras to capture a more comprehensive view of the intersection and to improve
our system’s trajectory-estimation accuracy.

Author Contributions: Conceptualization, LE. and M.A.S.; methodology, I.E., M.A.S. and A.A;
software, L.E. and Y.A.; validation, L.LE., M.A.S. and Y.A.; writing—review and editing, I.E., M.A.S.
and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We wish to acknowledge the support of the LISAC Laboratory at the University
Sidi Mohamed Ben Abdellah who worked in collaboration with Nextronic by Aba technology
Company, who was the host of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ghazali, WN.W.B.; Zulkifli, C.N.B.; Ponrahono, Z. The Effect of Traffic Congestion on Quality of Community Life. ICRP 2019, 2,
759-766. [CrossRef]

2. Jiber, M.; Mbarek, A.; Yahyaouy, A.; Sabri, M.A.; Boumhidi, J]. Road Traffic Prediction Model Using Extreme Learning Machine:
The Case Study of Tangier, Morocco. Information 2020, 11, 542. [CrossRef]

3. Patro, KK, Allam, J.P; Hammad, M.; Tadeusiewicz, R.; Plawiak, P. SCovNet: A skip connection-based feature union deep
learning technique with statistical approach analysis for the detection of COVID-19. Biocybern. Biomed. Eng. 2023, 43, 352-368.
[CrossRef] [PubMed]

4. Pedada, K.R.; Rao, B,; Patro, K.K; Allam, J.P,; Jamjoom, M.M.; Samee, N.A. A novel approach for brain tumour detection using
deep learning based technique. Biomed. Signal Process. Control. 2023, 82, 104549. [CrossRef]

5. Shashirangana, J.; Padmasiri, H.; Meedeniya, D.; Perera, C.; Nayak, S.R.; Nayak, J.; Vimal, S.; Kadry, S. License plate recognition
using neural architecture search for edge devices. Int. . Intell. Syst. 2021, 37, 10211-10248. [CrossRef]

6. Padmasiri, H.; Shashirangana, J.; Meedeniya, D.; Rana, O.; Perera, C. Automated License Plate Recognition for Resource-

Constrained Environments. Sensors 2022, 22, 1434. [CrossRef] [PubMed]

https://doi.org/10.15405/epms.2019.12.77
https://doi.org/10.3390/info11120542
https://doi.org/10.1016/j.bbe.2023.01.005
https://www.ncbi.nlm.nih.gov/pubmed/36819118
https://doi.org/10.1016/j.bspc.2022.104549
https://doi.org/10.1002/int.22471
https://doi.org/10.3390/s22041434
https://www.ncbi.nlm.nih.gov/pubmed/35214336

Appl. Sci. 2023,13, 7416 16 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Hunkeler, U.; Truong, H.L.; Stanford-Clark, A. MQTT-S—A publish/subscribe protocol for Wireless Sensor Networks. In Proceed-
ings of the 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE'08),
Bangalore, India, 6-10 January 2008; pp. 791-798. [CrossRef]

Uday, P; Shikha, B.S.; Uday, P.; Shubham, S. Using YOLO V7: Development of Complete VIDS Solution Based on Latest Require-
ments to Provide Highway Traffic and Incident Real-Time Info to the ATMS Control Room Using Artificial Intelligence. SSRN
2022, 4313791. Available online: https:/ /papers.ssrn.com/sol3/papers.cfm?abstract_id=4313791 (accessed on 20 December 2022).
Mansour Mohamed, A.S.M.M.; Rashid, M.M. Video-Based Vehicle Counting and Analysis using YOLOv5 and DeepSORT with
Deployment on Jetson Nano. Asian |. Electr. Electron. Eng. 2022, 2, 11-20. Available online: https:/ /journals.alambiblio.com/ojs/
index.php/ajoeee/article/view /34 (accessed on 1 March 2023).

Dinh, D.-L.; Nguyen, H.-N.; Thai, H.-T.; Le, K.-H. Towards Al-Based Traffic Counting System with Edge Computing. J. Adv.
Transp. 2021, 2021, 5551976. [CrossRef]

Valladares, S.; Toscano, M.; Tufifio, R.; Morillo, P.; Vallejo-Huanga, D. Performance Evaluation of the Nvidia Jetson Nano Through
a Real-Time Machine Learning Application. In Intelligent Human Systems Integration; Russo, D., Ahram, T., Karwowski, W.,
Di Bucchianico, G., Taiar, R., Eds.; Springer: Cham, Switzerland, 2021; Volume 1322. [CrossRef]

Han, Y.; Oruklu, E. Traffic sign recognition based on the NVIDIA Jetson TX1 embedded system using convolutional neural
networks. In Proceedings of the 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA,
6-9 August 2017; pp. 184-187. [CrossRef]

Wang, Z; Bai, B.; Xie, Y.; Xing, T.; Zhong, B.; Zhou, Q.; Meng, Y.; Xu, B.; Song, Z.; Xu, P; et al. Robust and Fast Vehicle Turn-counts
at Intersections via an Integrated Solution from Detection, Tracking and Trajectory Modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14-19 June 2020; pp. 2598-2606.
[CrossRef]

Jiang, K.; Xie, T.; Yan, R.; Wen, X,; Li, D.; Jiang, H.; Jiang, N.; Feng, L.; Duan, X.; Wang, J]. An Attention Mechanism-Improved
YOLOV7 Object Detection Algorithm for Hemp Duck Count Estimation. Agriculture 2022, 12, 1659. [CrossRef]

Wang, Y.; Wang, H.; Xin, Z. Efficient Detection Model of Steel Strip Surface Defects Based on YOLO-V7. IEEE Access 2022, 10,
133936-133944. [CrossRef]

DEEP LEARNING. YOLOvV?: The Most Powerful Object Detection Algorithm (2023 Guide). Available online: https:/ /viso.ai/de
ep-learning/yolov7-guide/#:~:text=Compared %20t0%20PP%2DYOLOE%2DL, 0r%20106%25%20faster%20inference%20speed
(accessed on 25 March 2023).

WongKinYiu. YOLOv? Official GitHub repository. Available online: https://github.com/WongKinYiu/yolov7 (accessed on
1 December 2022).

Lamouik, I.; Yahyaouy, A.; Sabri, M.A. Model Predictive Control for Full Autonomous Vehicle Overtaking. Transp. Res. Rec.].
Transp. Res. Board 2023, 2677,1193-1207. [CrossRef]

Mandal, V.; Adu-Gyamfi, Y. Object Detection and Tracking Algorithms for Vehicle Counting: A Comparative Analysis. J. Big Data
Anal. Transp. 2020, 2, 251-261. [CrossRef]

Xiang, X.; Zhai, M.; Lv, N.; El Saddik, A. Vehicle Counting Based on Vehicle Detection and Tracking from Aerial Videos. Sensors
2018, 18, 2560. [CrossRef] [PubMed]

Nvidia Corporation. Jetson NANO Module. Available online: https://developer.nvidia.com/embedded /jetson-nano (accessed
on 2 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/comswa.2008.4554519
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4313791
https://journals.alambiblio.com/ojs/index.php/ajoeee/article/view/34
https://journals.alambiblio.com/ojs/index.php/ajoeee/article/view/34
https://doi.org/10.1155/2021/5551976
https://doi.org/10.1007/978-3-030-68017-6_51
https://doi.org/10.1109/mwscas.2017.8052891
https://doi.org/10.1109/cvprw50498.2020.00313
https://doi.org/10.3390/agriculture12101659
https://doi.org/10.1109/ACCESS.2022.3230894
https://viso.ai/deep-learning/yolov7-guide/#:~:text=Compared%20to%20PP%2DYOLOE%2DL,or%20106%25%20faster%20inference%20speed
https://viso.ai/deep-learning/yolov7-guide/#:~:text=Compared%20to%20PP%2DYOLOE%2DL,or%20106%25%20faster%20inference%20speed
https://github.com/WongKinYiu/yolov7
https://doi.org/10.1177/03611981221141432
https://doi.org/10.1007/s42421-020-00025-w
https://doi.org/10.3390/s18082560
https://www.ncbi.nlm.nih.gov/pubmed/30081578
https://developer.nvidia.com/embedded/jetson-nano

	Introduction
	Related Work
	System Architecture and Test Environment
	Collection and Description of Data
	Object Detection, YOLOv7
	Vehicle Tracking
	The Counting of Vehicles at Intersections
	Deploy Model for the Nvidia Jetson Nano

	Results
	Training Results
	Experimental Results
	System Evaluation
	Data Visualization

	Discussion
	Conclusions
	References

