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Abstract: In this paper, we propose a cognitive reinforcement learning method based on an attention
mechanism (CRL-CBAM) to address the problems of complex interactive communication, limited
range, and time-varying communication topology in multi-intelligence collaborative work. The
method not only combines the efficient decision-making capability of reinforcement learning, the
representational capability of deep learning, and the self-learning capability of cognitive learning
but also inserts a convolutional block attention module to increase the representational capability
by using the attention mechanism to focus on important features and suppress unnecessary ones.
The use of two modules, channel and spatial axis, to emphasize meaningful features in the two
main dimensions can effectively aid the flow of information in the network. Results from simulation
experiments show that the method has more rewards and is more efficient than other methods
in formation control, which means a greater advantage when dealing with scenarios with a large
number of agents. In group containment, the agents learn to sacrifice individual rewards to maximize
group rewards. All tasks are successfully completed, even if the simulation scenario changes from
the training scenario. The method can therefore be applied to new environments with effectiveness
and robustness.

Keywords: deep reinforcement learning; cognitive learning; attentional mechanisms; multi-intelligent
body collaboration

1. Introduction

In today’s society, there are many problems that need to be solved cooperatively.
The advantage of cooperation is that it can accomplish many complex tasks that cannot
be accomplished by a single intelligence. A large task can be divided into many small
parts to complete, and each intelligence performs its own task while taking into account
the cooperation with other intelligence, finally making the task successfully completed.
In recent years, deep reinforcement learning (DRL) has made significant advances in
single-intelligent environments [1–4]. To facilitate the cooperative behavior of multiple
intelligence, multi-agent reinforcement learning (MARL) [5–9] based on has emerged.

However, they all have their limitations. In multi-subject reinforcement learning, each
intelligence has to interact with other intelligence and the environment, which may lead
to a dynamic and unstable environment. As a result, the learning strategy may change
frequently during the training process, causing the behavior of the intelligence to become
unstable. Moreover, multi-subject reinforcement learning requires multiple intelligence
to collaborate in order to maximize the joint rewards obtained. However, the interactions
between the intelligence during training may lead to an increase in the complexity of the
problem, making collaborative learning more difficult. There is also the high computational
complexity of multi-subject reinforcement learning, as the strategies and value functions
of multiple intelligence need to be processed simultaneously. This can lead to training
times becoming very long, making real-time applications infeasible. Information sharing
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between intelligence is important in multi-subject reinforcement learning. However, in
some cases, the intelligence may not be able to share information, resulting in less efficient
learning. As the network for each intelligence is trained in a fixed number of intelligence
environments, it needs to be trained again when the number of intelligence changes.

To address this problem, inspired by attentional mechanisms [10], we propose an
attentional mechanism-based approach, the attention-enhanced cognitive reinforcement
learning method.

2. Research on Multi-Intelligence Reinforcement Learning Methods
2.1. Application of Reinforcement Learning to Multi-Intelligent Collaboration

Reinforcement learning has made significant breakthroughs in recent years in games
such as Go, Poker, and Starcraft, as well as many advances in areas such as robot control
and natural language processing. The main components of reinforcement learning [3,11]
include the intelligent body, the environment, the state, the action, and the reward. An in-
telligent body interacts with its environment by observing the current state and performing
actions. The environment responds to the intelligence’s actions and current state, and the
intelligence then receives a reward signal to determine whether it has acted correctly. The
goal of the intelligence is to find an optimal strategy that maximizes the long-term reward
obtained in the environment [12].

Reinforcement learning applies to dynamic environments because it can adaptively
adjust its strategy to adapt to changes in the environment. Reinforcement learning can also
handle uncertainty as its decisions are based on the current state and possible future states.
Reinforcement learning can also handle long-term decisions because its decisions are based
on the expectation of possible future rewards. Reinforcement learning can learn optimal
policies, i.e., policies that maximize rewards and can handle continuous actions and state
spaces [13–15], because it uses function approximation to estimate value functions and
policies. This is an advantage of reinforcement learning.

The feasibility and effectiveness of reinforcement learning in multi-intelligent collab-
oration [16] have been initially demonstrated, but there are still some remaining issues.
Firstly, in multi-intelligent collaboration, the interactions and influences between the in-
telligence are very complex, and therefore, designing suitable reinforcement learning
algorithms to optimize the overall gain of all the intelligence is a very challenging problem.
Secondly, the non-stationarity and convergence of reinforcement learning algorithms are
challenged by the fact that strategies and behaviors of the intelligence constantly inter-
act and adapt to each other. In addition, due to possible competition and conflict, the
multi-intelligent collaboration problem may have multiple locally optimal solutions for
the Nash equilibrium point [17], which also adds to the algorithm’s complexity. Third,
in multi-intelligent body collaboration, the intelligence need to communicate with each
other to coordinate their actions, which increases the communication cost. In addition, the
computational cost can be very high for large-scale intelligent body systems. Fourthly, there
may be competitive relationships between intelligence in multi-intelligence collaboration,
i.e., their action goals are not always the same. This competitive relationship can lead
to algorithms in trouble, as each intelligence tries to maximize its own payoff without
considering the overall payoff of the whole system. Fifth, in multi-intelligent collaboration,
the interactions between intelligence are complex and dynamic. Reinforcement learning
algorithms need to be able to adapt to such interactions and consider how to work with
other intelligence to maximize the overall payoff. This requires the algorithm to be able to
understand the actions and strategies of other intelligence and make decisions accordingly.

2.2. Deep Reinforcement Learning for Multi-Intelligence Collaboration

In recent years, thanks to big data, increased computing power, and algorithmic
breakthroughs, deep learning techniques have made impressive achievements. Combined
with the advantages of deep neural networks, there have also been breakthroughs in
reinforcement learning, particularly deep reinforcement learning [18]. In deep reinforce-
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ment learning, machine learning models use neural networks to learn a mapping between
state space and action space in order to select the best action in the environment. The
model learns by interacting with the environment, obtaining feedback signals from the
environment, and adapting its action strategy based on these signals in order to achieve a
specific goal.

Deep reinforcement learning can be applied to multi-intelligent collaboration tasks,
such as collaboratively carrying objects or maintaining a certain distance during collabora-
tion [19]. Each intelligence can learn its own strategy and collaborate with other intelligence
to complete the task. It can also be applied to multi-intelligence adversarial tasks, where
each intelligence learns its own strategy and competes with the others to achieve the highest
score. Alternatively, distributed reinforcement learning in multi-intelligence collaboration
can be distributed across different computers to help the intelligence learn the task together.
In multi-intelligent collaboration, it is sometimes difficult to obtain enough labeled data to
train deep reinforcement learning models.

Nevertheless, there are also unsolved challenges in deep reinforcement learning. For
example, DRL algorithms often require a large amount of training data in order to learn
high-quality strategies. This may not be feasible for some application scenarios as the cost
of collecting data can be very high or take a very long time. If the initial state is set poorly,
it may cause the algorithm to fall into a local optimum and fail to learn the global optimum.
In addition, DRL algorithms often use neural networks to approximate value functions
or policies. However, neural networks can only handle discrete action spaces and require
special treatment for continuous action spaces, such as using a Gaussian distribution to
sample actions, which can lead to the increased complexity of the algorithm. Additionally,
DRL algorithms often use black box models such as neural networks for learning, which
makes the decision process of the algorithm uninterpretable and makes it difficult to
understand why a particular action or decision was chosen. Also, DRL algorithms often use
parametric models such as neural networks for learning, which can be prone to overfitting.

2.3. Cognitive Learning in Multi-Intelligence Collaboration

Multi-agent collaboration (MAC) is a process in which multiple intelligence collaborate
and interact in a common task to achieve a common goal. Cognitive learning is an important
learning method that can help intelligence to better understand their environment, learn
and make decisions in MAC.

I. The Concept of Cognitive Learning

Cognitive learning is an interdisciplinary discipline based on cognitive psychology
and computer science that aims to study how intelligence learns from external information
and understands and responds to problems in complex environments [20]. Cognitive
learning is concerned with the following aspects: how to represent and store knowledge
and how to learn from data; how to obtain information from the environment and how to
select important information and process it; how to make decisions based on environmental
states and goals and to realize these decisions through planning; how to exercise cognitive
control and coordination in a multitasking and uncertain environment; how to use language
and interactions to help intelligence communicate and collaborate with each other.

II. Application Scenarios of Cognitive Learning in MAC

In multi-intelligence collaboration, each intelligence needs to make decisions and plans
based on the current environmental state and task goals. These decisions and planning
need to take into account the behaviors and decisions of other intelligence in order to
achieve overall collaboration. Cognitive learning helps the intelligence to learn appropriate
strategies based on historical experience and environmental information and to update
and optimize them in new environments. For example, in robot collaboration, each robot
needs to plan its path considering the positions and movements of other robots to avoid
conflicts and coordinate movements. In multi-intelligent collaboration, task allocation is a



Appl. Sci. 2023, 13, 7361 4 of 12

very important issue. Through cognitive learning, intelligence can learn how to allocate
tasks in order to achieve optimal results.

3. Attention-Enhanced Cognitive Reinforcement Learning (CRL-CBAM)
3.1. Cognitive Learning

The cognitive learning algorithm (CLA) [21], proposed by Qihui Wu et al., is a machine
learning algorithm inspired by cognitive models in neuroscience. The core idea of the
CLA is to encode input data as sparsely distributed active units using a neuronal model
called a “perceptron”, and then to classify these units using a set of neuronal models called
“clusters”. These active units are then combined into high-level features using a set of
neuronal models called “clusters”. These features are then passed to another set of neuronal
models, called “classifiers”, to achieve the classification task.

The framework consists of five modules, including a cognitive feature extraction mod-
ule, a cognitive control module, a learning network module, a cognitive evaluation module,
and a memory module. The memory module consists of three spaces: the database (DB),
the cognitive case base (CCB), and the algorithmic hyperparameter base (AHB). The core
modules of the framework are cognitive feature extraction, cognitive control, cognitive eval-
uation, and cognitive case spaces. The cognitive feature extraction module captures features
of dynamic environments and tasks and can reflect changes in the environment and tasks.
The cognitive feature extraction module helps the cognitive control module quickly select
the right type of algorithm and hyperparameters when the environment and task change.
The cognitive control module creates matching relationships between a dynamic environ-
ment and task features to select the appropriate algorithm type and hyperparameters so
that the framework can adapt to changes in the environment and task. During the offline
self-learning process, the matching relationships can be continuously updated, and thus
knowledge is accumulated, which facilitates the selection of the most appropriate algorithm
type and hyperparameters. The cognitive evaluation module evaluates the performance
of the selected algorithm types and hyperparameters so that the cognitive case space can
accumulate better knowledge. The cognitive case space can accumulate knowledge of
the relationships between the dynamic environment and task characteristics, as well as
knowledge of the relationships between the selected algorithm and hyperparameters, thus
reducing the impact of bad knowledge of inappropriate matching relationships.

3.2. A Mathematical Framework for Attention-Enhancing Cognitive Reinforcement Learning

Building a mathematical framework for attention-enhancing cognitive reinforcement
learning requires consideration of several aspects. First, a basic reinforcement learning
framework must be established, including elements such as environment, intelligence,
actions, states, and rewards. Standard reinforcement learning frameworks such as the
Markov decision process (MDP) or partially observable Markov decision process (POMDP)
can be used. Secondly, within the basic reinforcement learning framework, attention
mechanisms are introduced to allow intelligence to autonomously attend to and process
important information. Deep reinforcement learning models such as deep Q networks
(DQN) and policy gradients (PG) can be used and added to them with attention mechanisms
such as adaptive attention and multi-headed attention. Attention mechanisms can help the
intelligence process information more effectively and thus improve their cognitive abilities.
To further enhance the cognitive ability of intelligence, other techniques in deep learning,
such as convolutional neural networks (CNN), recurrent neural networks (RNN), etc., can
be used to process and extract different types of information.

We inserted the convolutional block attention module (CBAM) [22], an attention mech-
anism model for visual tasks in deep learning, on top of the originally proposed cognitive
reinforcement learning framework. The CBAM module consists of two components: the
channel attention module (CAM) and the spatial attention module (SAM). As shown in
Figure 1. CAM determines the importance of each channel by learning the relationships
between channels, and SAM uses the learned spatial weights to emphasize or suppress the
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response of each spatial location. Combined, these two components can effectively enhance
the model’s ability to model different channels and spatial information.
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Specifically, CBAM first uses global average pooling to calculate importance weights
for each channel and then applies the weights to the channel feature map to strengthen
the response of channels with higher importance. Next, CBAM uses a similar approach to
calculate importance weights for each spatial location and then applies these weights to the
spatial feature map to either strengthen or suppress the response at different locations. The
ultimate goal is to effectively aid the flow of information in the network.

Adding the convolutional block attention module (CBAM) to the cognitive reinforce-
ment learning (CRL) framework can improve the performance and efficiency of an intelli-
gent body during learning. CBAM can improve the performance of a model by introducing
an attention mechanism into a deep neural network to increase the model’s attention to the
input data. First, the state space, action space, and reward function of the intelligence are
defined. These definitions will enable the intelligence to perceive their environment and
act within it. Secondly, a CBAM module is added to the state representation, which will
extract important features from the state representation so that the intelligence can better
understand its environment and make more accurate decisions. Next, the intelligence is
trained using an experience replay mechanism. In experience replay, the intelligence learns
from previous experiences and updates them so that it can perform better in future deci-
sions. Then come the tuning parameters; during the training process, the hyper-parameters
of the CBAM module need to be adjusted, such as the number of channels of the attention
mechanism. After training is complete, the model is evaluated using a test set to assess the
impact of the CBAM module on model performance. It is important to note that adding the
CBAM module may increase the computational complexity and training time of the model,
so there is a trade-off between performance and efficiency.

As shown in Figure 2, the attention-enhanced cognitive reinforcement learning frame-
work consists of online and offline self-learning processes, indicated by the solid black and
purple lines, respectively. At the same time, the inputs to the mathematical framework are
data related to the dynamic environment and the dynamic task (denoted by d), denoted
by e and x, respectively. The d, e, and x denote the data set, dynamic environment, and
dynamic task, respectively, all of which are finite sets. Note that “dynamic” means that the
environment and tasks are dynamically changing, which may or may not be the same as
the existing environment and tasks. That dynamic environment and dynamic task data
(denoted as e∗ and x∗) are also stored in the data space of the memory module for future
use, where * represents historical data rather than real-time data of the environment and
tasks. The memory module also has a cognitive case space and an algorithmic hyper-
parameter space. The cognitive case space consists of a learning outcome set denoted by
Y and a cognitive space denoted by [f(e, x), (a∗, λ∗)], where f(e, x) denotes the dynamic
environment and the characteristics of the task, and (a ∗, λ∗) denotes the selected algorithm
type and hyper-parameters. The algorithm and hyper-parameter space consists of the set
of available algorithm types denoted by A and the set of hyper-parameters denoted by Λ.
Table 1 illustrates the work of each step.
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Table 1. Instructions for each step of the work.

Online process

1. Perceive the external environment and the task;
2. Extraction of the external environment and task features;
3. Selecting algorithms and hyperparameters;
4. Invoke;
5. Produce results.

Self-learning process

1. Store current learning results in the library;
2. Sampling cognitive cases;
3. Selecting algorithms and hyperparameters;
4. Call the algorithm and hyperparameters;
5. Get learning results;
6. Recall historical learning results for the same case;
7. Compare the better results and save them;
8. Update the case library and retrain.

The mathematical framework has four modules in addition to these two. First, we have
a cognitive feature extraction module that extracts features of the dynamic environment and
dynamic task and stores these features in a cognitive case space, denoted by f(e, x) for the
features of the dynamic environment and dynamic task. Next is a cognitive control module
that establishes the matching relationship between the features of the dynamic environment
and the task and selects the most suitable algorithm type and hyperparameters. These
parameters can be updated during the offline self-learning process to alleviate the local
optimum solution problem that may be encountered during reinforcement learning. During
the offline self-learning process, we initialize multiple neural networks several times and
select the result with the lowest error as a parameter. We start from different starting points
and can select the optimal local optimum solution even if we get stuck in a local optimum.
Next, we have a learning network module, which is used to perform algorithmic operations
on the input data to derive learning results. Finally, we have a cognitive evaluation module
used to evaluate the current learning results and feed the evaluation values back to the
cognitive control module to adjust the type of algorithm and hyperparameters chosen.

Attention-enhanced cognitive reinforcement learning has the following advantages
over traditional reinforcement learning: Firstly, attention-enhanced cognitive reinforcement
learning can improve learning efficiency and reduce training time. This is because the
method can find the optimal strategy faster by selecting more meaningful information when
making decisions. Secondly, attention-enhanced cognitive reinforcement learning can help
intelligence to better understand its environment and choose the optimal action. This is
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because the method allows the intelligence to focus more on task-relevant information and
thus make more accurate choices when making decisions. Attention-enhanced cognitive
reinforcement learning can then make the intelligence more robust, i.e., more able to cope
with environmental changes and noise. This is because the approach helps the intelligence
to better distinguish between important information and noise when faced with complex
environments. Finally, attention-enhanced cognitive reinforcement learning can make an
intelligence’s behavior easier to interpret. This is because the method allows intelligence to
select task-relevant information, thus making its behavior more interpretable.

4. Attention-Enhancing Cognitive Reinforcement Learning Algorithms

The attention-enhanced cognitive reinforcement learning algorithm is an approach
that combines the attention mechanism in deep learning with the optimization of the value
function in reinforcement learning. It aims to solve complex decision problems by learning
how to allocate attention. The basic principle of the algorithm is to introduce the attention
mechanism into the estimation of the value function for reinforcement learning. Specifically,
the algorithm uses a deep neural network to learn a value function that predicts the value
of an action based on the state of the environment and the current allocation of attention. To
enable attention to be adaptively allocated to the most useful features of the environment,
the algorithm also uses an attention mechanism to adjust the parameters in the neural
network. In this way, the algorithm can adaptively choose which state features to focus on
according to the needs of the task at hand, thus making decision-making more accurate
and efficient. Specifically, the training process of the algorithm can be divided into the
following steps:

Step 1: Calculate the attention allocation through the attention mechanism based on
the current state and the parameters in the neural network.

Step 2: Based on the attention allocation and the current state, the value of the current
action is predicted by the neural network.

Step 3: Based on the environmental feedback and the predicted value, update the
parameters of the neural network so that the predicted value is closer to the actual value.

Step 4: Repeat steps 1 to 3 until the algorithm converges or reaches a pre-determined
number of training steps.

In summary, the attention-enhanced cognitive reinforcement learning algorithm im-
proves the efficiency and accuracy of reinforcement learning by introducing an attention
mechanism to adaptively select the most useful state features.

5. Experiment

We designed two different multi-intelligent cooperation tasks, including formation
control and group containment, to validate the effectiveness of attention-enhanced cogni-
tive reinforcement learning and also designed a containment task to verify the method’s
robustness [23].

In all tasks, the only way to obtain more information is through limited communication,
as this is the only way to obtain information from other intelligence. The environmental map
here has a side length of 3 meters, a detection distance of 0.8 meters, and a communication
distance of 1 meter. The radius of the smart body is 0.1 m, and the radius of the obstacle is
0.2 m. The mass of the smart body is 1 kg, and the action space is discrete. Each smart body
can control plus or minus velocity units in the X and Y directions. The boundary conditions
are the four boundaries of the map. These simulation environments are built based on [24],
where the intelligent body can move freely using a first-order system model.

In simulation experiments, we compared the performance of the CRL-CBAM algo-
rithm with that of the MADDPG [24], R-MADDPG [24], and TRANSFER [25] algorithms.
MADDPG requires information about the state of the intelligence during training to con-
struct the critic network, while R-MADDPG is a recurrent version oriented towards a
partially observable environment. The TRANSFER algorithm ignores the temporal rela-
tionships between the intelligence. In the comparison, we found that the CRL-CBAM
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algorithm performed well, achieving stable and high rewards after training in the presence
of initial instability.

5.1. Formation Control

(1) Task setup: CRL-CBAM was compared with the formation control task algorithm
in two different scenarios, as shown in Figure 3. These scenarios include scenario (a) with
five intelligence and scenario (b) with fifteen intelligence. In these scenarios, the goal of
all the intelligence is to be evenly distributed around the center of the stratum and to be
collision-free. Where the obstacles are fixed, the positions of the intelligences are randomly
generated, and the geometric center of the intelligences’ formation is marked as the center
of the formation.
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(2) Simulation results. For these five intelligence, they performed very similarly regard-
less of which method was used. This is because the relationships between these intelligence
are relatively simple, and all methods are able to learn satisfactory strategies regardless
of whether a graph convolution layer or attention mechanism is used. Specifically, the
CRL-CBAM method can achieve more rewards than all baseline methods at the end of
the training, but it converges more slowly. This suggests that CRL-CBAM is relatively
difficult to train because it uses a graph convolution layer and an attention mechanism,
which requires more data for training.

As the number of intelligence increases, CRL-CBAM has a better ability to handle com-
plex interactions and dynamic graph structures. Compared to other methods, CRL-CBAM
converges faster and has a more stable performance. In particular, the CRL-CBAM method
converged to a steady state after 6200 update sets, while the other methods converged to a
steady state after 7500 update sets. The results show that CRL-CBAM can handle complex
interactions between a large number of intelligence. In contrast, without the help of the
graph convolution layer, the attention mechanism and other easily trained methods do not
perform well in complex environments with an increasing number of intelligence.

Our method performs similarly to other methods in some scenarios but performs
better in others. In particular, CRL-CBAM can achieve more rewards and more efficient
performance than other methods in scenarios with 10 or more intelligence, suggesting that
CRL-CBAM can better handle scenarios with a high number of intelligence.

5.2. Group Containment

(1) The purpose of this task is to evaluate the performance of the scenario. In this task,
the environment contains n intelligent bodies and m landmarks, where the relationship
between n and m can be expressed as (n/m) = k, where k is a set of positive integers.
Based on these constraints, two scenarios were designed: one containing 8 intelligence
and 2 obstacles, and the other containing 14 intelligence and 2 obstacles (as shown in
Figure 4). The CRL-CBAM algorithm was used to compare with other algorithms in these
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two scenarios. In these scenarios, all the intelligence had to be divided into two groups and
evenly distributed around the two landmarks to avoid collisions.
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14 intelligence.

(2) Simulation results. As shown in Table 2, all methods except MADDPG and R-
MADDPG have completed the task.

Table 2. Evauluation results of group containment.

Method
N = 8 N = 14

Steps Success Rate Rewards Steps Success Rate Rewards

CRL-CBAM 13.8 100 −0.49 13.1 100 −0.62

MADDPG 80.21 0 −1.58 80 0 −4.62

R-MADDPG 31.07 70 −0.94 80 0 −2.9

TRANSFER 17.7 95 −0.67 14.58 87 −0.84

In this case, CRL-CBAM showed superior performance to the other methods, being
able to obtain the 15 best measurements. In contrast, MADDPG and R-MADDPG yielded
the smallest rewards, especially in complex environmental settings where the cyclic strategy
of MADDPG and R-MADDPG was unable to handle complex interactions between intelli-
gences. As we have mentioned, CRL-CBAM is able to handle complex interactions and
dynamic spatial structures efficiently. When the number of intelligences was increased to 14,
the CRL-CBAM algorithm outperformed the other methods significantly and also gained
greater rewards. This suggests that communication is crucial in the cooperation between
intelligences. Furthermore, the higher the complexity of CRL-CBAM in representing the
relationships of the intelligences, the better the execution.

As shown in Figure 5, the goal of the agents is to find the most suitable position
while taking into account mutual avoidance. In Figure 5b, not all agents are trying to find
the closest position around the landmark. The location where an agent is located does
not necessarily maximize its individual reward, but it does maximize the joint reward.
The results suggest that agents have learned a complex policy whereby agents sacrifice
individual rewards to maximize group rewards.



Appl. Sci. 2023, 13, 7361 10 of 12

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 12 
 

As shown in Figure 5, the goal of the agents is to find the most suitable position while 

taking into account mutual avoidance. In Figure 5b, not all agents are trying to find the 

closest position around the landmark. The location where an agent is located does not 

necessarily maximize its individual reward, but it does maximize the joint reward. The 

results suggest that agents have learned a complex policy whereby agents sacrifice indi-

vidual rewards to maximize group rewards. 

 
 

(a) (b) 

Figure 5. Trajectory of group containment. (a) Group containment-8 intelligence. (b) Group contain-

ment-14 intelligence. 

Table 2. Evauluation results of group containment. 

Method 
N = 8 N = 14 

Steps Success Rate Rewards Steps Success Rate Rewards 

CRL-CBAM 13.8 100 −0.49 13.1 100 −0.62 

MADDPG 80.21 0 −1.58 80 0 −4.62 

R-MADDPG 31.07 70 −0.94 80 0 −2.9 

TRANSFER 17.7 95 −0.67 14.58 87 −0.84 

5.3. Robustness of CRL-CBAM 

To test the generalization and robustness of CRL-CBAM, we evaluated it for two dif-

ferent scenarios from the training scenario. Specifically, we scaled up the two evaluation 

scenarios to twice the size of the original training scenario. Even though the evaluation 

scenarios differed from the simulation scenarios, all tasks were successfully completed. 

Thus, these results show that CRL-CBAM is suitable for the new environment and has 

reliable generalization performance (see Figure 6). 

  

Figure 5. Trajectory of group containment. (a) Group containment-8 intelligence. (b) Group
containment-14 intelligence.

5.3. Robustness of CRL-CBAM

To test the generalization and robustness of CRL-CBAM, we evaluated it for two
different scenarios from the training scenario. Specifically, we scaled up the two evaluation
scenarios to twice the size of the original training scenario. Even though the evaluation
scenarios differed from the simulation scenarios, all tasks were successfully completed.
Thus, these results show that CRL-CBAM is suitable for the new environment and has
reliable generalization performance (see Figure 6).
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6. Conclusions

This paper presents a cognitive reinforcement learning method (CRL-CBAM) based
on attentional mechanisms. The method increases representational capacity by using
attentional mechanisms to focus on important features and suppress unnecessary ones.
Two modules are used to emphasize meaningful features on two main dimensions: the
channel and the spatial axis. Thus, our modules effectively aid the flow of information
in the network by learning which information to emphasize or suppress. Experimental
results show that the method can effectively improve the performance of intelligence in
multiple reinforcement learning tasks and has better learning efficiency and performance
stability compared to traditional reinforcement learning methods. In addition, the method
can help us to better understand the decision-making process of intelligence and improve
the interpretability of their decisions.
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