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Abstract: The process of aging is a complex phenomenon that involves a progressive decline in physi-
ological functions required for survival and fertility. To better understand the mechanisms underlying
this process, the scientific community has utilized several tools. Among them, mitochondrial DNA
has emerged as a crucial factor in biological aging, given that mitochondrial dysfunction is thought
to significantly contribute to this phenomenon. Additionally, Drosophila melanogaster has proven
to be a valuable model organism for studying aging due to its low cost, capacity to generate large
populations, and ease of genetic manipulation and tissue dissection. Moreover, graph theory has
been employed to understand the dynamic changes in gene expression patterns associated with aging
and to investigate the interactions between aging and aging-related diseases. In this study, we have
integrated these approaches to examine the patterns of gene co-expression in Drosophila melanogaster
at various stages of development. By applying graph-theory techniques, we have identified modules
of co-expressing genes, highlighting those that contain a significantly high number of mitochondrial
genes. We found important mitochondrial genes involved in aging and age-related diseases in
Drosophila melanogaster, including UQCR-C1, ND-B17.2, ND-20, and Pdhb. Our findings shed light
on the role of mitochondrial genes in the aging process and demonstrate the utility of Drosophila
melanogaster as a model organism and graph theory in aging research.

Keywords: Drosophila melanogaster; network analysis; mitochondrial DNA; aging

1. Introduction

Aging can be defined as the time-related deterioration of the physiological functions
necessary for survival and fertility [1]. While the specific mechanisms underlying aging are
still being studied, it has been shown that mitochondrial DNA (mtDNA) plays a crucial role.
In fact, mitochondrial dysfunction, including decreased oxidative capacity and increased
oxidative damage, is thought to substantially contribute to biological aging [2,3]. This is
due to the higher rate of genomic variants and less efficient repair machinery compared to
nuclear DNA: mtDNA’s mutation rate is up to 15 times higher than that of nuclear DNA [4].

For this matter, Drosophila melanogaster has been crucial in advancing our understand-
ing of this physiological process and has become a widely used model organism that has
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distinct advantages in aging research [5]. Commonly known as the fruit fly, it can provide
many advantages as a model for research [6] because of the several characteristics that
enable it to be widely used in many different applications: low cost of rearing and hous-
ing, absence of regulatory oversight for their use in experiments, ease of generating large
populations, well-defined dietary requirements, easily quantified reproductive output,
distinct tissues that can be dissected and genetically manipulated, and furthermore, some
of their tissues are equivalent to many of those found in mammals [6]. It is worth remarking
that Drosophila has significantly helped in studying the hallmarks of aging (genomic insta-
bility, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient
sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered
intercellular communication [7]). Since 1983, in fact, several studies have been conducted
on components of the insulin and IGF-1 like signaling (IIS) pathway in order to geneti-
cally manipulate the lifespan of worms and flies with some mutations that were found
to be effective in extending their lifespan [8,9]. This eventually led to the identification
of polymorphisms in the insulin pathway transcription factor FOXO associated with the
length of life in humans [10]. Furthermore, it has been demonstrated that IGF-1 signaling
alters mitochondrial function and enhances their fitness. This includes the maintenance of
mitochondrial DNA/RNA [11].

In a biological system, molecules and genes cooperate to perform various biological
functions. They engage in dynamic interactions, and graphs are a formal representation of
this interaction. In mathematics, a graph is a structure made up of a set of nodes or vertices
and a set of edges or arcs that show pairwise relationships between the nodes and vertices.
The mathematical theory that lies behind graphs has its origins in recreational math prob-
lems, but it has now become a significant area of mathematical research with applications
in various fields, including computational biology. In computational biology, graph theory
is used to represent and analyze complex biological systems such as protein-protein inter-
actions, gene regulatory networks, and metabolic pathways. By representing biological
systems as graphs, researchers can use graph algorithms and metrics to study the structural
and functional properties of these networks, predict new interactions, and identify key
network components that may be targeted for drug development. This discipline has led to
many important discoveries, such as the identification of disease-causing genes and the
development of new drugs, and has allowed “network medicine” to grow and develop.

Network medicine is an interdisciplinary field that aims to understand the complexity
of biological systems by mapping out the interactions between genes, proteins, and other
molecular components. The field uses an integrated, network-based, systems biology-
driven approach to define the etiology of complex diseases, reclassify complex diseases, and
develop new treatments and preventive strategies [12]. Several studies have investigated
the links between network medicine and aging. For example, one study found that the
aging process is associated with changes in gene expression networks that affect multiple
biological pathways, including metabolism, inflammation, and cell signaling [13]. Another
study revealed that caloric restriction, a well-known anti-aging strategy, is connected to
decreased DNA damage response (DDR) signaling and senescence burden, possibly via the
modulation of gene networks [14]. Moreover, recent experimental evidence has suggested
that the genetic or pharmacological ablation of senescent cells, which are known to promote
aging and age-related diseases, can extend lifespan and improve health. This approach,
known as ‘senotherapy’, is based on the identification of senescence-associated molecular
pathways and the development of drugs that target them. Network medicine has been
proposed as a useful tool for identifying new targets for senotherapy, as it allows for
the integration of multiple sources of data and the identification of the key regulators of
senescence networks [13]. Hence, the computational analysis of networks can help identify
genes correlated to certain biological pathways, diseases, or phenotypes, which can provide
insights into the underlying molecular mechanisms of these processes.

Several computational methods have been borrowed from graph theory over the years
to study the dynamics of biological systems [15]. Most often, networks were drawn to rep-
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resent transcriptional networks, where nodes represented genes and edges represented the
strength of co-expression between the genes. These networks were studied to identify “key
player” nodes, namely nodes with relevant topological characteristics [16,17], molecular
crosstalks [18,19], or functional modules or clusters of genes that co-express under similar
conditions [20,21]. These modules, in turn, were often annotated with biological functions,
allowing for the identification of pathways and biological processes that were significantly
associated with the co-expressed genes.

Various network approaches have been developed over the years, each using different
methodologies to detect modules of co-expressed genes [22]. There is evidence, in fact,
that cluster analysis of biological networks can help identify key molecular players and
pathways involved in the aging process. For instance, a recent study used cluster network
analysis to identify subgroups of individuals based on their health and disease phenotypes.
The study analyzed data from a large population-based cohort of elderly individuals and
found that the identified subgroups had different mortality risks and patterns of health and
disease. The authors suggested that this approach can be useful in identifying individuals
who are at high risk for certain diseases and in developing personalized interventions [23].

In this study, we combined network, cluster, and gene set enrichment analysis tech-
niques (Supplementary Materials Figure S1) to investigate the patterns of gene co-expression
in Drosophila melanogaster at various developmental stages. We identified modules of co-
expressing genes and highlighted those containing significantly high numbers of mito-
chondrial genes. Therefore, our goal was to use a network-based approach applied to
RNA-seq data to find significant mitochondrial genes associated with the aging process in
Drosophila melanogaster.

2. Materials and Methods
2.1. Data Sources

Drosophila melanogaster data analyzed in this study were retrieved from ENCODE [24]
as FASTQ files. Specifically, RNA-Seq data of the whole fly organism were obtained for
the following Drosophila life stages: embryo (179 samples), larva (69), pupa (64), and adult,
distinguished in males (44) and females (41). The reference genome used was dm6 [25],
while the gene annotation file (17.559 genes) was retrieved from FlyBase [26] (GTF: dmel-
all-r6.49). Mitochondrial genes for Drosophila were retrieved from Mitodrome [27].

2.2. Data Preprocessing and Mapping

The quality control of the raw FASTQ files was performed using FASTQC (v. 0.11.9) [28].
Next, sequences were aligned to the dm6 reference genome using STAR (v. 2.7.10a) [24,29],
which was run with default parameters. The resulting read count matrix was filtered
by removing genes that were not expressed in any sample; the raw gene counts were
normalized into Reads Per Kilobase per Million mapped reads (RPKM) values using the
edgeR R package [30]. Normalized data were subjected to Principal Component Analysis
(PCA) and the t-distributed Stochastic Neighbor Embedding (t-SNE) method to verify the
correct clustering of samples into their respective groups based on their gene expression
profiles. The number of principal components was chosen in order to explain 90% of the
variance of the gene expression profiles of all samples.

2.3. Clustering

Correlation patterns among genes were obtained using the Weighted Correlation
Network Analysis (WGCNA) [31] R software package. Since WGCNA assumes that a
gene network obeys a scale-free distribution, it powers the correlation of the genes to an
array of soft thresholding values. In this work, we have chosen the power value that,
among all, produced the highest similarity with a scale-free network. Therefore, WGCNA
yielded an adjacency matrix and a TOM (Topological Overlap Matrix) similarity matrix,
the latter being used to perform the actual clustering of samples. Life stages were used
as covariates for each sample with the aim of quantifying the module–trait relationships,
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i.e., the correlations between modules and life stages. This was accomplished through the
Pearson correlation coefficient.

In order to identify the most representative module of each life stage, we calculated
the correlation values between the Module Eigengenes (MEs), defined as the first principal
component of a given module, and each life stage.

2.4. Node Importance

The adjacency matrix resulting from the WGCNA analysis was preprocessed to contain
only the top 10% of the scores extracted from the TOM. Then, it was loaded using the
igraph [27] Python package to make a weighted graph of co-expressed genes. We checked
the connectivity of the genes in the module, i.e., the sum of the weights of all the edges
connected to a given node. A higher total connectivity implies stronger and more frequent
interactions between the nodes and the presence of multiple pathways in order to propagate
information through the network. Conversely, a lower total connectivity suggests that the
nodes are less connected, which may result in fewer interactions and fewer avenues for
information to flow.

Local topological metrics were computed for nodes in each network module using
Pyntacle [32]: (i) degree centrality, i.e., the number of edges incident to a node. One way to
understand degree centrality is to consider that every edge in a network can be thought
of as a path of length 1. Therefore, degree centrality can be seen as a measure that counts
the number of these paths that originate from a particular node; (ii) betweenness centrality,
i.e., the number of shortest paths between all pairs of nodes in the graph that pass through
that node. In other words, it measures how often a node appears on the shortest path
between any two other nodes in the graph. Nodes with high betweenness centrality are
important because they act as “bridges” between different parts of the graph, allowing
for efficient communication and the flow of information; (iii) closeness centrality, i.e., the
average shortest distance from each node to each other node. This is an inverse measure
because larger values indicate lower or reduced centrality, as opposed to higher values
indicating greater centrality; and (iv) clustering coefficient, i.e., the extent to which the
neighbors of a node are close to being a clique. If a node has a high clustering coefficient, it
suggests that its neighboring nodes are closely connected to each other. On the other hand,
if the clustering coefficient of a node is low, it indicates that its neighboring nodes are less
connected to each other. The overall clustering coefficient of a network is calculated by
taking the average of the clustering coefficients of all the nodes in the network. We also
measured the density of the modules by resorting to the completeness index [33,34].

A key-player-based analysis was also performed by computing the (i) “Key Player
Problem/Negative” (KPP-Neg) index, which gives insights on the contribution of a given
node to the cohesiveness of a network (breaking down a network into smaller compo-
nents, or in cases where fragmentation is not possible, increasing the path lengths be-
tween nodes to a degree that they become almost disconnected), and the (ii) “Key Player
Problem/Positive” (KPP-Pos) index, which instead focuses on the level of connectiv-
ity/embedding of nodes within a network [16], in other words, identifying nodes that
can establish direct links or short paths to the maximum number of nodes. Therefore, we
computed a KPP-Neg-based measure of network fragmentation, the DF index, in order
to check if the removal of key players leads to a significant increase in the number of
disconnected components, and two KPP-Pos-based indices: DR, which is the weighted
proportion of all nodes reached by a set of nodes, which is also known as the “kp-set”,
and m-reach, which is the count of the number of unique nodes reached by any member
of the kp-set in m links or less. In this study, we considered only “fast paths” by setting
m = 3. The key-player analysis was performed on groups of nodes of size 1, namely on
individual nodes.

Finally, genes composing the module of interest were subjected to gene set enrichment
analysis (GSEA) using PANTHER [35] against the Gene Ontology (GO), which was run
with default parameters. To shrink the number of the resulting statistically significant GO
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terms, a semantic similarity-based clustering approach was used through the REVIGO
tool [36]. REVIGO provided a way to summarize the enriched GO terms into more general
categories based on their semantic similarities. This strategy yielded a more concise and
interpretable summary of the enriched GO terms and helped to identify the biological
processes, molecular functions and cellular components that were associated with the
genes in the module. A similar analysis was performed with KEGG [37] that regarded the
metabolic pathways.

3. Results and Discussion
3.1. Data Quality and Count Matrix

During the analysis of the RNA-Seq data, the per-sample mean number of reads was
found to be 32,051,322, with a wide range of 4004 to 98,797,584 reads per sample. The
average read length was determined to be 88.5, with a range of 76 to 294. In terms of read
mapping, it was observed that, on average, 57.41% of the reads across all samples were
successfully mapped to the reference genome, with a minimum of 9.42% and a maximum
of 94.51%. After filtering out genes that were not expressed in any of the samples, 4.8% of
genes (849 out of 17,559) were removed from the resulting read count matrix.

3.2. Life Stages and Clustering

According to the results of the PCA analysis, 30 principal components were needed to
explain 70% of all the variance that the gene count matrix was able to capture (see Figure 1a).
As a result, data projected on these components and subsequently subjected to spectral
embedding revealed clear contiguity of the major life stages as well as tight clustering of
intra-stage groups (i.e., prepupa, pupa, and three instar larval stages) (Figure 1b).
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Figure 1. (a) Cumulative variance explained as the number of principal components increases;
(b) Spectral embedding of the expression values of all Drosophila melanogaster samples labeled with
the corresponding life stage.

Expression data were then processed by WGCNA that was run with default parame-
ters: the power that produced a higher similarity with a scale-free network was 9 (Figure 2a
left), and clustering was performed using the resulting TOM by merging modules whose
expression profiles were very similar as measured by the correlation of their eigengenes
(Figure 2b).
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Figure 2. Results of the WGCNA preprocess: ((a), left) scale-free fit index and mean connectivity
(degree, right) with respect to the soft-thresholding power (X-axis). The left panel demonstrates the
relationship between the scale-free fit index and soft-thresholding power, while the right panel dis-
plays the mean connectivity as a function of the soft-thresholding power; (b) Clustering dendrogram
of genes, with dissimilarity based on topological overlap, together with assigned merged module
colors and the original module colors.

Originally, the detected modules were 28; merging the ones whose distance was less
than 0.2 gave us the 17 clusters considered in this work.

3.3. Module-Trait Relationships

Module-trait relationships were then represented by a heatmap (Figure 3), which
summarized the correlation values between the co-expressed genes and each specific
life stage. Interestingly, the “black” and “orangered” clusters were strongly positively
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correlated with the adult male cluster (0.85, p-value < 0.05; 0.84, p-value < 0.05 respectively)
and negatively correlated with the embryo (−0.54, p-value < 0.05; −0.38, p-value < 0.05
respectively). Overall, co-expression levels increased from the embryo to the adult (male)
stage in both modules, while they remained almost similar in the females. In this regard, it
is interesting to note that genes co-expressed during the embryonic phase are similar to the
ones in the adult female, generating similar scores in almost all clusters. The “white” cluster
shows a strong positive correlation with the larval cluster (0.52, p-value < 0.05), but negative
correlations in the embryonic and pupa clusters (−0.19, p-value < 0.05; −0.28, p-value < 0.05
respectively); a similar behavior is noted for the red cluster, with the exception of the pupa
positive correlation (0.58, p-value < 0.05). Another case regards the “saddlebrown” module,
which does not show a drop in correlation from the embryo phase to larval, and it remains
low for the males (adult) but has a slight increase for the females (adult).
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p-values in parentheses (meant as the probabilities that one would have found the current results
if the correlation coefficients were in fact zero, i.e., null hypothesis), where shades of red show a
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3.4. Network Analysis

In order to understand the role of mitochondrial genes in aging, we focused on a cluster
that showed a high correlation for any specific life stage and had a higher concentration
of mitochondrial genes. As shown in Figure 4, the “lightsalmon” cluster (Supplementary
Materials Figure S2), despite being a small cluster, contains a high number of mitochondrial
genes and shows a positive correlation in the adult male (0.29, p-value < 0.05), while a
negative one in the embryonic phase (−0.28, p-value < 0.05).

The cluster contains 286 genes, and 43 of them are mitochondrial. We studied its
topological organization using Pyntacle. Several local topological metrics (i.e., degree,
betweenness, closeness, and clustering coefficient) were calculated starting from the adja-
cency matrix generated by WGCNA that was cleaned from values belonging to the lowest
ninetieth percentile. This filtering step was adopted to minimize noise and density in the
resulting network; the 286 nodes of the network were then wired with 3947 edges, which
then represented only strong correlations between genes. This network was made up of
28 components.
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First, we assessed the connectivity of each node in the cluster: the mean connectivity
of the whole network (2.98) was smaller than the average among all the mitochondrial
genes, which is 4.46 (Figure 5). This means that mitochondrial genes tend to be more
connected to other nodes in the network: among the top 50 genes, 14 of them were
mitochondrial genes, and in the top 10, the mitochondrial ones were 4. The two most
connected genes are both mitochondria, i.e., CG7430 (13.58) and UQCR-C1 (ubiquinol-
cytochrome c reductase core protein 1) (12.76). Other relevant genes are mAcon1 (5th) and
Pdhb (pyruvate dehydrogenase E1 beta subunit) (8th).

Then, we evaluated the local centrality measures of genes. As for degree centrality,
the top 50 genes exhibited an average degree of 67.24, which is higher than the average
degree of the whole network (27.60); interestingly, 10 of them were mitochondrial genes.
UQCR-C1 was the top mitochondrial gene.
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For what concerns the betweenness centrality, only five mitochondrial genes were
included in the top 50; the top mitochondrial gene (mAcon1) among them exhibited a
betweenness centrality value of 3738 versus an average for the whole network of 486.12,
which means that this gene may play a crucial role in maintaining the connectivity of the
network and that, if it were removed, it would significantly disrupt the organization of
the network.

Instead, no mitochondrial genes were within the top 50 in terms of closeness, which
in a network means that it may take longer for information to flow from that node to
other nodes or, in a co-expression network, that they tend to cluster together and are less
connected than nuclear genes; however, the top two mitochondrial genes as for closeness,
i.e., Idh3b and mAcon1, were, respectively, 0.5 and 0.7 far from the top 50.

As the last centrality measure, we focused on the clustering coefficient; seven mitochon-
drial genes, i.e., Cchl (Cytochrome c heme lyase), SdhB (Succinate dehydrogenase, subunit
B), ND-B17.2 (NADH dehydrogenase B17.2 subunit), CG1907, Hmgcl (3-Hydroxymethyl-3-
methylglutaryl-CoA lyase), ND-20 (NADH dehydrogenase 20 kDa subunit), and CG1673,
were among the 56 genes with the maximum score, i.e., clustering coefficient = 1. This
means that they exhibit a community-like structure with their neighboring genes in the
network (mostly other mitochondrial genes). On the contrary, only 3 mitochondrial genes,
i.e., aralar1, Hsc70-5, and mEFTu1 (mitochondrial translation elongation factor Tu 1), had a
score of 0, meaning that they were loosely connected with their neighborhood.

Finally, we conducted a key-player analysis. It included an assessment of the frag-
mentation and reachability properties of the network under examination. Interestingly,
the network showed high levels of resilience towards fragmentation (quantified by the DF
index), as all nodes gave a score of 0.2 (DF ranges from 0, minimum fragmentation, to 1),
which is common in biological networks due to their renowned robustness to exogenous in-
terferences [38–40]. On the other hand, the m-reach index showed that mitochondrial genes
exhibit high reachability: the mean m-reach value for the whole network was 77.04 ± 69 std,
while, on average, the mitochondrial genes exhibited an average m-reach of 127.15 ± 57 std.
This might be due to the fact that those genes tend to cooperate and cluster together much
more than their nuclear counterparts. ABCB7, UQCR-C1, CG7430, and Pdhb were the top
mitochondrial genes. Finally, considering the distance-weighted reach (DR) index as well, we
calculated an average DR of 0.326 for the mitochondrial cluster (Figure 6), which was almost
the same as the whole network (0.3); the whole-network mean also considers isolated nodes,
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which have DR = 0, by definition. This shows that even if mitochondrial genes tend to form
dense communities and cliques, they still maintain a high reachability, on average, to the
whole network, which is at least comparable with that of the nuclear genes.
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Figure 6. Graphical representation of the “lightsalmon” cluster obtained using igraph. Each node is a
gene. When two genes co-express, an edge connects them. The “lightsalmon” module contains five
topologically highly ranked mitochondrial genes: UQCR-C1, ND-20, Pdhb, ND-B17.2, and ABCB7.
Nuclear and mitochondrial genes are colored in red and green, respectively.

3.5. Gene Set Enrichment Analysis

A final step was to study the biological processes, cellular components, and molecular
functions in which the 286 genes making up the network module under investigation were
involved, with a particular focus on mitochondrial functions. As shown in Figure 7, the
genes in this module exploit different functions, the largest part of which regard regula-
tory and structural processes (light-yellow, ocher). However, five tiles, which are colored
“salmon”, significantly enrich mitochondrial-specific functions, thereby confirming the
statistical over-representation of mitochondrial genes in this network module. Moreover,
since mitochondria are responsible for energy production via oxidative phosphorylation,
ion transport across mitochondrial membranes is essential for their proper function and
plays a critical role in various cellular processes such as cytoplasmic homeostasis, energy
generation, and the compartmentation of metabolism. Several ion transport-related func-
tions were statistically enriched by this analysis and are represented in the figure below by
the green tiles. Finally, mitochondria provide the energy required for muscle contraction,
as they are responsible for producing ATP. Most ATP is produced in mitochondria through
a series of reactions known as the Krebs cycle. During muscle contraction, calcium ions are
released, which bind to proteins that enable the myosin and actin filaments to slide past
each other, resulting in muscle contraction. In this regard, several muscle and locomotion-
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related biological processes were statistically enriched and represented by “darkorange”
tiles in Figure 7 (Supplementary Materials Figure S3). These are particularly important
since mitochondrial dysfunction has also been linked to various muscle-related diseases,
including mitochondrial myopathies [41].
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Figure 7. TreeMap representing the GO terms statistically enriched by the genes composing the
“lightsalmon” network cluster. The terms, i.e., the TreeMap tiles, are joined into ‘super tiles’ of loosely
related GO terms, visualized with different colors. The size of each tile represents either the p-value,
or the frequency of the GO term in the underlying GO database.

The analysis of the “cellular component” GO class of terms confirmed these results
(Supplementary Materials Figure S4). The most statistically significant GO term was “mi-
tochondrial inner membrane;” which indicates that a significantly high number of genes
in our cluster lie in this cellular compartment. Other cellular components resulted from
this analysis to be significantly over-represented by the genes of this cluster: the “organelle
inner membrane”, the “mitochondrial protein-containing complex”, and the “inner mito-
chondrial membrane protein complex”. These components are essential for maintaining
cellular homeostasis, energy production, and metabolic regulation.

The analysis of the GO “molecular functions” category (Supplementary Materials
Figure S5) revealed that the genes in this cluster primarily exploit the transport of ions and
cations as well as membrane functions associated with ATP synthesis.

In addition, we performed a metabolic pathway enrichment analysis against the KEGG
database (Figure 8). In accordance with the previous results, the most significant ones relate
to mitochondrial processes that were strongly statistically enriched and significant, such as
oxidative phosphorylation, carbon metabolism, and the citrate cycle (TCA cycle).
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4. Concluding Remarks

In this study, we showed that network-based methods, particularly when used
with high-throughput gene expression data, have the potential to reveal significant in-
sights. In this instance, we used RNA-seq data and a technique called Weighted Gene
Co-expression Network Analysis (WGCNA). Using this methodology, previous studies
have produced significant findings, such as the identification of potential biomarkers for
ischemic stroke [42,43]. In this work, we have analyzed the gene expression profiles of
Drosophila melanogaster at different life stages and identified some mitochondrial genes that
may have an important role in the process of aging in this model organism: UQCR-C1,
which is an important mitochondrial gene in the network from a topological standpoint, is
expressed in several structures, including the adult heart, embryonic/larval midgut, and
spermatozoon. It has been investigated in different studies of Parkinson’s disease, and
its human ortholog is also involved in Alzheimer’s disease and multiple mitochondrial
dysfunction syndrome. ND-B17.2 is known to be involved in the mitochondrial respiratory
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chain, and its human ortholog has been studied regarding nuclear type mitochondrial
complex I deficiency 23 (MC1DN23). ND-20 has been studied as a part of the mitochon-
drial electron transport chain and, particularly, is involved in the determination of life
span. Knockdown of Pdhb, instead, has been associated with a shortened lifespan in adult
flies [44].

In Drosophila, homozygous variants of mAcon1 are lethal, and knockdown of the
protein through RNA interference has been found to cause reduced locomotor activity,
a shortened lifespan, and increased cell death in the developing brain. These findings
suggest that mAcon1 is essential for proper mitochondrial activity, energy metabolism, and
aging [45].

On this path, we aim to further investigate the role of these mitochondrial genes
in aging and age-related diseases and plan to expand our network-based approach to
other model organisms, such as other flies and insects, and datasets to identify conserved
molecular mechanisms underlying aging and age-related diseases.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13127342/s1, Figure S1: Graphical representation of the analysis
pipeline used in this work;; Figure S2: Whole network representing the “lightsalmon” cluster; nuclear
genes are in red, while mitochondrial genes are in green; Figure S3: Dot plot of the top 10 Biological
Processes resulting from the GSEA analysis; Figure S4: Dot plot of the top 10 Cellular Components
resulting from the GSEA analysis; Figure S5: Dot plot of the top 10 Molecular Functions resulting
from the GSEA analysis.
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