
Citation: Uddin, F.; Riaz, N.;

Manan, A.; Mahmood, I.; Song, O.-Y.;

Malik, A.J.; Abbasi, A.A. An

Improvement to the 2-Opt Heuristic

Algorithm for Approximation of

Optimal TSP Tour. Appl. Sci. 2023, 13,

7339. https://doi.org/10.3390/

app13127339

Academic Editors: Subhas

Mukhopadhyay and Richard C.

Millham

Received: 5 May 2023

Revised: 13 June 2023

Accepted: 16 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Improvement to the 2-Opt Heuristic Algorithm for
Approximation of Optimal TSP Tour
Fakhar Uddin 1, Naveed Riaz 1, Abdul Manan 2, Imran Mahmood 1 , Oh-Young Song 3,* , Arif Jamal Malik 4

and Aaqif Afzaal Abbasi 4

1 School of Electrical Engineering and Computer Science (SEECS), National University of Sciences
and Technology (NUST), Islamabad 44000, Pakistan

2 Department of Mathematics, University of Gujrat, Gujrat 50700, Pakistan
3 Software Department, Sejong University, Seoul 05006, Republic of Korea
4 Department of Software Engineering, Foundation University Islamabad, Islamabad 46000, Pakistan
* Correspondence: oysong@sejong.edu

Abstract: The travelling salesman problem (TSP) is perhaps the most researched problem in the field
of Computer Science and Operations. It is a known NP-hard problem and has significant practical
applications in a variety of areas, such as logistics, planning, and scheduling. Route optimisation
not only improves the overall profitability of a logistic centre but also reduces greenhouse gas
emissions by minimising the distance travelled. In this article, we propose a simple and improved
heuristic algorithm named 2-Opt++, which solves symmetric TSP problems using an enhanced
2-Opt local search technique, to generate better results. As with 2-Opt, our proposed method
can also be applied to the Vehicle Routing Problem (VRP), with minor modifications. We have
compared our technique with six existing algorithms, namely ruin and recreate, nearest neighbour,
genetic algorithm, simulated annealing, Tabu search, and ant colony optimisation. Furthermore,
to allow for the complexity of larger TSP instances, we have used a graph compression/candidate
list technique that helps in reducing the computational complexity and time. The comprehensive
empirical evaluation carried out for this research work shows the efficacy of the 2-Opt++ algorithm
as it outperforms the other well-known algorithms in terms of the error margin, execution time, and
time of convergence.

Keywords: travelling salesman problem; combinatorial optimisation; VRP; route optimisation;
heuristic algorithms; TSPLIB

1. Introduction

The travelling salesman problem is one of the most researched problems in the combi-
natorial optimisation domain [1] due to its importance and usage in different areas of daily
life and many other applications. However, it is still an open challenge. Furthermore, its
applications also span a variety of domains that are either formulated or generalised forms
of TSP, such as circuit board printing [2], the overhauling of gas turbines [3], scheduling
with deadlines [4], vehicle routing [5], and TSP with drones [6]. Due to the difficulty of
solving the large instances of these problems, approximation algorithms and heuristics
are the most widely used and practical approaches to obtain near-optimal solutions in a
reasonable time.

Generally, the algorithm is provided with a set of cities V and the distance w between
every pair of cities, and the aim of the algorithm is to find a closed tour starting from any
random vertex and visiting each and every point in V with the minimum possible cost [7–9].

Finding the optimum solution using an exact algorithm may be very steeply priced,
both in terms of time and computational resources. Complexity in this situation can reach
up to O(n!) because of its NP-hard nature. To cope with this problem, researchers have
devised multiple heuristics and approximation techniques to find a quick and near-optimal

Appl. Sci. 2023, 13, 7339. https://doi.org/10.3390/app13127339 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13127339
https://doi.org/10.3390/app13127339
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0138-7510
https://orcid.org/0000-0002-7142-5976
https://doi.org/10.3390/app13127339
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13127339?type=check_update&version=1

Appl. Sci. 2023, 13, 7339 2 of 24

solution [10]. The effort in finding the optimal result of any NP-hard problem can grow
exponentially from huge to impossible, thus making the retrieval of a solution impractical
for relatively larger-scale problem sizes [1]. Heuristics can minimise the complexity from
exponential to polynomial time by sacrificing some accuracy [7]. Almost all real-world
problems that rely on the effective results of TSP instances, such as network optimisation,
logistics, postal, or any other industry that involves planning or logistics, can greatly benefit
from the provided TSP algorithm [11–13].

Consider a complete graph as input to the algorithm: G = (V, E) where V represents
the nodes and E represents the edges. Each edge (u, v) ∈ E has a non-negative integer
cost denoted as c(u, v). The problem is to find a Hamiltonian cycle (tour) of G with the
minimum cost. The heuristic algorithm should solve symmetric TSP instances with a
minimal error margin. It should effectively solve large-input problems in a reasonable
amount of time.

The TSP can be formulated as below.
Given a set of vertices V = 0,1,2,. . . ., n − 1, where the distance between a pair of

vertices is given as dij, the objective is to minimise

∑
i

∑
j

dijXij (1)

where

Xij =

{
1 the path goes from node i to node j
0 otherwise

(2)

subject to
∑

j
Xij = 1 (3)

and each vertex needs to be visited once.

∑
i

Xij = 1 (4)

The salesman must come from only one vertex when visiting this vertex.

Xii = 0 (5)

There should be no self-loop.

∑
i

∑
j

Xij 6 |S| − 1 , ∀S ⊂ V , 2 6 |S| 6 n− 2 (6)

We need to incorporate the global requirement that there is one tour that visits all
vertices, as the local constraints defined above can lead to situations where there are
multiple tours visiting only a subset of the total number n of vertices V. Here, S is a set of
all possible subtours of graph G. This constraint requires that the tour should proceed from
a vertex in S to a vertex not in S (and vice versa).

In this paper, an improved algorithm, 2OPT++, is proposed using the 2-opt technique
for the TSP problem. The algorithm performs considerably well in terms of the running
time and approximation ratio, even for very large problem instances. It is proposed to
use an optional graph compression step to improve the running time of the algorithm
when dealing with large problem instances. The approach is commonly known as the
“candidate list” and results in a considerable computational performance improvement for
huge graphs. An empirical comparison of the effect of utilising this technique to reduce the
TSP complexity with respect to the quality of the solution is provided. A comprehensive
experimental evaluation of some of the most well-known algorithms and heuristics used
to solve TSP problems is provided, namely ruin and recreate, nearest neighbour, genetic
algorithm, simulated annealing, Tabu search, and ant colony optimisation. Our proposed

Appl. Sci. 2023, 13, 7339 3 of 24

algorithm utilises an edge swap technique mixed with some carefully studied steps to
generate near-optimal results. In the following, we list the steps of the 2-Opt++ algorithm;
every step is further described in detail. Figure 1 shows the flow diagram of the algorithm.

Figure 1. Flow diagram of the algorithm.

• Compute a basic solution to the input problem.
• Compute an active edge matrix using the graph compression technique (optional and

recommended for larger problem instances).
• Use the 2-Opt technique for edge swapping.
• Accept the new solution using acceptance criteria.
• Reshuffle the cycle and repeat until convergence or pre-defined end of iterations.

2. Existing Algorithms

A wide range of algorithms have been proposed in the literature to solve the TSP.
Exact algorithms such as branch-and-bound, branch-and-cut, and cutting plane methods
are guaranteed to find the optimal solution, but their running time is exponential in the
worst case. Heuristic algorithms such as nearest neighbour, 2-Opt, 3-Opt, and Christofides’
algorithm provide approximate solutions in polynomial time, but the optimality of the
solutions is not guaranteed. Meta-heuristics such as genetic algorithm, simulated annealing,
Tabu search and ant colony optimisation are high-level strategies that can find approximate
solutions quickly.

In recent years, researchers have proposed various hybrid methods that combine
the advantages of different meta-heuristics with exact algorithms. These methods are
considered state-of-the-art techniques to solve large-scale TSP. A number of researchers
have also proposed to use meta-heuristics such as genetic algorithm, simulated annealing,
Tabu search and ant colony optimisation, which can find approximate solutions quickly.

Additionally, various modifications of the TSP have been proposed in the literature,
such as the asymmetric TSP (ATSP), the prize collecting TSP (PCTSP), and the multiple TSP
(mTSP), which have been studied and attempted to be solved using similar approaches
as in the TSP.

This section provides an introduction to some previous and well-known algorithms
used to solve the travelling salesman problem.

Appl. Sci. 2023, 13, 7339 4 of 24

2.1. Christofides Algorithm

In 1976, an algorithm was proposed that was guaranteed to provide a solution within a
3/2 factor of the optimal solution. The Christofides algorithm is considered one of the best
algorithms due to its ease of understanding, computational complexity, and approximation
ratio. This algorithm, proposed by Christofides, combines the minimum spanning tree with
a solution of minimum-weight perfect matching [14,15]. In 2011, an improved version of
Christofides’ algorithm was proposed for k-depot TSP, which shows a closer approximation
of 2− (1/k). If the value of k is close to 2, the approximation bound becomes close to
3/2 (i.e., the original approximation of Christofides).

2.2. 2-Opt and 3-Opt

Optimising the problem using smaller moves is also a very popular technique that has
yielded promising results. The 2-Opt and 3-Opt algorithms are branches of local search
algorithms, which are commonly used by the theoretical computer science community for
the solution of the TSP [16]. The 2-Opt algorithm removes two edges from the graph and
then reconstructs the graph to complete the cycle. There is always only one possibility
in adding two unique edges to the graph for the completion of the cycle. If the new tour
length is less than the previous one, it is kept; otherwise, it is rejected. On the other hand,
3-Opt removes three edges from the tour, resulting in the creation of three sub-tours and
eight possibilities for the addition of new edges to complete the cycle again. The time
complexity in 3-Opt is O(n3) for a single iteration, which is higher than for the 2-Opt
algorithm. Figure 3 shows the moves of the 2-Opt technique.

2.3. Nearest Neighbour

The nearest neighbour algorithm (NN) is a straightforward, greedy approximation
algorithm. The tour starts with the selection of a random initial city and then incrementally
adds the closest unvisited city until all cities are visited. Although this algorithm is
computationally very efficient, it generally fails to provide effective results. In [10], its
empirical results were compared with those of five other algorithms utilising TSPLIB
problems. In this paper, we also compare the results of the 2-Opt++ algorithm with
the nearest neighbour algorithm’s results. The comparison highlights that the nearest
neighbour algorithm is a poor choice for TSP approximation.

2.4. Simulated Annealing

In 1983, Kirkpatrick, Gelatt, and Vecchi introduced a powerful heuristic algorithm
known as simulated annealing (SA). SA is a probabilistic algorithm used to find the global
optimum. The probability increases or decreases with the quality of the move. A parameter
T is used to measure the probability of the move. When T tends toward zero, the probability
of selection becomes more unlikely.

P(Acceptance) ∼ 1− exp(∆E/CT)) (7)

Here, C is a constant related to energy or temperature, and T is a control parameter and
is set very high initially. Simulated annealing allows some poor moves to traverse through
the large solution space. The acceptance of the new state is based on some predefined
criteria. This process is repeated until convergence to the solution [1]. In [17], the authors
claim that the threshold acceptance method is better than simulated annealing.

2.5. Genetic Algorithm

Genetic algorithm is inspired by the genetic operations of evolution, i.e., selection,
crossover, and mutation. GA has been extensively used in the literature for TSP and related
problems. The mutation is a key operator driving the search for a better solution. Swapping,
flipping, and sliding are the main types of mutations used in GA. The idea behind genetic
algorithm comes from genes, where offspring are created by exchanging the genes of their

Appl. Sci. 2023, 13, 7339 5 of 24

parents. Unlike other meta-heuristic methods, GA uses natural selection rules, crossover,
and mutations to make the computation easier and faster. These aspects make it a more
valuable, better-performing, and more efficient algorithm than others [18–20].

2.6. Tabu Search

Tabu search (TS) was proposed by Fred Glover in 1986 and is also known as an
algorithm for neighbourhood search. Here, the search method is primarily based on the
search history, denoted as Tabu listing. It is an intensive local search algorithm [21]. TS
avoids the problem of becoming stuck in local optima by allowing moves with negative
gains and constructing a Tabu list to inhibit contradictory moves. Whenever it becomes
stuck in local optima, it searches for a solution from the neighbourhood stored in memory,
even if it is worse than the currently selected one (negative gain), thus allowing it to
discover more feasible options from the solution space. Here, the Tabu list helps TS to
avoid cycling in the tour. TS uses 2-Opt moves to enhance the solution. However, TS is
slower than other 2-Opt local search algorithms.

2.7. Ant Colony Optimisation

Machine learning scientist Marco Dorigo, in 1993, outlined a strategy to heuristically
solve TSP by deploying a technique involving the recreation of a subterranean insect
province called the Ant Colony System (ACS). It uses the analogy that genuine ants discover
short paths between sustainable sources and their homes. As ants are blind, they start
navigating towards the food source from their colony and deposit pheromones along the
path. Every ant searches and follows the path at random. The probability of following a
path increases with the increase in pheromones in the path. The algorithm uses artificial ant
behaviour, and it records their location and the quality of the solution so that this path can be
checked for acceptance or rejection in future iterations. The measure of pheromone storage
corresponds to the visit length: the shorter the visit, the more it stores [22,23]. In their
work, Leila Eskandari and Ahmad Jafarian [24] argue that ACO is one of the most efficient
nature-motivated meta-heuristic algorithms and has outperformed a considerable number
of algorithms in this domain. They have modified and improved the ACO algorithm
to devise another strategy to solve TSP. In essence, they compare both local and global
solutions to find the best possible solution. In [22], the authors use Tabu listing to avoid the
repetition of path selection in ant colony optimisation, which considerably improves the
overall algorithm’s time and convergence.

2.8. Tree Physiology Optimisation

An important property in nature is sustainability and continuous improvement for
survival. This unique property reflects the pattern of optimisation. TPO is an algorithm
influenced by a tree development scheme that uses the shoot and root feature to achieve
optimal survival. The shooting system expands to a light source in ordinary plant growth
to capture light and initiate the photosynthesis process. The method of photosynthesis
transforms light into carbon with the assistance of water, which is then provided and used
by other components of the plant; specifically, the root system uses oxygen to elongate
shooting in the opposite direction. It consumes carbon to further elongate inside the
floor for water and nutrient searching, which is then provided to the shooting extension
system. The shoot–root system’s connection to ideal development can be converted by
a straightforward concept into an optimisation algorithm; the shoot searches for carbon
using root nutrients, and the root searches for nutrients using the shooting system. In [10],
TPO results are compared with those of five other algorithms.

2.9. Ruin and Recreate

R&R is a simple but powerful meta-heuristic used to solve combinatorial optimisation
problems. The ruin and recreate (R&R) method uses the concepts of simulated annealing or
threshold acceptance, with massive actions in place of smaller ones. As the name suggests,

Appl. Sci. 2023, 13, 7339 6 of 24

a large chunk of the problem is ruined and recreated. Complex problems such as timetable
scheduling or vehicle routing problems, which are often discontinuous, require large moves
to bypass the local optima. The R&R algorithm has proven to be an important candidate to
find the global optimum. The vehicle routing problem using R&R is discussed in detail
in [25]. A case study using R&R is presented in [26]. There is a fleet of vehicles that
has to serve different numbers of customers. There is a central depot where the route of
each vehicle starts and ends. Vehicles need to serve customers that have certain demands.
The idea is to serve the customers with the minimum route (distance travelled) and within
the capacity of every vehicle assigned to it. A time window constraint can also be added
to the problem, i.e., every customer can add a start and end time to their service. A total
of 56 problems have been studied in this paper and the results are discussed. Jsprit is an
implementation of the R&R algorithm presented in [25], and it is available for download
(https://github.com/graphhopper/jsprit (accessed on 3 May 2023)) and use.

We have used the above implementation to benchmark the problems from TSPLIB and
compared the results with those of the 2-Opt++ algorithm. In this study, R&R performed
considerably well in terms of the error margin and convergence in some problems.

3. 2-Opt++ Algorithm
3.1. Basis for Solution

Initially, the algorithm needs to be provided with a Hamiltonian cycle as a base input.
A random Hamiltonian cycle is quickly computed by using a greedy technique (least cost
edge) and then an edge swap technique is used to iteratively improve upon the original
tour. It is pertinent to mention that although we have computed the Hamiltonian cycle in
a greedy manner for this work, any method can be utilised to compute the Hamiltonian
cycle, as the effectiveness of the 2-Opt++ algorithm is beneficial in cases where the initial
Hamiltonian cycle is of higher quality in terms of the total edge weight. However, it is not
entirely dependent on such optimistic scenarios only, as the proposed edge swap technique
and the graph compression/candidate list are also key to the 2-Opt++ algorithm’s success.

3.2. Graph Compression (Optional)

Also known as a candidate list, for each graph, a N × N matrix is initialised with 0s,
where N is the number of nodes in the graph. The nearest k points are identified and these
points are considered active for the node vi ∈ V and are marked 1 in the active edge matrix.
Only active edges are considered and compared in the algorithm. This step is optional
and is recommended for larger instances of TSP to save time. Here, 100 active edges
(i.e., k = 100) are considered in solving large problem instances.

3.3. Shuffling

The next step is to shuffle the original Hamiltonian cycle generated in the first step.
The algorithm selects a group of three nodes from the original cycle and then processes
them in a clockwise direction in two steps. We would like to highlight that although it is
possible to select a variable number of nodes and steps, we have selected a combination of
3 nodes and 2 steps after an extensive evaluation with different combinations of numbers
of nodes and steps, as shown in Figure 2.

https://github.com/graphhopper/jsprit

Appl. Sci. 2023, 13, 7339 7 of 24

Figure 2. Shuffling 3 nodes clockwise.

3.4. Mutation

Different techniques have been used for mutation in different algorithms, and Lin–
Kernighan is a well-known one that removes two, three, four, or five connections from the
graph and then selects a new solution from 2, 4, 25, or 208 different possible scenarios [8].
In this article, we have applied a simple mutation. We remove two edges from the complete
Hamiltonian cycle H and revert them and reconnect them again to create a new solution.
This is the same technique used in the Lin-2-Opt method [16].

Suppose that we have two edges AD and EB, shown in Figure 3. We remove these two
edges from the graph and add two more edges as AB and ED to complete the graph.

Figure 3. Reverting an edge in 2-Opt algorithm.

3.5. Gain Computation

The total weight of this newly computed graph will be calculated again, and if the
new sum of the weight is smaller than the previous one, the distance is minimised from the
previous value and new edges will be accepted; otherwise, they will be rejected. This step
will be repeated for every edge in the graph of the respective node.

Let x be the distance from node A to node D from Figure 3 and x be the distance from
node E to node B. In the case of a symmetric graph, the distance from A to D and D to A
will be identical. Let y be the distance from node A to node B and y be the distance from
node E to node D. Then, we have a gain as

Gain = Rn − Rp (8)

Appl. Sci. 2023, 13, 7339 8 of 24

Here, let Rn be the sum of the edge distance that is to be added to the new graph,
i.e., Rn = y + y, while Rp is the sum of the edge distance that is to be removed, i.e., Rp = x + x
(Algorithm 1).

Algorithm 1 2-Opt++
Input: A file containing three columns, row number, x point and y point
Output: Best tour, error percentage, time, and complete graph
Get a basic Hamiltonian cycle through any low-cost technique like greedy
Initialise active edge matrix
for X ← 1 to niter do

Reshuffle the sequence by 3 factor 2 clockwise
for Y ← 1 to kiter do

for i← 1 to n do
get the first edge
for j← 1 to activeEdges do

get the second edge
Mutate with 2-Opt technique
if Gain > 0 then

Keep new edges inducted in the cycle
else

Discard new edges
end

end
end

end
if New sequence has a shorter distance then

Keep new sequence
else

Discard new sequence
end

end

3.6. Selection Criteria

Reverting the edges and then testing for an improved solution is a simple yet powerful
method. However, there is a caveat in this solution. As we are checking for every suitable
solution and then adapting it in a greedy manner, it raises the possibility of missing a better
solution. This point can be improved in the future by defining some criteria for the possible
acceptance of a solution, e.g., simulated annealing accepts any better solution with a certain
probability measure [1]; moreover, in the threshold acceptance method, results are accepted
if they satisfy certain threshold values [17]. If the gain in the previous step is greater than 0,
we will keep this new solution. The 2-Opt++ algorithm is fully explained above 1.

4. Experimental Results and Analysis

In this section, we present a detailed evaluation of the 2-Opt++ algorithm using
multiple resources and provide a performance comparison with some of the other well-
known algorithms selected from the literature. We have mainly benchmarked TSPLIB
examples to test the efficiency of our algorithm and have compared it with the R&R
algorithm and some other well-known algorithms/heuristics selected from the existing
literature, such as nearest neighbour, Tabu search, simulated annealing, genetic algorithm,
and ant colony optimisation. We have selected 67 symmetric problems from the well-known
TSPLIB library, as shown in Table 1.

Appl. Sci. 2023, 13, 7339 9 of 24

Table 1. Problems selected from the library TSPLIB for benchmarking.

No. Name Nodes Opt. No. Name Nodes Opt.

1 eil51 51 426 35 a280 280 2579

2 berlin52 52 7542 36 pr299 299 48,191

3 st70 70 675 37 lin318 318 42,029

4 eil76 76 538 38 rd400 400 15,281

5 pr76 76 108,159 39 fl417 417 11,861

6 rat99 99 1211 40 pr439 439 107,217

7 kroa100 100 21,282 41 pcb442 442 50,778

8 krob100 100 22,141 42 d493 493 35,002

9 kroc100 100 20,749 43 u574 574 36,905

10 krod100 100 21,294 44 rat575 575 6773

11 kroe100 100 22,068 45 p654 654 34,643

12 rd100 100 7910 46 d657 657 48,912

13 eil101 101 629 47 u724 724 41,910

14 lin105 105 14,379 48 rat783 783 8806

15 pr107 107 44,303 49 pr1002 1002 259,045

16 pr124 124 59,030 50 u1060 1060 224,094

17 bier127 127 118,282 51 vm1084 1084 239,297

18 ch130 130 6110 52 pcb1173 1173 56,892

19 pr136 136 96,772 53 d1291 1291 50,801

20 pr144 144 58,537 54 rl1304 1304 252,948

21 ch150 150 6528 55 rl1323 1323 270,199

22 kroa150 150 26,524 56 fl1400 1400 20,127

23 krob150 150 26,130 57 u1432 1432 152,970

24 pr152 152 73,682 58 fl1577 1577 22,249

25 u159 159 42,080 59 d1655 1655 62,128

26 rat195 195 2323 60 vm1748 1748 336,556

27 d198 198 15,780 61 u1817 1817 57,201

28 kroa200 200 29,368 62 rl1889 1889 316,536

29 krob200 200 29,437 63 d2103 2103 80,450

30 ts225 225 126,643 64 pr2392 2392 378,032

31 tsp225 225 3916 65 fl3795 3795 28,772

32 pr226 226 80,369 66 pla33810 33,810 66,048,945

33 gil262 262 2378 67 pla85900 85,900 142,382,641

34 pr264 264 49,135 - - - -

We have rigorously evaluated the 2-Opt++ algorithm and present our findings in this
section, with a detailed comparison with R&R and six other algorithms/heuristics. Jsprit
is an implementation of the ruin and recreate algorithm [25]. We have empirically tested
the R&R algorithm by using TSPLIB problems, and the results obtained are presented in
Table 2, along with the results of the 2-Opt++ algorithm. The comprehensive comparative
analysis of the 2-Opt++ algorithm with existing algorithms, i.e., nearest neighbour (NN),
genetic algorithm (GA), simulated annealing (SA), Tabu search (TS), ant colony optimisation

Appl. Sci. 2023, 13, 7339 10 of 24

(ACO), and tree physiology optimisation (TPO), are provided in Table 3. We also present
the performance of 2-Opt++ for larger TSP problem instances in Table 4.

Table 2. Comparison of 2-Opt++ algorithm with R&R in time and error.

Name Opt.
R&R 2-Opt++ Algorithm

Best Err % Sec Best Err % Sec

berlin52 7542 7820.80 3.70 5.7 7544.26 0.03 0.12

bier127 118,282 127,550.90 7.84 30.2 119,228.26 0.8 0.58

ch150 6528 6712.87 2.83 52.4 6683.37 2.38 1.00

d198 15,780 15,937.39 1.00 74 16,160.30 2.41 1.85

d493 35,002 35,923.41 2.63 258 36,479.08 4.22 14.21

eil101 629 662.89 5.39 15.2 666.93 6.03 0.31

eil51 426 444.42 4.32 2.5 432.35 1.49 0.08

eil76 538 573.28 6.56 6.6 553.01 2.79 0.17

fl417 11,861 13,094.38 10.40 207 12,061.45 1.69 8.46

gil262 2378 2422.93 1.89 108 2462.66 3.56 2.63

kroa100 21,282 21,559.42 1.30 15.8 21,522.49 1.13 0.31

kroa150 26,524 26,952.53 1.62 46.8 26,635.40 0.42 0.77

kroa200 29,368 30,231.95 2.94 73 30,031.72 2.26 1.39

krob100 22,141 22,746.89 2.74 15 22,295.99 0.7 0.33

krob150 26,130 26,237.26 0.41 48 26,568.98 1.68 0.76

kroc100 20,749 21,154.50 1.95 15 20,815.40 0.32 0.36

krod100 21,294 21,842.21 2.57 17.5 21,813.57 2.44 0.31

kroe100 22,068 22,413.32 1.56 14.8 22,299.71 1.05 0.34

pr107 44,303 63,228.97 42.72 19 46,066.26 1.08 0.41

pr124 59,030 70,108.17 18.77 26 59,667.52 1.24 0.71

pr136 96,772 104,690.06 8.18 36 97,971.97 2.25 0.84

pr144 58,537 69,368.47 18.50 42 59,854.08 0.46 0.84

pr152 73,682 79,805.00 8.31 46 74,020.94 2.11 0.96

pr226 80,369 88,804.29 10.50 99 82,064.79 0.82 2.28

pr264 49,135 58,608.78 19.28 105 49,537.91 3.78 3.75

pr299 48,191 53,950.30 11.95 116 50,012.62 3.27 4.71

pr439 107,217 120,717.01 12.59 188 110,723.00 1.83 11.63

pr76 108,159 110,467.08 2.13 6.5 110,138.31 0.94 0.23

rat195 2323 2378.49 2.39 67 2344.84 6.68 1.80

rat99 1211 1231.29 1.68 13 1291.89 1.65 0.40

rd100 7910 8046.29 1.72 14.8 8040.52 1.12 0.38

st70 675 693.37 2.72 5.2 710.51 1.96 0.21

ts225 126,643 142,681.07 12.66 82.5 129,125.20 1.38 2.28

tsp225 3916 4371.03 11.62 83.2 3970.04 3.52 2.27

u159 42,080 49,734.95 18.19 47 43,561.22 2.51 0.93

Appl. Sci. 2023, 13, 7339 11 of 24

Table 3. Comparison of 2-Opt++ algorithm with existing algorithms.

N0. TSP
Instance

Error %

TPO NN GA SA TS ACO 2-Opt++

1 eil51 2.64 18.56 6.60 3.08 3.08 9.73 2.37

2 berlin52 2.17 8.50 5.36 5.55 2.63 5.04 0.03

3 st70 3.28 12.82 3.81 3.16 2.26 12.08 1.96

4 eil76 3.49 13.80 5.95 5.42 4.41 9.78 2.87

5 pr76 5.26 21.05 13.70 4.48 1.64 9.78 0.94

6 ch150 6.35 8.42 7.30 8.18 5.12 12.60 2.54

7 a280 7.89 19.98 8.82 9.74 8.60 11.20 6.29

8 rd400 19.04 19.23 8.42 10.05 35.62 26.03 5.89

9 pcb442 19.64 16.10 9.73 13.08 63.70 24.93 3.98

10 rat99 4.53 13.03 6.16 5.48 2.68 9.36 2.79

11 eil101 7.31 17.01 9.04 6.86 6.14 19.70 6.27

12 d198 5.49 14.46 5.09 3.81 1.92 14.27 2.74

13 kroA100 5.55 16.05 6.79 4.68 5.82 7.80 1.13

14 ch130 6.63 17.82 8.20 7.34 9.94 13.16 2.34

Table 4. Error comparison of 2-Opt++ algorithm with nearest neighbour drawn by graph compression
technique in all categories.

No. Name 2-Opt++ NN No. Name 2-Opt++ NN

1 eil51 2.65 18.56 34 fl3795 6.21 18.95

2 berlin52 0.03 8.50 35 a280 6.03 19.98

3 st70 3.08 12.82 36 pr299 2.05 24.3

4 eil76 5.3 13.80 37 lin318 3.16 28.56

5 pr76 0.56 21.05 38 rd400 6.32 19.23

6 rat99 2.99 13.03 39 fl417 1.69 27.43

7 kroa100 1.13 16.05 40 pr439 6.79 22.45

8 krob100 0.71 31.68 41 pcb442 5.24 16.10

9 kroc100 0.32 26.89 42 d493 4.64 24.7

10 krod100 2.44 26.56 43 u574 4.69 27.03

11 kroe100 1.15 25.01 44 rat575 8.02 24.75

12 rd100 1.13 25.68 45 p654 3.45 25.31

13 eil101 6.19 17.01 46 d657 5.01 27.12

14 lin105 1.38 41.61 47 u724 8.02 31.77

15 pr107 0.89 5.36 48 rat783 7.96 27.81

16 pr124 1.07 17.4 49 pr1002 5.34 21.83

17 bier127 0.87 14.77 50 u1060 5.02 25.68

18 ch130 2.55 17.82 51 vm1084 5.49 25.98

19 pr136 2.32 24.81 52 pcb1173 7.37 23.53

Appl. Sci. 2023, 13, 7339 12 of 24

Table 4. Cont.

No. Name 2-Opt++ NN No. Name 2-Opt++ NN

20 pr144 0.53 5.32 53 d1291 7.31 17.99

21 ch150 2.68 8.42 54 rl1304 4.94 34.33

22 kroa150 2.95 26.71 55 rl1323 5.41 22.91

23 krob150 1.67 25.62 56 pr2392 7.74 22

24 pr152 4.32 16.31 57 fl1400 4.1 34.01

25 u159 3.37 29.92 58 u1432 8.06 23.43

26 rat195 6.94 18.9 59 fl1577 3.72 25.58

27 d198 2.22 14.46 60 d1655 8.14 20.55

28 kroa200 3.72 21.9 61 vm1748 6.43 21.25

29 krob200 2.25 25.63 62 u1817 7.92 24.3

30 ts225 2.29 20.41 63 rl1889 4.49 26.58

31 tsp225 3.25 23.31 64 d2103 5.27 8.72

32 pr226 0.66 17.81 65 pla33810 9.24 17.08

33 gil262 3.26 36.31 66 pla85900 10.14 22.23

4.1. Parameter Settings and Machine Configuration

In the 2-Opt++ algorithm, there are two main variables, Nitr and Kitr. Nitr is set for
shuffling the Hamiltonian cycle after every mutation cycle, while Kitr is set for the number
of mutation cycles. Thus,

Total Number o f Iterations = Nitr × Kitr (9)

We have divided the benchmark problems shown in Table 1 into three categories from
the library, i.e., small, medium, and large. Small problems are in the range of (50 < n ≤ 500),
medium benchmark problems have a range of (500 < n ≤ 5000), and large problems have a
range of (n > 5000). We have defined 2000 iterations for the small category, 500 iterations
for the medium category, and 50 iterations for the large category. The R&R results have also
been generated by running the algorithm on 2000 iterations for the sake of fairness. The au-
thors that have published results for other algorithms, i.e., NN, GA, SA, TS, ACO, and TPO
algorithms, have opted for a minimum of 10,000 iterations for each algorithm [10]. For the
convergence graph, every problem has been iterated 10, 100, 500, 1000, and 2000 times and
the corresponding result has been recorded. All the empirical results have been computed
by running the 2-Opt++ algorithm and R&R on an i7 core, 6600U CPU @ 2.60 GHz * 2,
machine having 16 GB RAM and a 64-bit operating system.

4.2. Experiment with R&R

In this section, we present the experimental results of the 2-Opt++ algorithm along
with the results of the well-known ruin and recreate algorithm implemented as Jsprit using
similar settings [25]. Each test case involved 10, 100, 500, 1000, and 2000 iterations to draw
the graph for convergence. We ran both algorithms a fixed number of times for every TSP
problem. Moreover, we also recorded the time taken by each algorithm to provide the
results for each problem.

In the case of the 2-Opt++ algorithm, for small problems comprising 50 to 500 nodes,
we decided to run the algorithm on 2000 iterations and with a full active matrix, which
means that each and every node was active in the graph. In Table 2, we provide the
results after experimenting on both algorithms with the details of individual TSP problems.
The error formula is defined as

Appl. Sci. 2023, 13, 7339 13 of 24

Error = ((result − opt) / opt)× 100 (10)

In 29 out of 35 selected benchmarked problems, belonging to the small category,
the 2-Opt++ algorithm performed better than R&R. In six problems, R&R outperformed
the 2-Opt++ algorithm. However, a key aspect of the 2-Opt++ algorithm in comparison
to R&R is that the error variance never increases more than 7%, while the R&R algorithm
produces a sub-par 42.7% error margin for the problem pr107. It is also evident from the
results that there are many cases where the error percentage of the results produced by
R&R is more than 18%. Moreover, if we look at the execution time factor, the 2-Opt++
algorithm outperforms R&R by a fair margin while still producing notably better results for
all the tested problems. It is also worth mentioning that after applying graph compression
for up to 100 nodes, i.e., k = 100, the time taken by the 2-Opt++ algorithm is improved even
further. It is also shown in Figure 5, that the R&R algorithm performed so poorly in terms
of the computation time for the larger problems that we had to abort the computation of
results for larger problems for comparison’s sake. However, we recorded the results for the
2-Opt++ algorithm for all categories and they are presented in Table 4, for future reference.

4.3. Performance Comparison

The graph of Figure 4 depicts the error margin in the three algorithms, i.e., 2-Opt++,
NN, and R&R algorithms, for the small category. It is evident that the 2-Opt++ algorithm
outperforms the two other algorithms most of the time, and R&R performs comparatively
better than NN. However, it is also worth noting that, in some cases, the R&R algorithm
yielded results that were even worse than NN, and the variance in the error margin from
R&R was also considerably higher. On the other hand, the 2-Opt++ algorithm produced
better and more consistent results and never exceeded the acceptable margin of 7% for
problems belonging to the small category.

Figure 4. Error comparison of 2-Opt++ algorithm, R&R, and NN in small TSP instances.

Figure 5 provides a graphical comparison of the time consumed by the R&R and
2-Opt++ algorithms in the small category. The results highlight the superiority of our
proposed algorithm in terms of the computational time. It is pertinent to mention that the
computational time consumed by the 2-Opt++ algorithm is impressive even for consider-
ably larger problems. The computational time performance was improved further after
applying the graph compression technique. The graph clearly showed an abrupt increase
in the time taken by the R&R algorithm for problems with an increasing number of nodes.

Appl. Sci. 2023, 13, 7339 14 of 24

Figure 5. Time comparison of R&R and 2-Opt++ algorithms with and without graph compression in
small TSP instances.

4.4. Comparison with Other Algorithms/Heuristics

In this section, we elaborate and compare the results of six other well-known al-
gorithms/heuristics with the 2-Opt++ algorithm and highlight the key findings. In the
original comparative study [10], the authors selected some parameters, such as the number
of iterations and number of experiments with each algorithm. The minimum number of
iterations was selected as 10,000. Each algorithm continued its execution until it reached
the already published results or completed the defined number of iterations.

In Table 3, we present the resultant error margins of the six selected algorithms along
with the results of the 2-Opt++ algorithm. Each problem was evaluated with 2000 iterations
of the 2-Opt++ algorithm. Table 3 provides the error percentages of all the algorithms using
a simple, basic formula for the error percentage, i.e., ((best− opt)/opt)× 100. It is clearly
evident that the results of the 2-Opt++ algorithm are superior and it is more effective than
the other algorithms in terms of the error percentage.

Out of the 14 problems, our proposed algorithm yielded the best results for 11 prob-
lems, and, even for the other three problems, the difference was minimal. In problem
rat99, Tabu search provided a better solution, with an error percentage of 2.68%, while the
2-Opt++ algorithm yielded a 2.79% error rate. However, when we regenerated our results
with the graph compression technique using only 40 active edges, our algorithm produced
a much improved error rate of 2.26%, even outperforming the initially best-performing
Tabu search. For the problem eil101, Tabu search provided a 6.14% error rate, while the
2-Opt++ algorithm showed a 6.27% error rate. However, again, when we applied the graph
compression technique, the 2-Opt++ algorithm was able to surpass Tabu search, with an
error rate of 5.63%. For the problem d198, Tabu search showed an error margin of 1.92%
and the 2-Opt++ algorithm produced a 2.74% error. Again, after reproducing the results
with graph compression, i.e., setting the active edges to 40, we were able to produce a
1.49% error rate.

Appl. Sci. 2023, 13, 7339 15 of 24

It is clearly evident that the 2-Opt++ algorithm performs well for more than 80% of
the cases in normal execution, and, even for the rest of the cases, our algorithm is able to
outperform the others in terms of the error percentage with the introduction of the graph
compression technique.

Figure 6 depicts a graphical comparison of the error margins of the seven different
algorithms. The graph clearly shows the impressive performance of the 2-Opt++ algorithm.

Figure 6. Error comparison between 2-Opt++ algorithm and NN, GA, SA, TS, TPO, and ACO in
small TSP instances.

4.5. Qualitative Results

In this section, we present the results of the 2-Opt++ algorithm after deploying the
graph compression technique for all three categories of problems: small, medium, and large.
The results of small category problems are provided in Table 4, and the resultant comparison
graph is depicted in Figure 7. For comparison’s sake, we also present the results of the
nearest neighbour algorithm along with the results of the 2-Opt++ algorithm. An important
point to be noted is that for all small category problems, our proposed algorithm produced
an error margin percentage of below 7%. We would like to mention that only one of the
problems, p264, produced a sub-par 13% error margin rate. However, once we added the
number of active edges, it provided a much improved error rate of 3.78%. This means that
all the problems were successfully managed under an error margin of 7%. In Figures 7–9, we
can clearly see that the variance of the error is lower in the 2-Opt++ algorithm as compared
to nearest neighbour. We only considered NN for the comparison of larger problem
instances (>1000 vertices) because, for the other algorithms, the resource and computation
time requirements were simply huge. There are some techniques available to deal with
larger problem instances in the literature, but they are implementation-dependent [27].

Appl. Sci. 2023, 13, 7339 16 of 24

Figure 7. Error comparison of 2-Opt++ algorithm with NN in small category.

Figure 8. Error comparison of 2-Opt++ algorithm with NN in medium category.

Appl. Sci. 2023, 13, 7339 17 of 24

Figure 9. Error comparison of 2-Opt++ algorithm with NN in large category.

4.6. Convergence Analysis

In this section, we provide the graphs for the convergence of both the 2-Opt++ and
R&R algorithms. For this purpose, we ran and executed the selected examples with
10, 100, 500, 1000, and 2000 iterations. We plotted the results for eight different problems
Figures 10–17. From the diagrams, it is clearly visible that, in general, the 2-Opt++ algorithm
converged faster than R&R. Only for one problem, i.e., eil101, although the 2-Opt++
algorithm performed well in the beginning, in the end, R&R showed better results in
terms of convergence.

Figure 10. eil51 convergence graph comparison of 2-Opt++ algorithm and R&R.

Appl. Sci. 2023, 13, 7339 18 of 24

Figure 11. eil76 convergence graph comparison of 2-Opt++ algorithm and R&R.

Figure 12. kroa150 convergence graph comparison of 2-Opt++ algorithm and R&R.

Appl. Sci. 2023, 13, 7339 19 of 24

Figure 13. kroa200 convergence graph comparison of 2-Opt++ algorithm and R&R.

Figure 14. krob100 convergence graph comparison of 2-Opt++ algorithm and R&R.

Appl. Sci. 2023, 13, 7339 20 of 24

Figure 15. p654 convergence graph comparison of 2-Opt++ algorithm and R&R.

Figure 16. u159 convergence graph comparison of 2-Opt++ algorithm and R&R.

Appl. Sci. 2023, 13, 7339 21 of 24

Figure 17. eil101 convergence graph comparison of 2-Opt++ algorithm and R&R.

4.7. pla85,900 Solution

This is a special problem in the TSPLIB library. It consists of 85,900 nodes. It is the
largest optimally solved problem for TSP. It was solved in 2005/06 with the Concorde
algorithm [11]. Solving this problem with the 2-Opt++ methodology was a major challenge
for us as it demanded huge memory resources. To represent this problem as a matrix,
at least 55 GB of memory was required. The solution graph and a magnified view of this
graph are shown in Figures 18 and 19.

Figure 18. pla85,900 solution graph [11].

Appl. Sci. 2023, 13, 7339 22 of 24

Figure 19. pla85,900 magnified view of solution graph [11].

To address this huge memory requirement problem, we divided the large problem into
four smaller problems. We solved these small problems and finally merged them to obtain
the approximate solution. To break one large problem down into four small problems,
we took the average of the x-axis points and y-axis points. All points on the x-axis that
were less than the average value were placed below the virtual line, and all points on the
x-axis that were greater than this value were placed over the line. This means that all the
points that fell below the line were placed in the third and fourth quarters, while all points
above the line were placed in the first and second quarters. The same technique was used
with the y-axis points. Thus, we calculated all the points that fell within the first, second,
third, and fourth quarters. We considered every problem as an independent problem and
solved it; in the end, all problems were merged. This produced an error margin of 10.14%.
In Table 4, the results of each small problem, the total best distance, and the computed
error are provided.

5. Discussion

After analysing the results of 2-Opt++ with seven other algorithms in similar settings,
we assert that the 2-Opt++ outperforms all other well-known algorithms in terms of
(i) error variance; (ii) convergence; and (iii) computation time. In this section, we compare
the average error and the average time taken by the 2-Opt++ and the R&R algorithm.
For the 35 problems extracted from the TSPLIB library for the small category, the average
error variance for R&R stood at 6.79%, while our 2-Opt++ produced 2.33%, which is a quite
significant difference. Even for those cases where R&R produced a better result than our
proposed algorithm, the difference was minor. The average time consumed by R&R and
2-Opt++ is 64.63 s and 2.41 s, respectively. These results show that our 2-Opt++ is efficient
for almost all types of symmetric TSP problem instances.

We are also able to conclude that the NN algorithm is the fastest, followed by the
2-Opt++ algorithm, TPO, and GA. Based on the problem size, different algorithms show
different patterns in time consumption. Tabu search and ACO depict exponential time

Appl. Sci. 2023, 13, 7339 23 of 24

increases as the problem size increases, while others show a slight increase in time with the
problem size. In the average error comparison, 2-Opt++ performed outstandingly, followed
by Tabu search, TPO, and GA. Tabu search’s better performance in terms of the average
error could be due to its diversification mechanisms, such as swap, reversion, and insertion
techniques, and the Tabu list, which ensures the best selection of the solution candidate.
TS still shows up to a 64% error margin in a problem of 442 nodes. This problem can be
addressed by using some other algorithms in the Tabu list mechanism. In terms of accuracy,
GA shows consistent results, with error margins of less than 15% in all selected problems.
It uses a mutation process, which drives it towards a better solution. If we compare the
individual results, 2-Opt++ performs best, followed by TS, TPO, and GA.

6. Conclusions

The computational performance of 2-Opt++ is comparatively better than some other
well-known techniques that provide approximate solutions to the symmetric TSP problem
instances. The algorithm finds a tour with the minimum complexity and computational
time using edge swap and graph compression/candidate list techniques, yielding an
excellent solution in terms of the error margin. The graph compression technique/candidate
list has been applied to solve relatively larger problems in a reasonable amount of time.
In the first comparison, we compared and contrasted our results with the state-of-the-
art algorithm known as ruin and recreate with respect to time, convergence, and error
variance from the optimum results. In the second comparison, the results of the 2-Opt++
were compared with those of six other well-known algorithms published in a research
paper [10]. The algorithms selected for the comparison were NN, GA, SA, TS, ACO, and
TPO. The performance of our 2-Opt++ has proven to be impressive. We also considered the
effect of using candidate lists in the third comparison.

In future work, we aim to employ multiple mutations for swap, reversion, and insertion
and adopt better selection criteria, such as threshold acceptance or simulated annealing, over
the existing greedy approaches to improve the results. A new and better technique can be
devised for compression, which can take into account all the nearest points in 360 degrees.
This will be of great importance in graphs where many points are assembled in a small area.

Author Contributions: All authors contributed equally to the writing of the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was financially supported by the Ministry of Trade, Industry, and Energy
(MOTIE) and the Korea Institute for the Advancement of Technology (KIAT) through the International
Cooperative RD program (Project No. P0016038); the Ministry of Science and ICT (MSIT), Republic of
Korea, under the Information Technology Research Center (ITRC) support program (IITP-2023-RS-
2022-00156354) supervised by the Institute for Information Communications Technology Planning
and Evaluation (IITP); and the Faculty Research Fund of Sejong University in 2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The TSPLIB library that was used for the empirical evaluation is a
well-known, publicly available library. The library is available for free download at http://comopt.
ifi.uni-heidelberg.de/software/TSPLIB95/ (accessed on 3 May 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aarts, E.; Korst, J.; Michiels, W. Simulated annealing. In Search Methodologies; Springer: Boston, MA, USA, 2005; pp. 187–210.
2. Xiao, Z.; Wang, Z.; Liu, D.; Wang, H. A path planning algorithm for PCB surface quality automatic inspection. J. Intell. Manuf.

2022, 33, 1829–1841. [CrossRef]
3. Dong, X.; Xu, M.; Lin, Q.; Han, S.; Li, Q.; Guo, Q. ITÖ algorithm with local search for large scale multiple balanced traveling

salesmen problem. Knowl.-Based Syst. 2021, 229, 107330. [CrossRef]

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://doi.org/10.1007/s10845-021-01766-3
http://dx.doi.org/10.1016/j.knosys.2021.107330

Appl. Sci. 2023, 13, 7339 24 of 24

4. Koulamas, C.; Kyparisis, G.J. A classification of Dynamic Programming formulations for Offline Deterministic Single-Machine
Scheduling problems. Eur. J. Oper. Res. 2022, 305, 999–1017. [CrossRef]

5. Konstantakopoulos, G.D.; Gayialis, S.P.; Kechagias, E.P. Vehicle routing problem and related algorithms for logistics distribution:
A literature review and classification. Oper. Res. 2022, 22, 2033–2062. [CrossRef]

6. Gunay-Sezer, N.S.; Cakmak, E.; Bulkan, S. A Hybrid Metaheuristic Solution Method to Traveling Salesman Problem with Drone.
Systems 2023, 11, 259. [CrossRef]

7. Jünger, M.; Reinelt, G.; Rinaldi, G. The traveling salesman problem. Handb. Oper. Res. Manag. Sci. 1995, 7, 225–330.
8. Helsgaun, K. An effective implementation of the Lin–Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 2000, 126, 106–130.

[CrossRef]
9. Khalil, M.; Li, J.P.; Wang, Y.; Khan, A. Algorithm to solve travel salesman problem efficently. In Proceedings of the 2016 13th

International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu,
China, 16–18 December 2016; pp. 123–126.

10. Halim, A.H.; Ismail, I. Combinatorial optimization: Comparison of heuristic algorithms in travelling salesman problem. Arch.
Comput. Methods Eng. 2019, 26, 367–380. [CrossRef]

11. Applegate, D.L.; Bixby, R.E.; Chvatal, V.; Cook, W.J. The Traveling Salesman Problem: A Computational Study; Princeton University
Press: Princeton, NJ, USA, 2006.

12. Matai, R.; Singh, S.P.; Mittal, M.L. Traveling salesman problem: An overview of applications, formulations, and solution
approaches. In Traveling Salesman Problem, Theory and Applications; IntechOpen: London, UK, 2010.

13. Chen, J.; Xiao, W.; Li, X.; Zheng, Y.; Huang, X.; Huang, D.; Wang, M. A Routing Optimization Method for Software-Defined
Optical Transport Networks Based on Ensembles and Reinforcement Learning. Sensors 2022, 22, 8139. [CrossRef] [PubMed]

14. Xu, Z.; Xu, L.; Rodrigues, B. An analysis of the extended Christofides heuristic for the k-depot TSP. Oper. Res. Lett. 2011,
39, 218–223. [CrossRef]

15. Christofides, N. Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem; Technical Reporlt; Carnegie-Mellon
University Pittsburgh Management Sciences Research Group: Pittsburgh, PA, USA, 1976.

16. Aarts, E.; Aarts, E.H.; Lenstra, J.K. Local Search in Combinatorial Optimization; Princeton University Press: Princeton, NJ, USA, 2003.
17. Dueck, G.; Scheuer, T. Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing.

J. Comput. Phys. 1990, 90, 161–175. [CrossRef]
18. Gupta, I.K.; Choubey, A.; Choubey, S. Randomized bias genetic algorithm to solve traveling salesman problem. In Proceedings of

the 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, India,
3–5 July 2017; pp. 1–6.

19. Lin, B.L.; Sun, X.; Salous, S. Solving travelling salesman problem with an improved hybrid genetic algorithm. J. Comput. Commun.
2016, 4, 98–106. [CrossRef]

20. Hussain, A.; Muhammad, Y.S.; Sajid, M.N. A Simulated Study of Genetic Algorithm with a New Crossover Operator using
Traveling Salesman Problem. J. Math. 2019, 51, 61–77, ISSN 1016-2526.

21. Glover, F. Tabu search—Part I. ORSA J. Comput. 1989, 1, 190–206. [CrossRef]
22. Chen, H.; Tan, G.; Qian, G.; Chen, R. Ant Colony Optimization With Tabu Table to Solve TSP Problem. In Proceedings of the 2018

37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 2523–2527.
23. Weidong, G.; Jinqiao, F.; Yazhou, W.; Hongjun, Z.; Jidong, H. Parallel performance of an ant colony optimization algorithm for

TSP. In Proceedings of the 2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA),
Nanchang, China, 14–15 June 2015; pp. 625–629.

24. Eskandari, L.; Jafarian, A.; Rahimloo, P.; Baleanu, D. A Modified and Enhanced Ant Colony Optimization Algorithm for Traveling
Salesman Problem. In Mathematical Methods in Engineering; Springer: Heidelberg/Berlin, Germany, 2019; pp. 257–265.

25. Schrimpf, G.; Schneider, J.; Stamm-Wilbrandt, H.; Dueck, G. Record breaking optimization results using the ruin and recreate
principle. J. Comput. Phys. 2000, 159, 139–171. [CrossRef]

26. Mahmood, I.; Idwan, S.; Matar, I.; Zubairi, J.A. Experiments in Routing Vehicles for Municipal Services. In Proceedings of the
2018 International Conference on High Performance Computing Simulation (HPCS), Orleans, France, 16–20 July 2018; pp. 993–999.
[CrossRef]

27. Radu Mariescu-Istodor, R.; Fränti, P. Solving the Large-Scale TSP Problem in 1 h: Santa Claus Challenge 2020. Front. Robot. AI
2021, 8, 281. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ejor.2022.03.043
http://dx.doi.org/10.1007/s12351-020-00600-7
http://dx.doi.org/10.3390/systems11050259
http://dx.doi.org/10.1016/S0377-2217(99)00284-2
http://dx.doi.org/10.1007/s11831-017-9247-y
http://dx.doi.org/10.3390/s22218139
http://www.ncbi.nlm.nih.gov/pubmed/36365836
http://dx.doi.org/10.1016/j.orl.2011.03.002
http://dx.doi.org/10.1016/0021-9991(90)90201-B
http://dx.doi.org/10.4236/jcc.2016.415009
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1006/jcph.1999.6413
http://dx.doi.org/10.1109/HPCS.2018.00156
http://dx.doi.org/10.3389/frobt.2021.689908
http://www.ncbi.nlm.nih.gov/pubmed/34671647

	Introduction
	Existing Algorithms
	Christofides Algorithm
	2-Opt and 3-Opt
	Nearest Neighbour
	Simulated Annealing
	Genetic Algorithm
	Tabu Search
	Ant Colony Optimisation
	Tree Physiology Optimisation
	Ruin and Recreate

	2-Opt++ Algorithm
	Basis for Solution
	Graph Compression (Optional)
	Shuffling
	Mutation
	Gain Computation
	Selection Criteria

	Experimental Results and Analysis
	Parameter Settings and Machine Configuration
	Experiment with R&R
	Performance Comparison
	Comparison with Other Algorithms/Heuristics
	Qualitative Results
	Convergence Analysis
	pla85,900 Solution

	Discussion
	Conclusions
	References

