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Abstract: This article is devoted to the study of the combined effect of siliceous fly ash (FA), silica
fume (SF), and nanosilica (nS) on the cement matrix morphology and size of microcracks occurring in
the Interfacial Transition Zone (ITZ) between the coarse aggregate and the cement paste of concrete
composites based on ordinary Portland cement (OPC). The manuscript contains analyses of width
of microcracks (Wc) occurring in the ITZ area of concretes based on quaternary blended cements
and changes in ITZ morphology in the concretes in question. Experiments were planned for four
types of concrete. Three of them were composites based on quaternary blended cements (QBC), while
the fourth was reference concrete (REF). Based on the observations of the matrices of individual
composites, it was found that the REF concrete was characterized by the most heterogeneous structure.
However, substitution of part of the cement binder with active pozzolanic additives resulted in a
more compact and homogenous structure of the cement matrix in each of the QBC series concretes.
Moreover, when analyzing the average Wc values, it should be stated that the modification of the
basic structure of the cement matrix present in the REF concrete resulted in a significant reduction of
the analyzed parameter in all concretes of the QBC series. For QBC-1, QBC-2, and QBC-3, the Wc
values were 0.70 µm, 0.59 µm, and 0.79 µm, respectively, indicating a decrease of 38%, almost 48%,
and 30%, respectively, compared with the working condition of concrete without additives. On the
basis of the above results, it can therefore be concluded that the proposed modification of the binder
composition in the analyzed materials clearly leads to homogenization of the composite structure
and limitation of initial internal damages in concrete.

Keywords: concrete composite; quaternary binder concrete (QBC); morphology; microcrack width (Wc);
siliceous fly ash (FA); silica fume (SF); nanosilica (nS); Interfacial Transition Zone (ITZ)

1. Introduction

Building structures made of concrete composites effectively protect against rain, mois-
ture, noise, cold, and temperature fluctuations. In addition, the construction of buildings
and structures made of concrete composites, as well as the subsequent maintenance and
renovation of concrete structures, catalyze the development of world economies, thus
significantly contributing to their economic progress and the increase of gross domestic
products. Therefore, from an economic and social point of view, the dynamics of the
development of the concrete industry is still highly desirable [1–3].

One of the most important issues in the field of concrete and reinforced concrete
structures is the ability to select the components of the concrete mix, and then carry out the
technological process of molding the composite structure in such a way that the concrete
after the curing period in a solidified form is characterized by the lowest possible number
of initial microcracks [4–6].

Having regard to the mechanical properties of cementitious materials, it is important
to observe structure defects due to the fact that as stress concentrators, they constitute
the cause of crack development and bring about material damage [7–9]. According to the
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literature data, the area of first microcrack initiation in ordinary concretes is the Interfacial
Transition Zone (ITZ) between the largest grains of coarse aggregate and the paste [10,11].
The role of this concrete phase is significant enough that according to [12–14], the mechani-
cal parameters and the material fracture toughness is not only associated with the strength
of components which form the concrete structure, but to a large extent with the parameters
of all contact zones in the composite, as well as material defects occurring even before
application of the load.

The width of microcracks (Wc) in the ITZ area also has a decisive impact on the
degradation processes of structures made of concrete [15,16]. All discontinuities occurring
in the structure of the cement matrix and the contacts between the inclusions and the
continuous phase of the composite increase its permeability, thus enabling the migration of
harmful and aggressive substances deep into the material structure [17–19]. The presence of
such media and their adverse impact on individual components of concrete may result in:

• Acceleration of destruction of the material from which the structure is made;
• Shortening the life of the structure;
• Reducing the level of structure operation reliability;
• Making impossible to ensure an adequate level of structure safety;
• The need for more frequent and costly repairs.

For these reasons, knowledge concerning the size of material microcracks is important
from scientific, engineering, and economic points of view [20,21]. The phenomenon of
cracking in concrete composites and reinforced concrete structures is described in detail
in an overview study concerning this subject [22]. This article presents a detailed study
of causes of crack formation in the concrete structure, and the places of their occurrence.
Standard and modern methods of detecting microcracks and cracks were characterized and
methods of minimizing their occurrence were outlined. It has been pointed out, among
other things, that one of the methods for the design of composite structures with damage
constraints is modifying the composition of the concrete mix in such a way as to obtain the
smallest possible initial defects of the mature composite structure [23–25]. For this purpose,
the components of the concrete mix (mainly the binders) should be selected in such a way as
to achieve a synergistic effect of interaction between the individual components used [26,27].
As a result of this, it is possible to obtain a more homogenous structure of the concrete mix,
resulting in a more compact structure of the hardened concrete composite [28,29].

Therefore, concretes containing binders with a modified composition have been used
for many years. Such modifications consist of replacing part of ordinary Portland cement
(OPC) with other mineral materials [30,31]. Substitutes for cement binder are most often
additives, and in recent years also nanoadditives [32,33]. In the simplest solutions, i.e.,
concretes based on binary binders, OPC is replaced by only one additional component,
e.g., fly ash (FA), silica fume (SF), or metakaolin (MK) [34–36]. The benefits which have
been observed from such solutions include limiting the width of the initial microcracks in
concretes of this type, reduction of porosity of such materials, and improving their mechan-
ical parameters [37–39]. In most cases, however, such effects resulted from strengthening
the cement matrix structure through the development of additional C-S-H and C-A-S-H
phases [40–42]. Previous studies have shown, among other things, that a particularly
positive effect on the microstructure of the ITZ area between coarse aggregate and paste
is the modification of the composition of the cement binder with single additives and
nanoadditives, such as:

• Siliceous fly ash [43];
• Silica fume [44];
• Metakaolin [45];
• Ground granulated blast furnace slag [46];
• Rice husk ash [47];
• Waste glass [48];
• Natural pozzolan [49];
• Limestone powder [50];
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• Granite powder [51];
• Nanosilica [52,53];
• Carbon nanotubes [54];
• Graphene [55];
• Reactive powders [56];
• C-S-H seeds [57,58].

Benefits in reducing the microcracks in the ITZ area have been also obtained when
replacing mineral aggregates with recycled aggregates [59–61] or coral aggregates [62], and
using sand concretes [63]. In addition, the work [64] presents the results of tests evaluating
the effect of curing time on the size of microcracks in the ITZ area in concretes with the
addition of FA.

However, more advanced solutions in this field of material engineering rely on the
substitution of cementitious binder with a combination of two or even three active Sup-
plementary Cementitious Materials (SCMs) [65]. Such modifications are referred to as
concretes based on ternary or quaternary binders [66,67].

As previous studies have shown, this type of concrete, in comparison with ordinary
concrete, is characterized by:

• Excellent mechanical parameters, i.e., with the results exceeding the results obtained
for unmodified concrete by several dozen percent;

• Fracture toughness increased by several to several dozen percent;
• A more stable crack propagation process;
• A more homogenous structure of the cement matrix.

It should also be mentioned that material modification in the form of concretes based
on multi-component binders also includes pro-ecological activities. It has been proven
that by reducing the consumption of OPC and the possibility of using waste materials as a
substitute for the binder, such solutions cause [68–71]:

• Significant reduction of CO2 emission;
• Reduction of electricity and heat energy;
• The possibility of waste management.

Due to the fact that material modification of concrete by a combination of several
SCMs simultaneously contributes to both the improvement of properties of the composites
with cement matrix and the development of sustainable construction, this article presents
the results of new experiments assessing the size of microcracks in the ITZ area of such
materials. The manuscript contains analyses of:

• The width of microcracks (Wc) occurring in the ITZ area of concretes based on quater-
nary blended cements;

• Changes in ITZ morphology in the concretes in question.

Based on the results of the experiments conducted, it will be possible to obtain in-
formation about the possibility of effective modification of concrete composites in terms
of obtaining modern, innovative, and ecological materials with increased durability and
increased reliability.

2. Scope of the Experimental Study

Experiments were planned for four types of concrete. Three of them were composites
based on quaternary blended cements (QBC), while the fourth was a reference concrete
(REF). Modification of the binder composition in QBC concretes was performed by substitut-
ing OPC with the two most commonly used mineral additives, i.e., siliceous fly ash (FA) and
non-condensed silica fume (SF). In addition, as an element of modern nano-modification,
synthetic nanosilica (nS) was used.

As in the previous tests of mechanical parameters, brittleness, and fracture toughness—carried
out on the same materials—the following composition of the composites was assumed [72]:
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• Constant SF content, equal to 10%, and nS in the amount of 5%;
• Variable FA content, the amounts of which were, respectively: 0, 5, and 15%.

Based on such assumptions, it was possible to determine the impact of basic SCMs,
i.e., FA, for the structure of the contact area of the coarse aggregate with the cement matrix
and size of microcracks in the ITZ area in concretes containing silica additives. The detailed
compositions of individual composites are given in Section 3.2.

3. Materials and Methods
3.1. Materials
3.1.1. Aggregates

Locally available natural pit sand with 2.0 mm maximum size was used as fine
aggregate, and natural gravel as coarse aggregate with 8.0 mm maximum size. Properties
of both aggregates used are tabulated in Table 1, whereas their appearance is shown in
Figure 1.

Table 1. Properties of fine and coarse aggregates.

Property Unit
Aggregate Type

Fine Aggregate (Sand) Coarse Aggregate (Gravel)

Specific density (g/cm3) 2.60 2.65
Bulk density (g/cm3) 2.20 2.25

Compressive strength (MPa) 33 34
Modulus of elasticity (102 MPa) 330 330

Sand point for mix (%) 40.7
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Figure 1. Appearance of aggregates used: (a) sand, (b) gravel.

3.1.2. Binders

Concrete mixtures were made using the following binders:

• OPC CEM I 32.5 R;
• Siliceous FA;
• Non-condensed SF;
• nS Konasil K-200.

The chemical compositions and physical properties of the binders used are shown
in Tables 2 and 3, respectively. In addition, the appearance of all binders is presented in
Figure 2.
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Table 2. Chemical composition of the binders used (% mass).

Material\Constituent SiO2 Al2O3 CaO MgO SO3 Fe2O3 K2O P2O5 TiO2 Ag2O

OPC 15.00 2.78 71.06 1.38 4.56 2.72 1.21 - - -
FA 55.27 26.72 2.35 0.81 0.47 6.66 3.01 1.92 1.89 0.10
SF 91.90 0.71 0.31 1.14 0.45 2.54 1.53 0.63 0.01 0.07
nS >99.8 - - - - - - - - -

Table 3. Physical characteristics of binders used.

Physical Parameter
Kind of Binder

OPC FA SF nS

Specific gravity (g/cm3) 3.11 2.14 2.21 1.10
Blaine’s fineness (m2/g) 0.33 0.36 1.40 200

Average particle diameter (µm) 40 30 11 0.012
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3.1.3. Water

In order to prepare concrete mixtures, tap water (W) was used which met the require-
ments of the standard provision EN 1008:2002 [73].

3.1.4. Admixture

In order to improve the flowability of the concrete mixtures, a superplasticizer (SP),
STACHEMENT 2750, based on polycarboxylates, was used.

3.2. Mixture Design and Manufacturing Process

The concrete mixture proportions are summarized in Table 4. All mixtures had the
same water–binder ratio w/b = 0.4.
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Table 4. Mix proportions (kg/m3).

Mix OPC %OPC FA %FA SF %SF nS %nS Water SP Sand Gravel

REF 352 100 0 0 0 0 0 0 141 0 676 1205
QBC-1 299.2 85 0 0 35.2 10 17.6 5 141 6 676 1205
QBC-2 281.6 80 17.6 5 35.2 10 17.6 5 141 6 676 1205
QBC-3 246.4 70 52.8 15 35.2 10 17.6 5 141 6 676 1205

The samples were made in a special room located at the laboratory of the Faculty of
Civil Engineering and Architecture, Lublin University of Technology (Lublin, Poland). The
components for making concrete mixtures listed in Table 4 were weighed on two scales
with different ranges, i.e.,:

• FaWag TP150/1 1D34ABM (range: 1–150 kg);
• RadWag WLC 30/C1/R (range: 0–30 kg).

The process of making concrete mixes was carried out in the DZB-300 counter-rotating
mixer with a capacity of 150 L and power of 1.1 kW. The time needed to prepare the concrete
mix for one batch of samples was approx. 9–10 min. The process of mixing its components
included the following basic steps:

• Mix gravel and sand in a drum mixer for 120 s;
• Add the binding materials, i.e., OPC, FA, and SF, and mix for 180 s;
• Add the mixture of water, SP, and nS, and mix for 120 s;
• Add the remaining water and mix to obtain a homogenous mixture for 120–180 s.

From the concrete mix prepared according to the above procedure, concrete specimens
were then formed in the shape of cubes with a side length of 150 mm. The specimens
were made in accordance with the EN 12390-2:2019 standard [74]. For this purpose, the
concrete mix was laid in two layers. Each layer was compacted for a period of 30 s on the
vibration table Controls C-161/LC at a frequency of 50 Hz (3000 vibrations/min). After
compaction, the upper surface of the specimens was rubbed. Then, specimens were placed
on the laboratory floor and covered with polyethylene foil. Successive care of the covered
specimens was carried out by additional wetting every few hours. A view of the specimens
during the early care process is shown in Figure 3. The black color of the cubes visible in
Figure 3 is the result of the use of SF (Figure 2c) in the production of QBC series concretes.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16 
 

QBC-1 299.2 85 0 0 35.2 10 17.6 5 141 6 676 1205 
QBC-2 281.6 80 17.6 5 35.2 10 17.6 5 141 6 676 1205 
QBC-3 246.4 70 52.8 15 35.2 10 17.6 5 141 6 676 1205 

The samples were made in a special room located at the laboratory of the Faculty of 
Civil Engineering and Architecture, Lublin University of Technology (Lublin, Poland). 
The components for making concrete mixtures listed in Table 4 were weighed on two 
scales with different ranges, i.e.,: 
• FaWag TP150/1 1D34ABM (range: 1–150 kg); 
• RadWag WLC 30/C1/R (range: 0–30 kg). 

The process of making concrete mixes was carried out in the DZB-300 counter-rotat-
ing mixer with a capacity of 150 L and power of 1.1 kW. The time needed to prepare the 
concrete mix for one batch of samples was approx. 9–10 min. The process of mixing its 
components included the following basic steps: 
• Mix gravel and sand in a drum mixer for 120 s; 
• Add the binding materials, i.e., OPC, FA, and SF, and mix for 180 s; 
• Add the mixture of water, SP, and nS, and mix for 120 s; 
• Add the remaining water and mix to obtain a homogenous mixture for 120–180 s. 

From the concrete mix prepared according to the above procedure, concrete speci-
mens were then formed in the shape of cubes with a side length of 150 mm. The specimens 
were made in accordance with the EN 12390-2:2019 standard [74]. For this purpose, the 
concrete mix was laid in two layers. Each layer was compacted for a period of 30 s on the 
vibration table Controls C-161/LC at a frequency of 50 Hz (3000 vibrations/min). After 
compaction, the upper surface of the specimens was rubbed. Then, specimens were placed 
on the laboratory floor and covered with polyethylene foil. Successive care of the covered 
specimens was carried out by additional wetting every few hours. A view of the specimens 
during the early care process is shown in Figure 3. The black color of the cubes visible in 
Figure 3 is the result of the use of SF (Figure 2c) in the production of QBC series concretes. 

The specimens were demolded 24 h after their preparation and then transferred to a 
tub filled with water, with automatic stabilization of temperature conditions. In this way, 
they were kept in water for 14 days. After this period, the specimens were taken out of the 
water and placed on wooden pallets, where they remained for another 14 days, until mac-
roscopic examinations were carried out. During this period, specimens were cured in la-
boratory conditions at t = 20 ± 2 °C and RH = 40%. 

 
Figure 3. View of specimens during the care process. Figure 3. View of specimens during the care process.

The specimens were demolded 24 h after their preparation and then transferred to a
tub filled with water, with automatic stabilization of temperature conditions. In this way,
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they were kept in water for 14 days. After this period, the specimens were taken out of
the water and placed on wooden pallets, where they remained for another 14 days, until
macroscopic examinations were carried out. During this period, specimens were cured in
laboratory conditions at t = 20 ± 2 ◦C and RH = 40%.

3.3. SEM Samples and SEM Studies

In order to trace the combined impact of FA, SF, and nS particles on changes in the
ITZ structure and the size of microcracks at the contact of the coarse aggregate with the
cement matrix in concretes based on quaternary blended cements, microstructural analysis
was carried out. Experiments were performed after 28 days of curing of composites. The
impact of the applied SCMS on the analyzed parameters was assessed using a scanning
electron microscope (SEM). Samples for SEM analysis were taken from cubes damaged
after strength tests, described in [66,72]. A view of several samples prepared for SEM
tests is shown in Figure 4. Moreover, Table 5 contains relevant data related to the sample
preparation process and the main assumptions used in the SEM tests.
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Table 5. The main data regarding microscopic examinations.

Parameter Type Parameter Characteristics

Microscope used in the study Quanta FEG 250

The shape of the samples Rectangular cube

Sample dimensions 10 × 10 × 3 mm

Samples for testing Taken as raw—the samples before the test were not polished or
prepared in any other way

The course of the experiments The tests were performed in both low and high vacuum

Sample preparations

• In the case of tests in a high vacuum, the samples were
dried for one hour at the temperature of 70 ◦C and then
sprayed with carbon or alloy of gold and palladium in a
high-vacuum sputter coater, Q 150 E; the thickness of the
coated layer was about 50 nm,

• In the case of the samples tested in a low vacuum, they did
not require drying and spraying prior to testing

Number of samples Six samples for each series of concrete



Appl. Sci. 2023, 13, 7338 8 of 16

Table 5. Cont.

Parameter Type Parameter Characteristics

Number of photos per sample Thirty photos were taken for each sample, from which the
representative photos were selected

The observed area of each concrete batch About 3000 mm2

Places included in the microscopic assessment
• Structure of the cement matrix
• ITZ area

Magnifications used
• Basic: 8000 and 16,000 times
• Additional: from 30,000 to 240,000 times

4. Results and Discussion

Figures 5–8 show exemplary representative images of the microstructure of individual
tested composites. In accordance with the assumptions described in the first section of
the manuscript, the analyses focused on both the assessment of morphological changes
in the cement matrix and the measurements of the size of microcracks in the ITZ area of
each concrete. Therefore, each of the drawings shows two characteristic areas at two basic
magnifications, i.e., 8000× and 16,000×. In addition, in the case of concretes of the QBC
series, the places of contact between the coarse aggregate and the paste were imaged at
additional, very large magnifications. In this case, the following magnifications of the ITZ
area were applied, respectively: 30,000×, 60,000×, and even 240,000×. In addition, in order
to better highlight the changes in the structure of the analyzed concretes, all significant
details observed were also marked on the selected representative photos. These included:

• Main phases occurring in the cement matrix,
• Areas of microcracks in the ITZ area, with the indication of their exact dimensions in

three places,
• Areas of occurrence of FA grains in the paste structure,
• Voids after separation of FA grains from the cement matrix.
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Table 6 describes the characteristic details visible in the cement matrix of all composites.
In this table, attempts were made to briefly list the three most characteristic features that
were most often visible in individual series of composites. In addition, the observed
average microcracks width (Wc) with error bars in the ITZ area of all composites are given
in Figure 9.
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Table 6. Morphology of the cement matrix of analyzed concretes.

Mix Morphological Characteristics of Cement Matrix

REF

• Clear heterogeneity;
• Visible large number of phases during reaction, mainly in the form of

ettringite and portlandite, and the C-S-H phase to a lesser extent;
• Visible microcracks located in the structure of the matrix;

QBC-1

• Slightly compact structure;
• Visible porous areas filled with the ettringite (E) phase;
• Visible small microcracks in the matrix;

QBC-2

• Dense and homogenous structure (a lot of DCM areas were visible);
• The cement matrix looked the most homogenized;
• FA grains were well embedded in the paste;

QBC-3

• Almost dense and homogenous structure;
• The ettringite and portlandite phases during reaction were visible;
• Cavities in the matrix after the separation of FA grains were visible.
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Based on the observations of the matrices of individual composites presented in Table 5,
it was found that the reference concrete was characterized by the most heterogeneous
structure. Most of the phases present in this material were still in the process of reacting.
Microcracks in the cement matrix were also observed (Figure 5a).

Substitution of part of the cement binder with active pozzolanic additives resulted
in a more compact and homogenous structure of the cement matrix in each of the QBC
series concretes. However, the addition of only SF and nS in the concrete of the QBC-1
series caused only a slight change in the morphology of the matrix. In its structure, porous
places were still visible, with agglomerates of concrete phases occurring therein during the
reaction (Figure 6a). Nevertheless, the surface of the fracture in this concrete was already
clearly more compact than in the REF concrete.

In the concrete of the QBC-2 series, which contained both silica and FA additives in
5% quantities, the structure of the matrix was clearly compact, while FA grains visible in
the paste were well integrated with the paste. Their contact with the surface of the matrix
was compact, with almost imperceptible microdamages at the level of 20 nm (Figure 7a). In
this composite, it was possible to clearly observe the synergy effect occurring between the
three SCMs used.

Increasing the amount of FA in the binder composition resulted in the effect of weak-
ening the quality of the matrix structure. In this composite, i.e., QBC-3 series, unreacted FA
grains had weak bonds with the paste surface. The places after their separation were also
partly visible (Figure 8a). The structure of the cement matrix was also less compact than in
the case of concrete with a lower FA content, i.e., QBC-2 (Figure 7a).

Therefore, the results of microstructural tests of concrete containing FA confirm the
earlier results given, among others, in [75]. On this basis, it can be concluded that the
beneficial effect of FA additive in strengthening the structure of the cement matrix becomes
evident in the case of using this useful waste only to a certain level. In the case of concretes
modified by FA only, this is in the range not exceeding 20% [76–78]. However, in the case of
composites based on ternary or quaternary blended cements, the level of OPC substitution
by FA should be much lower, preferably at the level of several percent [79,80].

After carrying out the microstructural assessment of individual composites, an analysis
of the size of microcracks occurring in the ITZ area of the concrete in question was also
performed. Based on the observations of the paste morphology in each of the materials,
attempts were made to link these data with the results of Wc measurements.

When analyzing the average Wc values, it should be stated that the modification of
the basic structure of the cement matrix present in the REF concrete resulted in a significant
reduction of the analyzed parameter in all concretes of the QBC series (Figure 9). This is
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due to the fact that for the QBC-1, QBC-2, and QBC-3, the microcrack width of concrete
composites was 0.70 µm, 0.59 µm, and 0.79 µm, respectively, indicating a decrease of 38%,
almost 48%, and 30%, respectively, compared with the result obtained for concrete without
additives.

Observed relationships are clearly visible when comparing the relative changes of Wc
in each of the concretes containing SCMs, compared to the result obtained for the reference
concrete. This is shown in Figure 10.
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In addition, it should be stated that with a more advanced modification of the basic
composition of the binder, the obtained Wc results were less convergent, i.e., the size of
the error bars in the average values of the analyzed parameter for QBC series concretes
increased significantly. This was most clearly visible in concretes containing all three
SCMs (Figure 9). A larger dispersion of test results was also observed earlier in the study
of mechanical parameters, and the parameters of the fracture mechanics of the same
composites [81,82]. This phenomenon is probably caused by the heterogeneous reaction of
FA grains or their partial separation from the matrix structure in the QBC-3 series concrete.
This, in turn, has an impact on increased dispersions in the results obtained in concrete
with these additives.

On the basis of the above results, it can therefore be concluded that the proposed
modification of the binder composition in the analyzed materials clearly leads to:

• Homogenization of the composite structure;
• Limitation of initial internal damages in concrete.

The synergy between the additives and the nanoadditive used, which appeared during
the formation of the cement matrix structure, made it more homogenous and less porous.
In the case of QBC-2 and partly QBC-3 series concrete, it was completely homogenized.
This, in the case of concrete modified with three active pozzolanic materials, led to the
size of microcracks in the ITZ area of coarse aggregate with the paste being significantly
reduced. The average values of Wc decreased compared to the values obtained for the
reference concrete (Figure 10):

• By almost 40% in the case of QBC-1 series concrete;
• By almost half in the concrete of the QBC-2 series;
• By 30% in concrete of the QBC-3 series.

Thanks to such favorable research results, it is possible to obtain composites that are
less susceptible to damage and thus more durable, and do not require frequent repairs.
This, in turn, reduces the global operating costs of buildings made of this type of material.
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5. Conclusions

From the above data, it can be stated that the introduction of pozzolanic additives in the
form of FA and SF, in combination with a very reactive nanoadditive, which is nS, accelerate
the hardening of concrete composites after 28 days of their curing. At the same time, the
most noticeable effect observed was of reducing microcracks in the ITZ area in concretes
based on quaternary blended cements including 10%SF + 5%FA + 5%nS. Therefore, taking
into account the results of the research carried out, it can be concluded that:

1. The addition of three pozzolanic materials, i.e., FA, SF, and nS in combination, modifies
the microstructure of the cement matrix and ITZ area.

2. Reference concrete is characterized by greater microcrack width in the ITZ area in
comparison to the concretes based on quaternary blended cements.

3. The smallest microcracks occur in concrete with 10%SF+5%FA+5%nS. This shows that
the composite of the QBC-2 series is characterized by high durability.

4. In the case of concretes modified with three active pozzolanic materials, the sizes of
microcracks in the ITZ between the coarse aggregate and the paste are clearly reduced.
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