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Abstract: The purpose of this study was to achieve non-destructive detection of the internal defects
of in-shell walnuts using X-ray radiography technology based on improved Faster R-CNN network
model. First, the FPN structure was added to the feature-extraction layer to extract richer image
information. Then, ROI Align was used instead of ROI Pooling for eliminating the localization bias
problem caused by the quantization operation. Finally, the Softer-NMS module was introduced to
the final regression layer with the predicted bounding box for improving the localization accuracy
of the candidate boxes. The results of the study indicated that the proposed network model can
effectively identify internal defects of in-shell walnuts. Specifically, the discrimination accuracies of
the in-shell sound, shriveled, and empty-shell walnuts were 96.14%, 91.72%, and 94.80%, respectively,
and the highest overall accuracy was 94.22%. Compared to the original Faster R-CNN network
model, the improved Faster R-CNN model achieved an increase of 5.86% in mAP and 5.65% in
F1-value. Consequently, the proposed method can be applied for the in-shell walnuts with shriveled
and empty-shell defects.

Keywords: walnuts; X-ray images; non-destructive detection; food-quality inspection; improved
Faster R-CNN

1. Introduction

Walnut, as a characteristic dried fruit in Xinjiang, is favored by consumers worldwide
because of its outstanding taste and high nutritional value [1]. Considering the rising
consumer demand for processed walnut products, the internal quality of walnuts with
shells plays a crucial role in purchasing decisions. After picking, internal defects, such
as protein deterioration, flavor loss, shriveled seed kernel, and empty shell, and external
mechanical damage in walnuts can occur during transportation, processing, and storage [2].
These seriously reduced the grade and commodity rate of walnuts and greatly weakened
their market competitiveness [3]. At present, the detection methods used to identify
the internal quality of walnuts are manual detection, physical means, or stoichiometry.
However, the methods are time-consuming, labor-intensive, and inherently destructive.
Therefore, a quick, effective, and non-destructive method for determining the internal
defects of walnuts is highly desirable.

There are several common non-destructive detection-test methods in the field of
industry and agriculture, such as machine vision, hyperspectral imaging, near-infrared
spectroscopy, thermography, acoustic vibration method, magnetic resonance imaging
(MRI), and X-ray imaging techniques. Machine-vision technology is limited to the detec-
tion of surface defects in objects and, thus, cannot effectively detect internal quality [4].
Hyperspectral imaging has disadvantages of more wavebands and large data volume,
and the equipment is too expensive [5]. Near-infrared spectroscopy mainly provides a
digital data analysis result that cannot visualize the internal defects, and requires high
sample preparation and processing [6]. The acoustic vibration method has been highly
susceptible to environmental impact, and it may be less applicable in batch-inspection
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scenarios [7]. Thermography devices are mainly used to detect the temperature distribution
on the surface of the object [8]. MRI is suitable for internal water-content detection, but
not for the detection of agricultural products with extremely low water content, such as
walnuts [9]. Among these, X-ray radiography is especially interesting in the field of internal
quality inspection for agricultural produce, because it has good depths of X-rays and can
be easily implemented inline [10]. Zehi et al. [11] also pointed out that X-ray technology is
an appropriate alternative to the electron beam and gamma rays, and can be used in the
food industry without harmful effects on human health or food quality and safety.

Recently, it has been widely used in research to detect internal disorders in fruit or
nuts. Shahin et al. [12] utilized X-ray image technology to inspect the watercore disorder
in apples with a higher accuracy of 88%. Van et al. [13] and Tim et al. [14] reported the
internal-defects detection of apples and ‘Conference’ pears, achieving accuracy rates of 90%
and 90.2%, respectively. Gao et al. [15] and Zhang et al. [16] also successfully applied it
to detect whether hard-shelled walnuts had become hollow and also to detect the size of
the walnut kernel. Such X-ray image technology has led to promising results in real-time,
non-destructive testing of internal defects in intact walnuts with shells.

Over the past decade, deep-learning has played a very vital role in pattern recognition
tasks, mainly because it does not require sophisticated image-processing pipelines and can
automatically learn hierarchical features from the data [17]. Among various deep-learning
networks, RNN often encounters the phenomenon of vanishing gradient and explosion
gradient, and low computational efficiency [18]. The DBN model cannot specify the optimal
classification surface between different classes, so the classification accuracy may not be as
high as some discriminant model [19]. Nowadays, the application of convolutional neural
networks (CNN) has yielded remarkable and significant results in pattern-recognition tasks
related to various fields, because it performs excellently in the tasks of image recognition
and object detection [20]. Based on the faster regions with CNN features (Faster R-CNN),
the region proposal network (FPN), introduced by Ren et al. [21], is a two-stage detection
network designed to enhance the speed and accuracy of real-time object detection. Zeng
et al. [22] introduced FPN into the Fast R-CNN model to inspect the cotton-packaging
defects with the mAP value increased by 9.08% compared with the original network. On
the basis of Faster RCNN-FPN, Xia et al. [23] replaced ROI Pooling with ROI Align to detect
polarizer surface defects, achieving an accuracy of up to 95%. Similarly, the suggested
model has been successfully applied to aircraft-target detection [24]. The above results
indicated that the improved Faster R-CNN model can be effectively applied in the industrial
field. Notably, the improved Faster R-CNN algorithm has also been successfully proved in
the pattern-recognition tasks of food and agriculture. Li et al. [25] optimized the anchor
frame parameters in the Faster R-CNN model for apples in their natural environment with
the average recognition rate of 97.6%. Chen et al. [26] utilized this model for the detection
and recognition of Camellia oleifera fruit on trees to obtain superior results. Yan et al. [27]
applied the improved Faster R-CNN model to classify 11 kinds of Rosa roxburghii fruits
with 92.01% accuracy. However, there are no known studies that use the CNN-based Faster
R-CNN for identifying pattern-recognition tasks in nuts, so far. Thus, it is reasonable to
combine X-ray images with an improved Faster R-CNN network model for identifying
internal defects of in-shell walnuts.

The specific objectives of this study were to: (1) examine the ability to inspect the
internal defects in walnuts based on X-ray image technology associated with the improved
Faster R-CNN model; (2) compare the performance of the object-detection algorithms based
on deep-learning technology and select the best algorithm to build a model; and (3) visually
demonstrate the effectiveness of the improved Faster R-CNN model for identifying the
internal defects of the in-shell walnuts.

These results will help provide a theoretical support for developing non-destructive
testing equipment for the internal quality of walnuts. Also, the method proposed by this
study can provide a research strategy for non-destructive detection of the internal quality
of other nuts.



Appl. Sci. 2023, 13, 7311 3 of 13

2. Materials and Methods
2.1. Sample Preparation

A hand-harvested crop of “Wen 185” walnuts, a popular and distinctive type, was
taken in September 2021 from an orchard in Ye City, Xinjiang, China (36◦35′ N, 76◦12′ E).
The examples of walnut with no obvious exterior damage were randomly selected as
experimental objects. Then, the remaining nuts were immediately kept in refrigerated
storage at a temperature of 2–5 ◦C for further testing.

Referring to the national standard of “Quality Grade of Walnut”, the samples were
broken and classified based on visual assessment, by the same skilled fruit farmer. Then,
a batch of walnuts was divided into three types, specifically, sound walnuts, shriveled
walnuts, and empty-shell walnuts. As shown in Figure 1a, the proportion of walnut kernel
area in sound walnut samples is large and the gap between the walnut shell and the kernel
is small. The area of dried walnut kernel is relatively small and there is an obvious gap
between the walnut shell and the kernel for the shriveled walnuts (Figure 1b). However,
the difference between the empty-shell walnut and the other two groups of images is
significant, and the nucleolar shape can hardly be seen in the X-ray diagram (Figure 1c).
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Figure 1. Examples of the (a) sound, (b) shriveled, and (c) empty-shell in walnut samples.

2.2. Walnut X-ray Images Acquisition

X-ray images of the walnut samples were obtained by using an X-ray radiography
setup system (Techik Instrument Co., Ltd., Shanghai, China), mainly comprised of an
HVC80804 X-ray source, a TK2-B-410-G04 linear-array detector, and a personal computer.
In preliminary testing, it was determined that the tube voltage was to be set at 50 kV and
the tube current was to be set at 6 mA, so that the best walnut X-ray images could be
obtained. The number of walnuts acquired in each X-ray image was determined according
to size and determined in partnership between the X-ray source and detector. There was a
detection area of 410 mm2, so the number of walnuts in each image varied from five to eight.
When the walnut samples were transported to the X-ray inspection system via conveyor
belt, the X-ray source generated X-rays. Due to the uneven thickness of walnuts and
different degree of absorption of X-rays by each part, there were differences in the intensity
of the X-rays after penetration. After receiving the X-rays with uneven strength and the
figures subjected to A/D conversion, the information was transferred to the computer,
which, in turn, generated X-ray images with different grayscale values. The X-ray images
of the sound, shriveled, and empty-shell walnut samples are shown in Figure 2. In the
experiment, a total of 3845 walnut samples were detected, in order to obtain 1000 X-ray
images, which included 1327 sound walnuts, 1283 shriveled walnuts, and 1235 empty-shell
walnuts. In order to enhance the generalization ability of the model using deep-learning
algorithms, data-augmentation techniques are frequently employed. In this research, the
operations such as flip (up–down and left–right), mirror, and brightness for walnut images
were carried out to raise the proposed model’s performance outcomes. Then, the number
of X-ray images was increased to 4000 images. Of these, 2800 walnut X-ray images (70%)
were selected as the training set for establishing the discrimination model, and the other



Appl. Sci. 2023, 13, 7311 4 of 13

1200 images (30%) were set as the testing set for evaluating the discrimination effect of the
constructed model.
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2.3. The Basic Framework of the Faster R-CNN Network

The Faster R-CNN model consists of four parts: the main feature-extraction network
(backbone), the region proposal network (RPN), the pooling layer, and the detector (classi-
fication and regression layer). First, the image features were extracted by backbone and
then the extracted-feature maps were inputted to generate a series of candidate boxes
using RPN. By combining feature maps and candidate boxes, the feature candidate boxes
were extracted from the images. Finally, the category of candidate boxes was identified
by the classification and regression layers, and the specific position of the prediction box
was obtained.

Although Faster R-CNN has the advantages of high detection accuracy and strong
robustness, it also has some shortcomings. The Faster R-CNN network only uses the last
layer of the feature-extraction network for prediction, and when extracting features from
the original walnut image requires multiple convolutions and pooling. These can easily
cause the loss of target defect information in the image, resulting in missed and false
detection. Additionally, two quantitative roundings of ROI Pooling will also lead to the
loss of target information in the feature maps, which decreases the classification accuracy of
in-shell walnuts with internal defects. In order to solve the problem of lower discrimination
accuracy resulting from the loss of image information during the object-detection process,
an improved Faster R-CNN network was proposed as follows.

2.4. Optimization Method of Fast R-CNN Model
2.4.1. Feature Fusion Based on FPN Structure

As shown in Figure 3, FPN structure was used to perform feature fusion in three forms,
i.e., bottom–up, top–down, and lateral connection, in the feature-extraction layer. Among
these, bottom–up represented the feed-forward process of the ResNet50 network in the
backbone. It divided the extracted feature maps into five levels C1-C5 according to the
specified size and channel numbers. In the top–down process, the spatial size of the deep
feature maps was expanded by utilizing the bilinear interpolation up-sampling method to
obtain a feature map with the same size as the previous level. The horizontal connection
included two steps: (1) the feature maps of C2–C5 level adopted 1× 1 convolution operation
to alter the channel numbers of the feature maps and to increase the nonlinear features of
the image, while the spatial size of the feature maps will not change; (2) two levels with
the same dimension at the corresponding pixel positions were added to obtain the fused
feature maps. 3 × 3 convolution operation was applied for removing the phenomenon
of aliasing resulting from up-sampling and, then, the enhanced feature maps p2–p5 were
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obtained. Considering that feature maps with high resolution can reduce detection speed,
the C1 layer would not be fused.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 13 
 

nonlinear features of the image, while the spatial size of the feature maps will not change; 

(2) two levels with the same dimension at the corresponding pixel positions were added 

to obtain the fused feature maps. 3 × 3 convolution operation was applied for removing 

the phenomenon of aliasing resulting from up-sampling and, then, the enhanced feature 

maps p2–p5 were obtained. Considering that feature maps with high resolution can re-

duce detection speed, the C1 layer would not be fused. 

 

Figure 3. Diagram of feature-fusion structure based on FPN structure. 

In the original Faster R-CNN model, the input of RPN is the last layer in the backbone 

feature map, from which only a single-scale candidate frame can be obtained. In this 

study, FPN structure was used to input feature map p6 obtained from the enhanced fea-

ture map p2–p5 and feature map in the C5 level after maximum pooling into the RPN. 

Accordingly, in the RPN, the feature maps p2–p6 produced a sequence of anchor boxes 

with various sizes and aspect ratios. For p2–p6, the corresponding anchor areas were 32 × 

32, 64 × 64, 128 × 128, 256 × 256, and 512 × 512, respectively. To cover the detection target 

of any size in the images, each feature map had three scales at each pixel position, that is 

1:2, 1:1, and 2:1. Because the feature map inputted from the original RPN had only one 

scale, the method of combining shallow and deep features in the feature-extraction stage 

was proposed. This can more accurately obtain the information of internal defects in wal-

nuts, improving the precision and accuracy of target recognition. 

2.4.2. ROI Align 

In the original Faster R-CNN model, ROI Pooling was employed to map the ROI area 

of the input image to the equivalent place of the feature maps. ROI was created through 

the selection and offset correction of area schemes with various sizes and proportions. The 

sizes are various and contain floating-point numbers. Hence, it is necessary to carry out a 

quantitative rounding operation to remove floating-point numbers. In addition, when in-

putting feature maps into the fully connected layer, it is necessary to adjust the feature 

maps to a uniform size. So, when the ROI is mapped to the matching spot on the feature 

maps, the quantified feature maps need to be scaled to a fixed size. In the course of the 

ROI pooling operation, there are two quantization rounding operations. However, there 

Figure 3. Diagram of feature-fusion structure based on FPN structure.

In the original Faster R-CNN model, the input of RPN is the last layer in the backbone
feature map, from which only a single-scale candidate frame can be obtained. In this study,
FPN structure was used to input feature map p6 obtained from the enhanced feature map
p2–p5 and feature map in the C5 level after maximum pooling into the RPN. Accordingly,
in the RPN, the feature maps p2–p6 produced a sequence of anchor boxes with various
sizes and aspect ratios. For p2–p6, the corresponding anchor areas were 32 × 32, 64 × 64,
128 × 128, 256 × 256, and 512 × 512, respectively. To cover the detection target of any
size in the images, each feature map had three scales at each pixel position, that is 1:2,
1:1, and 2:1. Because the feature map inputted from the original RPN had only one scale,
the method of combining shallow and deep features in the feature-extraction stage was
proposed. This can more accurately obtain the information of internal defects in walnuts,
improving the precision and accuracy of target recognition.

2.4.2. ROI Align

In the original Faster R-CNN model, ROI Pooling was employed to map the ROI area
of the input image to the equivalent place of the feature maps. ROI was created through
the selection and offset correction of area schemes with various sizes and proportions. The
sizes are various and contain floating-point numbers. Hence, it is necessary to carry out
a quantitative rounding operation to remove floating-point numbers. In addition, when
inputting feature maps into the fully connected layer, it is necessary to adjust the feature
maps to a uniform size. So, when the ROI is mapped to the matching spot on the feature
maps, the quantified feature maps need to be scaled to a fixed size. In the course of the
ROI pooling operation, there are two quantization rounding operations. However, there is
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a certain loss of information in ROI after two quantization rounding operations, causing
information to not match ROI and extracted features, thus, affecting detection accuracy.

In order to improve the recognition accuracy of the model, ROI Pooling in the original
Faster R-CNN model was replaced by ROI Align. The principle of ROI Align was shown
in Figure 4. Compared with ROI Pooling, ROI Align not only eliminated the quantization
operation and kept all floating-point numbers, but also calculated the precise values of
multiple sampling points by using the method of bilinear interpolation. By doing this, the
final value can be obtained by gathering the highest or average values of multiple sampling
points. In this process, the image information is not lost, and the image characteristics of
the original area are preserved as much as possible, thus, improving the detection accuracy
of the whole network.
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2.4.3. Softer-NMS

In the target-detection process, the traditional non-maximum suppression algorithm
(NMS) was used to extract candidate boxes with the highest confidence and suppress
candidate boxes with low confidence. For the Faster R-CNN network, a large number of
predicted candidate boxes were generated in the RPN network, many of which would be
duplicated and located on the same target. In order to remove these duplicate candidate
boxes, NMS was applied to obtain true candidate boxes. However, if an object appeared
in the overlapping area of another object, that is, when two candidate boxes were close,
then the candidate frame with the lower score would be deleted. That caused the failure
of detecting the object and diminished the overall algorithm’s average detection accuracy.
Surprisingly, the application of Softer-NMS can select the candidate boxes more accurately
by ranking it according to the confidence score of prediction candidates. In addition,
Softer-NMS can perform a weighted average for the candidate boxes within the predicted
labeled variance range, increasing the prediction confidence of the boundary boxes with
high position reliability. Hereto, the architecture of the improved Faster R-CNN for in-shell
walnuts with internal defects was shown in Figure 5.
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2.5. Training Platform 

The process was based around a personal computer with some specific features, 
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2.5. Training Platform

The process was based around a personal computer with some specific features,
namely, an Intel Core i5-8500 CPU, 3.5 GHz, 16 GB video memory and running memory,
and an ASUS RTX2060 GPU. PyTorch, a deep-learning framework, was used to provide
both training and testing environments under the Windows 10 operating system. Python3.8,
cuda11.1, cudnn10.2, and other required libraries were utilized to train and test the target-
recognition model for walnut samples.

In the training stage, the hyperparameters were set to the values recommended by
Ren et al. [21]. The hyperparameters were set as follows: the batch size was configured as 4,
while the momentum factor was assigned a value of 0.9 for avoiding the memory limitation
of GPU. The total amount of training epochs was set as 200. With the stochastic gradient
descent (SGD) adopted, the learning rate was set to 0.01 and the weight of the model
was updated every 4 epochs with the attenuation coefficient of 0.0001. The confidence
threshold and intersection over union (IOU) threshold were all set to 0.5. After training,
the weight file of the constructed model was saved, and the testing set was utilized to
evaluate the discrimination effect of the model. The ultimate output of the network consists
of prediction boxes of the three classes of walnut samples location and the probability of
belonging to a particular category.

2.6. Evaluation Indicators of the Model

In this study, the discrimination performance of the constructed model was evaluated
by the confusion matrix, including precision, recall, F1-value, and mean average precision
(mAP), which were calculated as follows [28]:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)
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F1 =
2PR

P + R
(3)

mAP =

n
∑

k=1
PR

N
(4)

where TP and FN are the number of positive samples that are classified as positive and
negative, respectively; TN and FP are the number of negative samples that are classified as
negative and positive, respectively; N represents the number of walnut sample categories;
n represents the IOU thresholds for the quantity, and k represents the IOU threshold. If
one kind of sample was determined as positive, the other two kinds of samples were sym-
bolized as negative. For example, when the empty-shell walnut sample was positive, the
shriveled and sound walnut samples were defined as negative. In order to comprehensively
evaluate the stability and accuracy of the model, the 10-fold cross-validation method was
applied [29]. That is, the data were split into 10 equal portions and one part was used for
validation in each iteration, while the remaining 9 parts were used as the training model. In
this way, to represent the discrimination performance of the created model, we computed
the average value of 10 recordings for confusion matrix results.

3. Results
3.1. Construction of the Fast R-CNN Model

Currently, deep-learning-based object-detection algorithms mainly include single-
stage object-detection algorithms represented by YOLOv3 and YOLOv5, as well as two-
stage object-detection algorithms represented by Faster R-CNN. In this study, three dis-
crimination models based on the YOLOv3, YOLOv5, and Faster R-CNN algorithms were,
respectively, established to analyze and compare the recognition performance for walnut
samples with different internal defects.

The mAP curves of three models are pictured together in Figure 6, among which, the
YOLOV5 model fitted rapidly in the first 20 epochs, but there were still small fluctuations
in the model fitting before 60 epochs and, basically, tending to be stable after 140 epochs of
training. The YOLOv3 model had the worst fitting performance result in that it was gradu-
ally stable after 140 epochs and there were significant fluctuations within 140 epochs. In
contrast, the Faster R-CNN model quickly tended to fit within 10 epochs and, subsequently,
remained stable always, indicating that the Faster R-CNN model had a fast fitting speed
and strong robustness.
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After training, the specific discrimination results of YOLOv3, YOLOv5, and Faster
R-CNN models for walnut samples were shown in Table 1. It can be observed that the
Faster R-CNN model exhibits a better discriminative result and surpasses the other two
models. The overall identification precision, recall, mAP, and F1-value were 89.47%, 86.47%,
87.94%, and 89.71%, respectively. In the aspect of training time, the Faster R-CNN model
required a slightly longer time because it was affected by the size of the model framework.
Nevertheless, the Faster R-CNN model had the advantages of a fast fitting speed, strong
robustness, and a good classification performance. Given that the discrimination accuracy
for walnut quality was less than 90%, further improvement of Faster R-CNN is desirable.

Table 1. The training results of YOLOv3, YOLOv5, and Faster R-CNN models for identifying internal
defects in walnuts.

Model Accuracy (%) Recall (%) F1-Value
(%)

mAP
(%)

Total Training
Time (h)

Training Time of
Single Image (ms)

YOLOv3 86.14 79.02 82.43 85.87 10.27 14
YOLOv5 87.32 83.25 85.24 88.43 9.73 8

Faster R-CNN 89.47 86.47 87.94 89.71 11.38 10

3.2. The Training Results of the Improved Faster R-CNN Model

The training loss curves of original and improved Faster R-CNN model were shown
in Figure 7. In the case of the improved Faster R-CNN model, the training loss experienced
a rapid decline to approximately 0.0075 within the initial 20 epochs. Subsequently, the loss
continued to decrease gradually and, eventually, reached a stable value of 0.002. While
the original Faster R-CNN model still kept an increase in loss values in the first 20 epochs,
there was a clear increase during the later iteration process. The result indicated that the
improved Faster R-CNN has a faster fitting speed and better robustness.
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Figure 7. Training loss curve of the Faster R-CNN model showing improvement by comparing before
and after.

Based on the method of Gao et al. [3], the impact of each improvement point on the
discrimination performance of the improved Faster R-CNN model has been compared. As
shown in Table 2, the mAP of the improved Faster R-CNN model was increased by 1.62%
after adding the FPN structure for image-feature fusion compared with the original model.
Subsequently, by replacing ROI pooling with ROI Align to eliminate the quantitative
rounding operation, the mAP was increased by 1.73%. On this basis, Softer-NMS was
conducted to perform weighted averaging on candidate regions in the predicted layer,
and the mAP was further improved by 2.51%. By doing this, the mAP and F1-value
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of the improved Faster R-CNN model reached 95.57% and 93.59%, respectively. The
results indicate that compared to the original Faster R-CNN model, the improved Faster
R-CNN model exhibits a significantly enhanced ability to discriminate in-shell walnuts
with different internal defects.

Table 2. Performance comparison of different improvement points.

Model Framework mAP (%) F1-Value (%)

Faster R-CNN 89.71 87.94
Faster R-CNN + FPN 91.33 89.07

Faster R-CNN +FPN + ROI Align 93.06 91.43
Faster R-CNN + FPN + ROI Align + Softer-NMS 95.57 93.59

3.3. Performance Analysis of the Improved Faster R-CNN Model

In order to evaluate the recognition capability of the improved Faster R-CNN model
for internal defects in walnuts more intuitively, the discrimination effect of the model on
155 images of the testing set were further analyzed with a confusion matrix. There are a
total of 525 walnut samples in the test image set, among which there are 525 sound walnuts
is 207, 145 shriveled walnuts, and 173 empty-shell walnuts. As shown in Table 3, the dis-
crimination accuracy of the constructed model for shriveled walnuts is the lowest (91.72%).
There are 12 misjudgments among 145 shriveled walnut samples, of which 8 shriveled
walnuts are misjudged as empty-shell samples, and 4 shriveled walnuts are misjudged
as sound samples. For the empty-shell walnuts, 9 samples are wrongly discriminated
with an error rate of 5.2%, obtaining a slightly higher discrimination accuracy of 94.8%.
This may be because the feature information of sample images is not complete, caused
by various shooting angles using X-ray radiography. Additionally, different shriveled
degrees occurred in in-shell walnuts, and it is likely that this is also the reason why the
shriveled walnuts and empty-shell walnuts are wrongly discriminated against each other.
Significantly, it is found that the improved Faster R-CNN model obtains a discrimination
accuracy of 96.14% for sound walnut samples, and only 8 sound walnuts are wrongly
discriminated with an error rate of 3.9%. In general, 496 walnuts of 525 discrimination
samples are correctly recognized and the overall discrimination accuracy reaches 94.22%. It
is believed that the improved Faster R-CNN model proposed by this work can effectively
discriminate the internal defects in intact walnuts with shells.

Table 3. The discrimination results of the improved Faster R-CNN model.

Actual Class

Predicted Class
Discrimination

Accuracy (%)
Overall

Accuracy (%)Empty-Shell
Walnut

Shriveled
Walnut

Sound
Walnut

Empty-shell walnut (173) 164 8 1 94.80%
94.22%Shriveled walnut (145) 8 133 4 91.72%

Sound walnut (207) 2 6 199 96.14%

Examples of the recognition results of the improved Faster R-CNN model for sound,
shriveled, and empty-shell walnut samples are depicted in Figure 8. The red, purple, and
yellow boxes were used for labeling the empty-shell, shriveled, and sound walnuts. As
shown, the confidence levels for individual walnuts with complete image information are
between 92% and 95%, and the overall confidence level is relatively close to the mAP value
from the testing set. Although the confidence level of a single empty-shell walnut sample
with incomplete information is lower than that of the other two types of walnut samples,
there are not wrong detection or missed detection caused by incomplete information of the
walnut images.
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4. Discussion

In this paper, the following improvements are conducted to address the shortcomings
of the Faster R-CNN model. Firstly, in the feature-extraction part the ResNet50 network
is used to replace the VGG16 network, and is combined with the FPN structure to enrich
the information of the feature map and improve the detection performance of the model.
In addition, ROI Align is used to replace ROI Pooling to solve the problems of false and
missed detection caused by the quantization operation. Finally, the NMS part applies the
Softer-NMS algorithm to improve the detection accuracy of the model by increasing the
classification confidence of the bounding candidate frames. By doing this, the improved
Faster R-CNN model can meet the expected expectations and provide a theoretical basis
for the nondestructive detection equipment for internal quality of in-shell walnuts.

Walnuts were randomly placed on the conveyor belt without considering the influence
of posture on image quality. In the future research, we will study X-ray images of walnuts
with different angles and design a transfer device to improve inspection accuracy. Only
the thin-skinned walnuts from Yecheng were selected as the object in this paper, the
applicability to the detection for internal defects of thick-skinned walnuts using X-ray
technology needs to be further verified. Finally, whether other internal defects, such as
browning and mildew, within in-shell walnuts can effectively be detected with the proposed
method above, further researches may be needed.

5. Conclusions

In this study, X-ray radiography technology was employed for the non-destructive
detection of in-shell walnuts with shriveled and empty-shell defects. After comparison
of three target detection algorithms, the Faster R-CNN model was found to be more
appropriate than the YOLOv3 model and the YOLOv5 model for the identification of the
internal defects in hard-shell walnuts. In the improved Faster R-CNN network architecture,
the FPN structure used for feature fusion was firstly introduced to enrich the feature map
information of internal defects in walnuts. To solve the problems of false and missed
detection caused by quantization operation, ROI Pooling module was replaced with ROI
Align module. To increase the prediction confidence of the bounding boxes and, thereby,
improve the discrimination accuracy of the network, the Softer-NMS structure was inputted
into the final regression layer with the predicted bounding box. Contrasted with original
Faster R-CNN network model, the mAP and F1-value of the improved Faster R-CNN model
were increased by 5.86% and 5.65%, respectively. The detection results of the testing set
indicated that the proposed improved Faster R-CNN model can effectively realize the
recognition of the internal defects of in-shell walnuts. The discrimination accuracy of
the in-shell sound, shriveled, and empty-shell walnuts were 96.14%, 91.72%, and 94.80%,
respectively, and the highest overall accuracy can reach 94.22%. These results indicated
that X-ray image technology associated with the improved Faster R-CNN model can be
effectively applied to the recognition tasks of the in-shell walnuts with shriveled and
empty-shell defects.
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