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Abstract: In this paper, the tool-tip responses for ball end milling, due to the coupling effects of
a flexible rotor-bearing system, are investigated numerically. The milling machine tool spindle is
modelled as the flexible rotor-bearing system. The critical speeds, natural modes, and unbalance
responses of the system are calculated by applying the generalized polynomial expansion method.
This generalized polynomial expansion method expresses the displacement as a series formed by
the product of generalized coordinates and axial coordinate polynomials. According to the dynamic
cutting force obtained by some scholars in the past, combined with the characteristics of the flexible
rotor, the dynamic response of the tool-tip for ball end milling is numerically analyzed. The responses,
including time histories, orbits, and FFT diagrams, are plotted to analyze the dynamic behaviors of
the tool-tip. The coupling effects of the flexible rotor-bearing system on the system for ball end milling
are first studied using the generalized polynomial expansion method. Unlike previous studies, the
natural frequency varies with spindle speed and which of the different modes are included in the
tool-tip response depends mainly on the spindle speed. Thanks to the gyroscopic effect, the critical
speeds and responses of tool-tips can be discussed with respect to various spindle speed and tool
flutes. The natural modes are accurately determined, and will excite critical speeds for certain modes,
including forward and backward modes, thereby significantly affecting tool-tip response. In addition,
the cutting force component associated with the tool-tip response affects the rotor-bearing system
parameters, complicating the issue. Milling at higher spindle speed (2160–19,950 rpm), an important
new result is found that the tool-tip oscillates with the cutting-force frequency, accompanied by a
longer period vibration of the first backward mode of the rotor-bearing system. It can also be seen
from the frequency spectrum analysis that, as the spindle speed increases, the peak amplitude of the
first backward mode becomes larger. Milling at lower spindle speed (960, 1320 rpm), the in-plane
vibration trajectory of the tool-tip gradually expands outwards clockwise around the origin until a
stable loop is reached. This is because only the first backward mode of the rotor-bearing system is
excited. Considering the coupling effect of the rotor-bearing system to perform the vibration analysis
of the milling machine system, the parameters of the system can be designed or the spindle speed
can be selected to avoid severe vibration during machining.

Keywords: tool-tip response; ball end milling; coupling effects; flexible rotor-bearing system; generalized
polynomial expansion method

1. Introduction

The process of ball end milling is widely used in modern manufacturing. In many
industrial manufacturing processes, large amounts of material must be removed during
the machining process. High material removal rates and high-quality machined surfaces
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become the issues of most concern in the milling process. To generate faster spindle speeds
and lower cutting forces, the design trend of rotor systems is to improve their vibration
behavior. The main characteristics of the rotor system are critical speed and unbalance
response. To analyze the vibration of a milling machine more accurately and efficiently, an
industrially used tool spindle can be modeled as a rotor-bearing system.

It is natural to consider that the cutting forces and structural vibrations will be affected
by the variation of the depth of cut in machining. In addition, the chatter usually occurs
in the interaction of cutting forces and structural vibrations and will severely damage
the surface finish as well as the dimensional accuracy of the workpiece. There have been
many studies on cutting force models and the models have been successfully analyzed to
determine the critical speed by using a variety of methods. However, regarding the cutting
force models, there are few studies considering flexible rotor-bearing systems numerically.
In this paper, the cutting force model for ball end milling, coupled with the flexible rotor-
bearing system, is proposed. Furthermore, the system equations are derived by using the
generalized polynomial expansion method. A literature review of rotor-bearing dynamics
and related studies on ball end milling is given below.

1.1. Three Principal Methods for Rotor System

Many researchers have successfully used various methods for determining the critical
speeds, modes, and unbalance responses of the rotor-bearing systems. Three principal
methods are reviewed. They are the transfer matrix method (TMM), the finite element
method (FEM), and the generalized polynomial expansion method (GPEM). These three
approaches have been successfully applied to rotordynamics.

1.1.1. Transfer Matrix Method

Lund and Orcutt [1] originally proposed the TMM to calculate critical speed in the
linear frequency domain and extended it [2] to determine the unbalance response, the
modal response, the stability, and the damped critical speeds. Moreover, the TMM has been
applied by Chu and Pilkey [3] to deal with transient analysis in the time domain using the
discrete time technique. Gu [4] proposed an improved TMM to study the rotor behaviors.

1.1.2. Finite Element Method

In the published literature [5], the FEM was probably the most popular rotordynamics
analysis method. A Rayleigh beam, model that takes translational inertia and bending
stiffness into account, was proposed by Ruhl and Booker [6]. Moreover, a series of finite
element models was also proposed by Nelson and Mc Vaugh [7], with the effect of differ-
ent parameters including axial load, rotator inertia, and gyroscopic moments. Subbiah
et al. [8] applied a method combining TMM and FEM to solve the transient responses of
rotor systems.

1.1.3. Generalized Polynomial Expansion Method

Shiau and Hwang [9,10] proposed the GPEM, which provides a new approach to the
dynamic behavior of rotors. This method was first used to represent the response of a
flexible rotor-bearing system. They also used the properties of the Rayleigh quotient to
calculate the critical speed of the system. Shiau et al. [11] reported on the use of GPEM
to study the nonlinear problem. The stability of the steady-state responses of a rotor
supported by the nonlinear squeeze film dampers was investigated. Shiau et al. [12,13]
used the global assumed mode method to analyze the ball screw system under a moving
skew load. The moving skew load consists of an axial driving force and lateral pay load.
The transient response is also analyzed using the Runge–Kutta method. Furthermore, the
Floquet theorem is employed to determine the system stability.

TMM is not suitable for analyzing nonlinear problems in the frequency domain. FEM
requires a lot of computation time, although it can be an effective tool for both linear and
nonlinear systems. Compared with other methods, GPEM shows better advantages in
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solving rotordynamics problems and will be used in this study to analyze the dynamic
behavior of ball end mills.

1.2. Ball End Milling

In the past, the dynamic time responses were determined by considering the local
cutting force coefficients, measured transfer function, and instantaneous regenerative chip
load, using a lumped model of the tool/spindle with a one-degree-of-freedom or two-
degree-of-freedom linear system, but the dynamic behavior of a flexible rotor-bearing
system for ball end milling is seldom discussed.

Lee and Altintas [14] modeled the cutting coefficients for ball end milling based on the
shear component of the orthogonal cutting separating flanks. Altintas and Lee [15] further
modified the model to include the static and dynamic processes of ball end milling. The
variation of shear coefficient with chip thickness and cutting point position can be obtained
from orthogonal cutting experiments with tilted transformation. In high-speed milling,
a classical regenerative vibration model is proposed by Stepan et al. [16] to generate
a simplified discrete model of the nonlinear vibration. Shiau et al. [17] presented the
identification of system parameters including cutting force coefficients and equivalent
parameters. The cutting forces predicted using the recursive least squares method were
almost in agreement with the experimental results. By using the Fourier transform filter and
the extended Kalman filter, the identified parameters, such as equivalent mass, damping,
and stiffness, allow the prediction of the displacements of tool-tip similar to experimental
measurements. In Shiau et al. [18], the critical speed analysis of the rotor-bearing system
for ball end milling and nonlinear effects were also investigated. The solved critical speeds
of the four proposed cases were verified with two sets of experimental data. In addition,
the relationship between the natural frequencies and the critical speeds for various feeds
per tooth, with linear and nonlinear cutting forces in linear and nonlinear rotor systems,
was discussed. However, the rotor was assumed to be rigid so that the gyroscopic effects of
the system cannot be included.

Cao et al. [19] proposed a method for predicting chatter stability lobes in high-speed
milling considering the dynamics of variable-speed spindles. Using the dynamic finite
element model of the high-speed spindle system, the influence of speed on the spindle
and bearings was systematically investigated through simulation and experiment. The
whirl map has not been established. Kalinski and Galewski [20] presented an optimal
spindle speed determination method for reducing vibration during ball end milling. They
suggested an original method of spindle speed optimization based on the Liao–Young
criterion to reduce the vibration situation. The gyroscopic matrix was not found in their
study. An online identification method, that considers the stiffness characteristics of
the tool holder-spindle system, was proposed by Yao et al. [21]. The results showed
that machine tool stiffness effects can be identified and removed in real time using the
new method. Only a two-degree-of-freedom vibration model of cutter was established.
Zhan et al. [22] first established a model characterized by multiple delays for a five-axis
system of ball end milling. They analyzed the tool orientation effects on the prediction
of the stability for ball end milling. The correctness of the proposed model was verified
with the relevant experiment. Though the milling system was modeled as a mass–spring–
damper system with multiple degrees of freedom, the gyroscopic effect of the system has
not been considered. A method for identifying the milling force coefficients while taking
vibration into account, in order to accurately predict milling forces for slender end mills,
was presented by Cai et al. [23]. Combined with the frequency response function measured
at the end of the cutter handle, and the Timoshenko beam model of the cutter using a finite
element, they identified the interface dynamic parameters between the cutter and the cutter
handle. At high speeds, the gyroscopic effect would affect the response of the milling cutter
edge, which was not considered in the model. To investigate the vibration behaviors of
the CNC vertical milling machine under the action of unbalanced force, Miao et al. [24]
used the lumped mass method to establish the simplified dynamic model of the spindle
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system. The main research object of this study was the parameters of rolling bearings, such
as radial clearance, Hertzian contact, and time-varying stiffness.

Li et al. [25] proposed a convenient and non-invasive method for monitoring milling
forces. Based on spindle real-time vibration, the milling forces were predicted. This
research provided a simple and accurate method for obtaining the milling force of the
machine tool, which was of great value to the monitoring of the machining process. A two-
degree-of-freedom dynamic model of a spindle in a machine tool is proposed to describe
the relationship between the spindle vibration and milling force. The gyroscopic effect
was not considered. Dai et al. [26] considered runout to study the stability of a five-axis
system of ball end milling under low radial immersion. The system was derived into
the state transition matrix by the proposed generalized precise integration method. An
experiment was also set up to validate the accuracy of the proposed model. The gyroscopic
matrix was not found. Qin et al. [27] designed an algorithm to predict the milling force to
obtain the boundary of the cutter workpiece engagement. They developed an improved
Z-map method. The effectiveness of the proposed model was verified by the experiment.
The spindle was not considered in the analysis. Wojciechowski et al. [28] evaluated the
ploughing phenomenon by investigating the ploughing forces at the workpiece interface
on the side of the tool during precise ball end milling. The original ploughing force model
during ball end milling was developed, involving the effects of the ploughing volume
and the minimum thickness of the uncut chip. This study focused on the evaluation
of the ploughing phenomenon during precise ball end milling with various machined
surface inclinations. The spindle was not considered in this model. The micro-milling
method, assisted by a three-dimensional vibration, was proposed by Lv et al. [29]. The
resulting shape of the structures was predicted by numerical software and compared with
experimental data. A model for predicting surface generation was proposed considering
the orthogonal spiral and multi-body kinematics theories.

1.3. The Purpose and Novelty of This Work

Several past papers on ball end mills have presented a vibration analysis of the
tool-tip during machining. However, some scholars did not include the influence of the
entire spindle system, and some scholars regarded the spindle as a rigid rotor for analysis.
Although some researchers discretized the spindle into a multi-degree-of-freedom rotor
system for research, the gyroscopic effect caused by the rotation of the flexible rotor section
was not considered when analyzing the vibration of the ball end mill. Therefore, the natural
frequencies of the spindle system were independent of the spindle speed. In practical
applications, the operation of the spindle will affect the vibration behavior of the tool
during machining process, thereby reducing the machining efficiency.

The aim of this study is to investigate the tool-tip vibration behavior in ball end
milling in combination with the coupling effects of a flexible rotor-bearing system. This
GPEM is applied to approximate the displacements of the entire flexible shaft using a
polynomial multiplied by the time-dependent coefficients. Unlike previous studies, the
natural frequency varies with spindle speed and which of the different modes are included
in the tool-tip response depends mainly on the spindle speed. Thanks to the gyroscopic
effect of the flexible rotor, the relationship between the natural frequencies and critical
speeds for various spindle speeds and tool flutes can be discussed. Part of the cutting force
associated with the tool-tip response changes the rotor system parameters, complicating
the problem. However, the tool-tip responses can be calculated more accurately.

2. Equation Formulation Using GPEM

In this study, the GPEM is used to solve the dynamic behavior of the flexible rotor-
bearing system proposed by Shiau and Hwang [9,10]. The lateral displacements are
assumed to be very small and all the deflections are assumed to be parallel to the x-y plane.
In addition, the shear effect, and the torsional and axial vibrations are neglected. Denote
the displacements of two translations and two rotations at any cross section of the shaft as
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(u, v) and (B, Γ). u and B are along the x-axis. v and Γ are along the y-axis. The deflections
of the flexible rotor are described as functions of the time t, the shaft length l, and the axial
coordinate z, as follows:

u( z
l , t) =

Np

∑
n=1

an(t)( z
l )

n−1, v( z
l , t) =

Np

∑
m=1

bm(t)( z
l )

m−1

B( z
l , t) = − ∂v( z

l ,t)
∂( z

l )
= −

Np

∑
m=2

(m − 1)( z
l )

m−2bm(t)

Γ( z
l , t) = ∂u( z

l ,t)
∂ z

l
=

Np

∑
n=2

(n − 1)( z
l )

n−2an(t)

(1)

where an(t) and bm(t) represent the corresponding generalized coordinates, that is, the co-
efficients of the polynomial, and Np represents the total number of terms of the polynomial.

The kinetic energy of the shaft and disk, and the strain energy of the shaft and bearing
are first composed. Using the Lagrangian approach, the system equation of motion can be
expressed as:[

M 0
0 M

]
..
⇀
a
..
⇀
b

+ Ω
[

0 G
−G 0

]
.
⇀
a
.
⇀
b

+

[
Cxx Cxy
Cyx Cyy

]
.
⇀
a
.
⇀
b

+

[
Ks + Kxx Kxy

Kyx Ks + Kyy

]{⇀
a
⇀
b

}
=


⇀
F

l

a
⇀
F

l

b

+


⇀
F

n

a
⇀
F

n

b

 (2)

where
⇀
a =

{
a1 a2 . . . aNp

}
T ,

⇀
b =

{
b1 b2 . . . bNp

}
T , Ω denotes the constant

rotating speed and M, G, Cxx, Cxy, Cyy, Ks, Kxx, Kxy, and Kyy are the Np × Np component
matrices shown in Appendix A. The first and the second vector terms on the right side of
Equation (2) represent the linear and nonlinear forces. It is noted that G is the gyroscopic
matrix caused by the rotation of the shaft section. Therefore, the natural frequencies of the
system vary with the rotational speed of the spindle. The whirl map, including forward
and backward modes, can be established. The system response at any axial position can
be solved by using Equations (1) and (2). In this study, the GPEM is employed to analyze
the tool-tip vibration for ball end milling combined with the rotor-bearing system. The left
side of Equation (2) will include the mass, damping and stiffness effects, and gyroscopic
effects of the overall tool spindle system, while the force terms generated by the ball end
mill, discussed in the next section, will be placed on the right side.

3. Dynamic Responses for Ball End Milling

Shaiu et al. [18] presented the vibration behaviors of a rigid rotor-bearing system for
ball end milling under dynamic cutting forces. This rotor system assumes the equivalent
system parameters of two degrees of freedom. The gyroscopic effect had not been consid-
ered since there was no rotation of the rotor cross section. The aim of this paper is to study
the vibration responses of the modeled flexible rotor-bearing system for ball end milling
by using the GPEM. Figure 1 shows the ball end milling process and the corresponding
model. The milling machine tool spindle is modelled as the flexible rotor-bearing system as
shown in Figure 1b. In Figure 1b, the first part (I) is the spindle, the second part (II) is the
spindle including the simplified tool holder, and the third part (III) is the overhang length
of the tool.
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3.1. Dynamic Cutting Forces

Lee and Altintas [14] introduced the linear cutting forces used in this study. The
geometry of a helical ball end milling tool is given in Figure 2. Furthermore, the cutting
forces, chip thickness, and area of cutting segment for ball end milling are plotted in
Figure 3. dFt, dFr, and dFa are the differential dynamic cutting force components acting on
the cutter along the tangential, radial, and axial directions, respectively, and are given as:

dFt = Kte ds + Ktc t(ψi, k̂) db
dFr = Kre ds + Krc t(ψi, k̂) db
dFa = Kae ds + Kac t(ψi, k̂) db

(3)

where Kte, Kre, Kae represent the edge force coefficients along the tangential, radial, and
axial directions and d s represents the differential segment length of the curved cutting
edge. Ktc, Krc, Kac represent the cutting force coefficients (or shear force coefficients)
along the tangential, radial, and axial l directions t̂(ψi, k̂) = h(ψi) sin k̂ denotes the uncut
chip thickness normal to cutting edge, in which ψi denotes the instantaneous angular
immersion in the global coordinate system, and k̂ represents the angle in a vertical plane
between the z-axis and a point on the flute, h(ψi) is the thickness of the instantaneous
chip. d b = d z/ sin k̂ represents the differential length of the cutting edge, in which d z is
differential axial height. The differential curve length d s, the area of cutting segment d A,
and the angular position ψi are derived as follows:

ds = f1(ϕ)R0dϕ (4)

dA = t̂(ψi, k̂)d b = h(ψi)dz = h(ψi) cot I0R0dϕ (5)
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ψi(z) = θ + (i − 1)
2π

N f
− ϕ = θ + (i − 1)

2π

N f
− z

R0
tan I0 (6)

where R0 is the ball radius of the tool, ϕ = z
R0

tan I0 represents the lag angle between the
tip and a point on the helical flute at height z, i is the number of flute, I0 is the helix angle, θ
is measured clockwise from +y axis, N f is total number of flutes, and z is the Z-coordinate
of a point located on the cutting edge. The coefficient f1(ϕ) is listed in Appendix B.
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If the tool position does not vary much during the short cuts [16], the chip thickness
becomes:

h(ψi) ≈ [( fd + x(tj)− x(tj−1)] sin ψi + [y(tj)− y(tj−1)] cos ψi (7)

where fd represents feed per tooth. x(tj) and y(tj) represent the current tool-tip deflections.
x(tj−1) and y(tj−1) represent the tool-tip deflections at the previous time.

The radial, tangential, and axial forces are zero when the tool is not in cut. This can be
modeled by multiplying the equations described as the force by a function W(ψi), which is
defined when a tooth is in or out of cut. Moreover, the tooth is in cut if θa + 2(n − 1)π ≤
ψi ≤ θb + 2(n − 1)π, where n is the number of spindle rotation, and θa and θb are the start
and exit angles, respectively. This function is given by:

W(ψi) =

{
1, θa + 2(n − 1)π ≤ ψi ≤ θb + 2(n − 1)π
0, else

(8)
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Substituting Equations (4), (5) and (7) into Equation (3) yields the following equation:

dFt = [Kte f1(ϕ) + Ktc( f2(ψi) + f3(ψi))] W(ψi) R0 dϕ
dFr = [Kre f1(ϕ) + Krc( f2(ψi) + f3(ψi))] W(ψi) R0 dϕ
dFa = [Kae f1(ϕ) + Kac( f2(ψi) + f3(ψi))] W(ψi) R0 dϕ

(9)

where the coefficients f2(ψi) and f3(ψi) are listed in Appendix B.
Using the coordinate transformation, the differential cutting forces in Equation (9) are

expressed in Cartesian coordinate as:
dFx
dFy
dFz

 =

− sin k̂ sin ψi − cos ψi − cos k̂ sin ψi
− sin k̂ cos ψi sin ψi − cos k̂ cos ψi

cos k̂ 0 − sin k̂

 
dFr
dFt
dFa

 (10)

Integrating the differential cutting forces in Equation (10), the authors [18] gave the
cutting force components at the tool rotation angle θ in Cartesian coordinates and expressed
in terms of the tool-tip responses as follows:

Fx
Fy
Fz

 =
Nf

∑
i=1

∫ ϕ=ϕa

ϕ=0


dFx
dFy
dFz

 =

Fx1(θ) Fx2(θ)
Fy1(θ) Fy2(θ)
Fz1(θ) Fz2(θ)

{x(tj)
y(tj)

}
+


Fx3(θ)
Fy3(θ)
Fz3(θ)

 (11)

where ϕa = â
R0

tan I0 in which â represents axial depth of cut. Fxi(θ), Fyi(θ), and Fzi(θ),
i = 1, 2, 3 are given in Appendix B.

3.2. Responses of System Using GPEM

The dynamic cutting forces expressed in Equation (10) are the external forces of the
modeled flexible rotor-bearing system for ball end milling. The GPEM will be applied
to solve the vibration problem of the tool-tip for ball end milling combined with the
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rotor-bearing system. Applying the transformation relation in Equation (1), the tool-tip
deflections x(tj) and y(tj) can be transformed into the generalized coordinates an(t) and
bm(t) shown below:

x(tj) = u( l
l , t) =

Np

∑
n=1

an(t)( l
l )

n−1

y(tj) = v( l
l , t) =

Np

∑
m=1

bm(t)( l
l )

m−1
(12)

Substitute Equation (12) into Equation (10) to yield the force terms of ball end mill in
generalized coordinates.


Fx
Fy
Fz

 =

Fx1(θ) Fx2(θ)
Fy1(θ) Fy2(θ)
Fz1(θ) Fz2(θ)




Np

∑
n=1

an(t)

Np

∑
m=1

bm(t)

+


Fx3(θ)
Fy3(θ)
Fz3(θ)

 (13)

Applying the principle of virtual work to the generalized coordinate system and
neglecting the z-direction force Fz, the external forces Fx and Fy in Equation (13) can be
rewritten as the right side of Equation (2) with generalized coordinates. Therefore, Equation
(2) can be modified into the following equation for the whole tool spindle system.

[
M 0
0 M

]
..
⇀
a
..
⇀
b

+ Ω
[

0 G
−G 0

]
.
⇀
a
.
⇀
b

+

[
Cxx Cxy
Cyx Cyy

]
.
⇀
a
.
⇀
b

+

[
Ks + Kxx Kxy

Kyx Ks + Kyy

]{ ⇀
a
⇀
b

}

=

[
Fx1(θ) Φ Fx2(θ) Φ
Fy1(θ) Φ Fy2(θ) Φ

]{ ⇀
a
⇀
b

}
+

 Fx3(θ)
⇀
d

Fy3(θ)
⇀
d


(14)

where Φ =


10 11 . 1Np−2 1Np−1

11 12 . 1Np−1 1Np

. . . . .
1Np−2 1Np−1 . 12Np−4 12Np−3

1Np−1 1Np . 12Np−3 12Np−2

 and
⇀
d =

{
10 11 . . . 1Np−2 1Np−1}T .

It should be noted that the first part of the milling force, on the right side of Equation (14), can
be combined with the stiffness matrix to change the system parameters of the rotor-bearing system.
The cutting forces, which depend, in part, on the tool-tip response, are combined with the rotor
system to complicate the problem, and the calculated response becomes more accurate. Expressing

Equation (14) into the state space form as
.
⇀
Xk = [A]

⇀
Xk +

⇀
B , with

⇀
Xk =

{
.
⇀
a

.
⇀
b

⇀
a

⇀
b

}T
at time

tk, the matrix [A] and the vector
⇀
B are derived as:

[A] =


M 0 0 0
0 M 0 0
0 0 I 0
0 0 0 I


−1

−Cxx −Cxy − ΩG −Ks − Kxx + Fx1 Φ −Kxy + Fx2 Φ
−Cyx + ΩG −Cyy −Kyx + Fy1 Φ −Ks − Kyy + Fy2 Φ

I 0 0 0
0 I 0 0


⇀
B =


M 0 0 0
0 M 0 0
0 0 I 0
0 0 0 I


−1


Fx3
⇀
d

Fy3
⇀
d

0
0


(15)

The
⇀
Xk at time tk can be solved by using the numerical method. The displacement of tool-

tip in the x direction and the y direction can be determined as a1(t) + a2(t) + . . . + aNP (t) and
b1(t) + b2(t) + . . . + bNP (t), respectively. Furthermore, the natural frequency can also be determined
by solving the eigenvalue problem of Equation (14).
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3.3. Numerical Results and Discussion
The vibration responses of the tool-tip for ball end milling are solved numerically using the

GPEM for the flexible rotor-bearing system in this study. The used cutting conditions and the cutting
parameters are given in Table 1 [14,18]. The cutting force coefficients Kac, Ktc, Krc are given in
Appendix C. Table 2 gives the configuration data for the rotor-bearing system modeled in Figure 1b.
E and ρ represent the shaft elastic modulus and density, respectively. dO and dI represent the shaft
outer and inner diameters, respectively.

Table 1. Cutting condition and cutting parameters.

Cutting Condition

Carbide Ball End Mills

Tool radius R0 R3 Workpiece material: Ti6Al4V Cutting coefficient
Shear stress τ = 613 MPa

Friction angle β = 19.1 + 0.29 α
Chip compression ratio γ = phq

p = 1.755 − 0.028 α, q = 0.331 − 0.0082 α
α : Rake angle, h : Chip thickness

Edge force coefficients:
Kte = 24 N/mm, Kre = 43 N/mm,

Kae = −3 N/mm
Cutting force coefficients: given in Appendix C

Tool length c 30 mm
Axial depth of cut â 1 mm

Feed per tooth fd
0.3 mm (2 flutes)
0.2 mm (3 flutes)

Rake angle α 5◦

Helix angle I0 30◦

ρ = 1.45 × 10−5 kg/mm3

E = 2.14 × 105 N/mm2

Nf = 2 and 3

Table 2. Configuration data of rotor-bearing system in Figure 1b.

Spindle Section E (N/mm2) ρ (kg/mm3) do (mm) dI (mm) Length

I 2.14 × 105 7.833 × 10−6 100 60 a = 216 mm

II 2.14 × 105 7.833 × 10−6 160 60 b = 157 mm

III 2.14 × 105 1.45 × 10−5 6 0 c = 30 mm

Bearing A: Kb
xx = Kb

yy = 1.575 × 10 5 N/mm, Cb
xx = Cb

yy = 15.75 N · s/mm, Kb
xy = Kb

yx = Cb
xy = Cb

yx = 0
Bearing B: Kb

xx = Kb
yy = 1.950 × 10 5 N/mm, Cb

xx = Cb
yy = 19.50 N · s/mm, Kb

xy = Kb
yx = Cb

xy = Cb
yx = 0

The authors in [18] proposed the approximated critical speeds of the spindle Ncr (rpm) as:

Ncr =
fn

2π · (mk · Nf)
× 60, mk = 1, 2, 3, . . . (16)

where fn (rad/s) represents the natural frequency of the tool-tip, N f represents the flute number,
and mk represents the vibration cycle number of the tool from one flute to another during cutting.
Different combinations of mk and N f lead to different excitation lines in the whirl map of the flexible
rotor-bearing system, which will give different relationships between natural frequency and critical
speed. Figure 4 is the whirl map which shows that the forward and backward modes are excited in
the flexible rotor system under spindle speeds. The natural frequencies of forward mode increase
as spindle speeds increase, but those of backward mode decrease as spindle speeds increase. The
parameters Nf and mk determine the excitation line in the whirl map. In this study, mk = 1, and
two cases including Nf = 2, 3, are used. Thus, the two whirl ratios are 1/2 and 1/3. The excitation
line may intersect the natural mode curves at some corresponding spindle speeds, called the critical
speeds. The natural frequencies and critical speeds of various modes can be expressed in Table 3
to show that the critical speeds of forward mode are higher than those of backward mode. Their
associated mode shapes of forward and backward modes at critical speeds, with 2 and 3 flutes of
the tool, are expressed in Figure 5. It is shown that the eigenvector magnitude for the mode 1 is
the largest at tool-tip C, but those for the mode 2 is relatively small. In addition, when the spindle
rotates at a higher critical speed, the frequency difference between the forward mode and backward
mode becomes larger. This phenomenon is mainly due to the gyroscopic effect of the flexible rotor.
Therefore, some lower natural modes will be significantly excited to become the main components of
the tool-tip response. This will be verified in this section.
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Nf = 2: The numerical studies for Nf = 2 at different spindle speed are shown in Figures 6–8.
Figure 6a shows the displacement of the tool-tip with two flutes in the x direction, at the spindle
speed of 1320 rpm, which is close to the critical speed of the first backward mode. Figure 6b also
shows the x-y plane orbit of the tool-tip. The orbit is an encircled trajectory which expands clockwise
around the origin in a stable loop. This mode is verified to be a backward mode. The fast Fourier
transformation diagram (FFT diagram) for the tool-tip response in the x direction, at the spindle
speed of 1320 rpm, is shown in Figure 6c. The tool is with two flutes. It is found that only one major
peak, with the frequency of 276.5 rad/s, dominates the response of the rotor system.
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Figure 6. Tool-tip response with 2 flutes at spindle speed of 1320 rpm.

Figure 7a shows the displacement in the x direction of the tool-tip with two flutes, at the spindle
speed of 6040 rpm, which is close to the critical speed of the second backward mode. It is found
that the tool oscillates with the cutting-force frequency combined with a longer cycle vibration. The
period of the long cycle is about 0.056 s, which explains how the workpiece surface is often found to
have a lot of small waves inside the long cycle wave in the practical milling. From Figure 4, it can
be seen that the lower first backward mode with the natural frequency of 112.1 rad/s is excited at
the spindle speed of 6040 rpm. Figure 7b plots the tool-tip orbit. It can be seen from the figure that
the track of the tip of the tool circles around, and there are many small rings inside. The large ring is
excited by the second backward mode, and the small ring corresponds to the first backward mode.
This phenomenon can be more clearly observed from the FFT plot shown in Figure 7c. At the spindle
speed of 6040 rpm with two flutes, there are two main peaks in the x-response of the tool-tip. The
two frequencies governing the behaviors of tool-tip correspond to the first and second backward
modes, respectively. The obvious low frequency peak verifies the long cycle wave phenomenon. A
very small peak near the right hand of cutting-force frequency is also found. It can be seen, from
Figure 4, to coincide with the first forward mode at the spindle speed of 6040 rpm.
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Figure 8. Tool-tip response with 2 flutes at spindle speed of 19,950 rpm.

Figure 8a shows the displacement of the tool-tip with two flutes in the x direction, at the spindle
speed of 19,950 rpm, which is close to the critical speed of the first forward mode. It is found that the
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tool oscillates with the cutting-force frequency combined with a longer cycle vibration. The period
of the long cycle is 0.173 s because the first backward mode is excited and the associated natural
frequency is 36.31 rad/s. The period of long cycle at spindle speed 19,950 rpm is larger than that at
spindle speed 6040 rpm. Figure 8b plots the orbit of the tool-tip. It shows the orbital trajectory of the
tool-tip around a large circle, with many smaller inner circles. The encircled directions of small inner
loops are anticlockwise, so this mode is dominated by the forward mode (second forward mode), and
the encircled direction of large circle is clockwise, so this mode is dominated by the backward mode
(first backward mode). Figure 8c shows the FFT plot of the x-response of the tool-tip with two flutes
at the spindle speed of 19,950 rpm. Two frequencies govern the behaviors of the tool-tip vibration.
An obvious low-frequency peak is found to verify that the first backward mode is excited. This is the
long cycle wave phenomena.

Nf = 3: Figures 9–12 show the numerical studies for Nf = 3 at different spindle speed. The
tool-tip displacement in x direction with three flutes is shown in Figure 9a. The spindle speed is
960 rpm, close to the critical speed of the first backward mode. Figure 9b shows the orbit of the
tool-tip. It shows that an encircled trajectory of the tool-tip expands clockwise around the origin in
a stable loop. This phenomenon is the same as in Figure 6b, because only the first backward mode
of the rotor-bearing system is excited. Figure 9c shows the FFT plot of the x-response of the tool-tip
with three flutes at the spindle speed of 960 rpm. Only one dominant frequency is found to dominate
the response of the tool-tip.
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Figure 12. Tool-tip response with 3 flutes at spindle speed of 9850 rpm.

Figure 10a shows the displacement in the x direction of the tool-tip with three flutes, at the spindle
speed of 2160 rpm, which is close to the critical speed of the first forward mode. The orbit of tool-tip
is plotted in Figure 10b. The result shows an encircled trajectory of the tool-tip expands anticlockwise
around the origin in a stable loop, so this mode is dominated by a forward mode. Figure 10c shows the
FFT plot of the x-response of the tool-tip with three flutes at the spindle speed of 2160 rpm. A distinct
peak with a frequency of 678.6 rad/s, and a far smaller peak with a frequency of 237.7 rad/s, are found.

Figure 11a shows the displacement of the tool-tip with three flutes in the x direction, at the
spindle speed of 4410 rpm, which is close to the critical speed of the second backward mode. The
tool oscillates with the cutting-force frequency combined with a longer cycle vibration which is the
first backward mode with a natural frequency of 138.54 rad/s. The period of the long cycle is 0.045 s.
Figure 11b plots the orbit of the tool-tip. It shows that the trajectory of the tool-tip goes around a
large circle with many smaller inner loops. The FFT plot for the x-response of the tool-tip with three
flutes at the spindle speed of 4410 rpm is shown in Figure 11c. There are two major peaks that govern
the vibration of the tool-tip. The obvious low frequency peak, dominated by the first backward mode,
corresponds to the long cycle wave phenomena.

Figure 12a shows the displacement of the tool-tip with three flutes in the x direction, at the
spindle speed of 9850 rpm, which is close to the critical speed of the second forward mode. The
tool oscillates with the cutting-force frequency combined with a longer cycle vibration. The long
cycle vibration corresponds to the first backward mode with a natural frequency of 71.17 rad/s. The
period of the long cycle is 0.088 s. Figure 12b shows the orbit of the tool-tip, which wraps around
a large circle with many small inner rings. Figure 12c shows the FFT plot of the x-response of the
tool-tip with three flutes at the spindle speed of 9850 rpm. It is found that there are two frequencies
governing the behaviors of the tool-tip. An obvious low-frequency peak is found. It corresponds to
the long cycle wave phenomena, and verifies that the first backward mode is excited.

From a comparison of Figures 6–8 and comparison of Figures 9–12, it can be seen that the
period of the long cycle vibration enlarges as the spindle speed increases. To gain an insight into the
phenomenon, it can be seen from Figure 4 that, with the increase in the spindle speed, the natural
frequency of the first backward mode decays. Additionally, in the numerical study, it is found that
the long cycle vibration is majorly dominated by the first backward mode, thus, the period of the
long cycle vibration enlarges as the spindle speed increases. In addition, it can also be seen from the
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FFT diagram that the peak at the first backward mode (the long-period vibration) becomes larger
compared with the peak at the cutting force frequency as the spindle speed becomes larger. The
tool-tip response including the forward mode and backward mode is mainly dependent on the spindle
speed. The forward and backward modes that vary with the spindle speed are mainly caused by the
gyroscopic effect of the flexible rotor. The vibration analysis of a ball end mill is more accurate if the
spindle is modelled as a flexible rotor, taking into account the gyroscopic effects caused by the rotation
of the rotor section. The cutting forces, which depend, in part, on the tool-tip response, combine with the
stiffness matrix of the rotor system to complicate the issue. Therefore, in order to obtain a more accurate
vibration analysis for ball end milling, the flexible rotor-bearing system cannot be omitted.

4. Conclusions
The dynamic behaviors of the flexible rotor-bearing system for ball end milling were first

numerically investigated by using the GPEM. The tool-tip responses have been made more realistic
due to consideration of the coupling effect of the flexible rotor-bearing system. Thanks to the
gyroscopic effect of the flexible rotor, the important whirl map can be drawn. Then, it can be observed
from the whirl map that, the critical speeds, which are directly proportional to the natural frequency
and inversely proportional to the number of flutes, due to some natural modes, can be excited to
significantly affect the tool responses. The flexible isotropic rotor-bearing system with rotating speed
can excite the forward and backward modes along the excitation line in the whirl map to form
two different critical speeds. In addition, the cutting forces, which depend, in part, on the tool-tip
response, combine with the stiffness matrix of the rotor system to complicate the issue. To the best of
the authors’ knowledge, most previous studies on ball end milling always ignore the rotor system
or assume that the rotor is rigid or discretized to a few degrees of freedom, thereby ignoring the
gyroscopic effect of the flexible rotor. Unlike the previous literature, the natural frequency in this
study varies with the spindle speed. Thanks to the gyroscopic effect of the flexible rotor, which of
the different modes are included in the tool-tip response depend mainly on the spindle speed. The
model established by considering the coupling effect of the flexible rotor and using GPEM can be
more efficient and realistic in analyzing the dynamic behavior of the tool-tip. The important new
findings of the present study, by using numerical analysis, are obtained as follows:

1. In milling at a higher spindle speed (2160–19,950 rpm), the tool-tip oscillates with the cutting-
force frequency combined with a longer cycle vibration of the first backward mode due to the
coupling effects of the flexible rotor-bearing system, and the period of the long cycle vibration
enlarges as the spindle speed increases. From the FFT plot, it can be seen that as the spindle
speed becomes larger, the peak amplitude at the first backward mode (long-period vibration)
becomes larger compared to the peak at the cutting force frequency.

2. Under lower spindle speed milling (960, 1320 rpm), the vibration trajectory of the tool-tip in the
co-plane expands clockwise gradually around the origin until arriving at a stable loop. This is
because only the first backward mode of the rotor-bearing system is excited.

The authors of [18] calculated the critical speeds of the rotor-bearing system for ball end milling
and verified the numerical results with the experimental data. However, the rotor was assumed to
be rigid and the lateral rotation was neglected, so the gyroscopic effects of the system could not be
included. Therefore, the critical speed was independent of the spindle speed and only one mode was
calculated. In this study, the critical speeds of the flexible rotor-bearing system vary with the spindle
speed due to the gyroscopic effect. The vibration responses of the tool-tip, including forward and
backward modes, are numerically calculated. However, it is also recommended that future work is
required to add a comparison by setting up an experiment to validate the presented results.
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Nomenclature

a, b, c section length of tool spindle
â axial depth of cut
an(t), bm(t) generalized coordinates
A(z) cross-sectional area of the shaft
c tool length
Cxx, Cxy, Cyx, Cyy damping matrix of the bearing using GPEM
Cb

xxj, Cb
xyj, Cb

yxj, Cb
yyj damping coefficients of the j-th bearing

dO, dI outer and inner diameter of the shaft and tool
dA area of cutting segment
db differential cutting edge length
dFt, dFr, dFa differential cutting forces in tangential, radial, and axial direction
dFx, dFy, dFz differential milling force in Cartesian coordinate
ds differential length of the curved cutting edge segment
dz differential height in axial direction
E(z) elastic modulus of the shaft and tool
fd feed per tooth (mm)
fn natural frequency (rad/s)
f1(ϕ), f2(ψi), f3(ψi) coefficients of cutting force
G gyroscopic matrix of the rotor using GPEM
h chip thickness
I0 helix angle at meeting boundary between the ball and shank
ID, IP diametral and polar mass moment of inertia of the shaft
Id
Di, Id

Pi diametral and polar mass moment of inertia of the i-th disk
Ks stiffness matrix of the shaft using GPEM
Ktc, Krc, Kac tangential, radial, and axial cutting force coefficients
Kte, Kre, Kae tangential, radial, and axial edge force coefficients
Kxx, Kxy, Kyx, Kyy stiffness matrix of the bearing using GPEM
Kb

xxj, Kb
xyj, Kb

yxj, Kb
yyj elastic constant of the j-th bearing

k̂ angle in a vertical plane between a point on the flute and the z-axis
l total length of the tool spindle
M mass matrix of the rotor using GPEM
md

i mass of the i-th disk

mk
vibration cycle number of tool during the cutting time from one flute
to another

Nd total number of the disk
Nf total number of the flutes
Nb total number of the bearing
Np total number of polynomial
Nf number of flute
Ncr critical speed in rpm
R0 ball radius of tool
R(ϕ) tool radius in x-y plane at a point defined by ϕ

t̂(ψi, k̂) uncut chip thickness normal to cutting edge in milling
x(tj), y(tj) deflections of tool-tip at the present time
α rake angle of cutting parameter
β friction angle of cutting parameter
γ chip compression ratio of cutting parameter
ρ(z) density of the shaft and tool
θ tool rotation angle, measured from y-axis (CW)
θa, θb the start and exit angles in the milling process
ϕ lag angle between the tip (z = 0) and a point on the helical flute at height z
ψi instantaneous angular immersion in the global coordinate system
τ shear stress of cutting parameter
Ω spindle speed



Appl. Sci. 2023, 13, 7252 19 of 21

Appendix A

After defining ẑ = z
l , the components of the Np × Np matrices in Equation (2) are as follows:

M(m, n) =
∫ 1

0 ρ(ẑ)A(ẑ) ẑn+m−2dz +
∫ 1

0 (n − 1)(m − 1)ID ẑn+m−4dẑ

+
Nd

∑
i=1

[md
i (ẑ

d
i )

n+m−2
+ (n − 1)(m − 1) Id

Di(ẑ
d
i )

n+m−4
]

, (A1)

G(m, n) =
∫ 1

0
(n − 1)(m − 1)IP ẑn+m−4dz +

Nd

∑
i=1

[(n − 1)(m − 1) Id
Pi(ẑ

d
i )

n+m−4
], (A2)

Cxx(m, n) =
Nb

∑
i=1

[Cb
xxi(ẑ

d
i )

n+m−2
], (A3)

Cxy(m, n) =
Nb

∑
i=1

[Cb
xyi(ẑ

d
i )

n+m−2
], (A4)

Cyy(m, n) =
Nb

∑
i=1

[Cb
yyi(ẑ

d
i )

n+m−2
], (A5)

Ks(m, n) =
∫ 1

0
(n − 1)(n − 2)(m − 1)(m − 2) E(ẑ)I(ẑ) ẑn+m−6dẑ, (A6)

Kxx(m, n) =
Nb

∑
i=1

[Kb
xxi(ẑ

d
i )

n+m−2
], (A7)

Kxy(m, n) =
Nb

∑
i=1

[Kb
xyi(ẑ

d
i )

n+m−2
], (A8)

Kyy(m, n) =
Nb

∑
i=1

[Kb
yyi(ẑ

d
i )

n+m−2
] (A9)

where l and z represent the shaft length and axial coordinate, respectively. Np, Nd, and Nb denote
the total number of polynomial, disk, and bearing, respectively. ρ(ẑ) and A(ẑ) represent the shaft
density and cross-sectional area, respectively. ID and IP represent the shaft diametral and polar
mass moment of inertia, respectively. md

i represents the i-th disk mass. Id
Di and Id

Pi represent the i-th
disk diametral and polar mass moment of inertia, respectively. Cb

xxj, Cb
xyj, and Cb

yyj represent the j-th
bearing damping coefficients. E(ẑ) and I(ẑ) represent the shaft elastic modulus and cross-sectional
moment of inertia, respectively. Kb

xxj, Kb
xyj , and Kb

yyj represent the j-th bearing elastic constant.

Appendix B

f1(ϕ) =

(
cot I0(1 − ϕ cot I0)

2

ϕ(2 − ϕ cot I0)
+ 2ϕ cot I0 +

(
1 − ϕ2

)
cot2 I0

)1/2

, (A10)

f2(ψi) = [( fd − x(tj−1)) sin ψi − y(tj−1) cos ψi] cot I0 (A11)

f3(ψi) = [x(tj) sin ψi + y(tj) cos ψi] cot I0 (A12)

Fx1(θ) =
N f

∑
i=1

∫ φa

φ=0

{
0 F2x 0 F4x 0 F6x

}
K̂ W(ψi) R0 dφ (A13)

Fx2(θ) =
N f

∑
i=1

∫ ϕa

ϕ=0

{
0 F2y 0 F4y 0 F6y

}
K̂ W(ψi) R0 dϕ (A14)

Fx3(θ) =
N f

∑
i=1

∫ ϕa

ϕ=0

{
F1 F2 F3 F4 F5 F6

}
K̂ W(ψi) R0 dϕ (A15)

Fy1(θ) =
N f

∑
i=1

∫ ϕa

ϕ=0

{
0 G2x 0 G4x 0 G6x

}
K̂ W(ψi) R0 dϕ (A16)
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Fy2(θ) =
N f

∑
i=1

∫ ϕa

ϕ=0

{
0 G2y 0 G4y 0 G6y

}
K̂ W(ψi) R0 dϕ (A17)

Fy3(θ) =
N f

∑
i=1

∫ ϕa

ϕ=0

{
G1 G2 G3 G4 G5 G6

}
K̂ W(ψi) R0 dϕ (A18)

where K̂ =
{

Kre Krc Kte Ktc Kae Kac
}T and ϕa = â

R0
tan I0. The parameters Fk,Gk (k =

1, 2, · · · 6), Fkx, Fky, Gkx, and Gky (k = 2, 4, 6) are given in Table A1.

Table A1. The parameters in Equations (A13)–(A18).

F2x = − sin k̂ sin2 ψi cot I0 F4x = − cos ψi sin ψi cot I0 F6x = − cos k̂ sin2 ψi cot I0

F2y = − sin k̂ sin ψi cos ψi cot I0 F4y = − cos2 ψi cot I0 F6x = − cos k̂ sin ψi cos ψi cot I0

F1 = − sin k̂ sin ψi f1(ϕ) F2 = − sin k̂ sin ψi f3(ψi) F3 = − cos ψi f1(ϕ)

F4 = − cos ψi f3(ψi) F5 = − cos k̂ sin ψi f1(ϕ) F6 = − cos k̂ sin ψi f3(ψi)

G2x = − sin k̂ cos ψi sin ψi cot I0 G4x = sin2 ψi cot I0 G6x = − cos k̂ cos ψi sin ψi cot I0

G2y = − sin k̂ cos2 ψi cot I0 G4y = sin ψi cos ψi cot I0 G6y = − cos k̂ cos2 ψi cot I0

G1 = − sin k̂ cos ψi f1(ϕ) G2 = − sin k̂ cos ψi f3(ψi) G3 = sin ψi f1(ϕ)

G4 = sin ψi f3(ψi) G5 = − cos k̂ cos ψi f1(ϕ) G6 = − cos k̂ cos ψi f3(ψi)

Appendix C

The cutting force coefficients Ktc, Krc, Kac can be expressed in terms of the modified mechanics
of cutting analysis variables as follows [14]:

Ktc =
τ · [cos(βn − αn) + tan ηc sin βn tan I(ϕ)]

c · sin φn
, (A19)

Krc =
τ · sin(βn − αn)

c · sin φn cos I(ϕ)
, (A20)

Kac =
τ · [cos(βn − αn) tan I(ϕ)− tan ηc sin βn]

c · sin φn
(A21)

where c =
√

cos2(φn + βn − αn) + tan2 ηc sin2 βn, τ is the shear stress, β is the friction angle, and γ

is the chip ratio. Assume that the chip flow angle ηc is equal to the helix angle I at the analyzed edge
segment and that the normal rake angle αn is equal to the local rake angle α. The normal shear angle
φn can be given as:

tan φn =
γ cos αn

1 − γ sin αn
, (A22)

The normal friction angle βn is given as:

tan βn = tan β cos ηc, (A23)

and the relation of the normal shear angle φn and the normal friction angle can be shown as:

tan(φn + βn) =
cos αn tan I

tan ηc − sin αn tan I
. (A24)
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