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Abstract: Real-time tool condition monitoring (TCM) is becoming more and more important to
meet the increased requirement of reducing downtime and ensuring the machining quality of
manufacturing systems. However, it is difficult to satisfy both robustness and effectiveness of pattern
recognition for a TCM system without using an unsupervised strategy. In this paper, a clustering-
based TCM system is proposed that can be used for different machining conditions such as variable
cutting parameters, variable cutters, and even variable cutting methods. The solution is based on
a significant statistical correlation between tool wear and the distribution of cutting force features,
which is revealed through the clustering results obtained from a novel clustering method based on
adjacent grids searching (CAGS). This statistical correlation is converted into tool wear status by
using an empirical factor that is robust for variable cutting processes. The proposed TCM system is
completely unsupervised as a training-free procedure is used in the monitoring process. To verify
the effectiveness of the system, a series of experiments are conducted, such as whole life-cycle wear
experiment under same milling condition, tool wear experiment under variable milling conditions
and tool wear experiment under same turning condition. The prediction accuracy of our system
for tool wear experiment under variable milling conditions is 100%, 75% and 75%, respectively. In
contrast, BP neural network, Bayesian network and SVM are used for tool wear prediction under the
same conditions. Experimental results show the superiority and effectiveness of our TCM system
based on cluster density of CAGS over several state-of-the-art supervised methods.

Keywords: tool condition monitoring; clustering; unsupervised; milling; turning

1. Introduction

Tool condition monitoring (TCM) is of great importance to provide cost saving and
reduce downtimes of machine tools [1–3]. Thus, a vast amount of research has been focusing
on TCM and tool condition prognostics approaches for the machining process [4–6]. Results
show that a TCM-based optimization of cutting parameters during machining can extend
the remaining useful life of cutting tools [7,8]. In the existing TCM system based on a
data-driven model, according to whether the data processing model needs training data, it
is mainly divided into a supervised TCM system and an unsupervised TCM system.

A supervised TCM system requires more or less teacher data to train model param-
eters, such as Hidden Markov Model [9,10], Neural Network [11–13], SVM [14,15], Deep
Learning [16,17], etc. The Hidden Markov Model (HMM) is a Markov chain and a produc-
tion model. It can be used to establish a stochastic process model describing tool states
based on training data, which has a strong generalization ability. Liao et al. [18] proposed a
new tool wear condition monitoring method based on multi-scale mixed hidden Markov
model analysis of cutting force signals. However, one of the limitations of HMM in the ap-
plication is that the construction of the model requires a large number of samples to support.
Tool pattern recognition based on a neural network uses a structure of networked topology
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to express the mapping relationship between features and tool wear. Different networked
structures show different mapping capabilities and nonlinear fitting capabilities. Zhang
et al. [19] designed a convolution neural network algorithm to deal with the optimized
features to achieve tool wear prediction. Huang et al. [20] proposed a tool wear monitoring
method based on short-time Fourier transform and deep convolution neural network.
Compared with neural network models, Support Vector Machines (SVM) can achieve
better generalization ability when training samples are limited. Milla et al. [21] proposed
a new method to monitor tool wear in the micro-milling process using the SVM artificial
intelligence model, vibration and sound signals. Niu et al. [22] developed multistage SVM
to identify tool wear based on the selected features. However, the performance of the SVM
model largely depends on the selection of penalty factors and kernel function parameters.
The above-mentioned models require feature extraction of the original signals during the
cutting process before use, so the monitoring quality is also significantly affected by the
effectiveness of the features. In contrast, deep learning algorithms can achieve automatic
feature extraction through autoencoders, thus they are able to find more effective features
to characterize tool states. Zhang et al. [23] proposed a tool wear monitoring method for
milling complex parts based on deep learning. However, this also increases the nonlinear
degree of the system, requiring more training data to improve the accuracy of identification.
In the machining process of some complex parts, sufficient training samples cannot be
obtained due to high manufacturing cost and fast tool wear, so it is difficult to apply and
popularize the supervised TCM system.

Different from supervised methods, unsupervised TCM systems establish model pa-
rameters only by using monitoring signals rather than training data [24]. However, there
are few reports on TCM research based on unsupervised methods due to their poor nonlin-
ear fitting ability and real-world supervising ability. Thomas Gittler et al. [25] proposed
an unsupervised approach for degradation prognostics of machine tool components and
consumables. However, this was not a completely unsupervised method although a clus-
tering algorithm was used as the core algorithm, since the model should be trained on the
selected samples and their respective feature distributions. Especially, a retraining process
was required when cutting parameters changed. Dou et al. [26] proposed an unsupervised
method to monitor the wear state of milling cutter based on sparse auto-encoder (SAE). The
established SAE model extracted characteristics of the signal and completed the training of
the model without supervision of the empirical label. However, the performance of the
SAE process had a heavy dependence on the continuity of cutting, which was similar to
a dimensionless method of threshold monitoring. This led to the failure of TCM when
switching the cutting parameters according to the manufacturing procedure.

Based on the above analysis, it can be seen that current TCM systems are often
designed for specific cutting conditions, which means that different cutting conditions
require different training processes. To the best of our knowledge, current monitoring
systems are not competent to complete the TCM process when dealing with complex parts
that involve multiple cutting methods and parameters. More flexible and adaptable TCM
systems are needed to provide effective performance in these situations. Therefore, to
solve the above deficiencies of the TCM system under variable machining processes, a
clustering-based method is proposed in this paper. First, time-domain statistical features
are extracted to construct the feature space. Then, a novel clustering method based on
adjacent grids searching (CAGS) is proposed to find clusters, corresponding to different
tool wear conditions, in the feature space. Second, an important statistical correlation
between tool wear and the distribution of cutting force features is studied. The cluster
density is used to mine sensitive information about tool wear that is not sensitive to cutting
conditions. Third, a cluster density factor is proposed to convert the cluster density into
the value reflecting actual tool wear and then the TCM process is accomplished.
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2. Materials and Methods
2.1. Framework of the Proposed TCM System

In the cutting process, tool wear increases nonlinearly with cutting time. According to
the characteristics of the tool wear curve, the tool wear process could be divided into three
stages including initial wear, middle wear and severe wear [27], as shown in Figure 1. The
tool wear increases rapidly in the initial wear stage as the surface of the new tool is rough
and uneven and the blade is sharp. It can be seen that the tool wear increases slowly and
uniformly in the middle wear stage, which is attributable to the polish of the tool surface at
the cutting edge and the reduction of cutting temperature. When the cutting edge becomes
rough in the severe wear stage, the cutting temperature increases rapidly, accelerating the
wear speed.
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In recent research, TCM is mainly based on constructing a model such as an analytical
model, neural network model and nonlinear classifier between tool wear and feature values
of cutting signals. However, the feature values of cutting signals are prone to being affected
by matters other than tool wear, including cutting parameters and lubrication. In this study,
an important statistical correlation between tool wear and the distribution of cutting force
features is revealed to find robust information indicating tool wear conditions. To achieve
TCM under different cutting conditions, an unsupervised method based on cluster density
of CAGS is proposed, as shown in Figure 2. First, force signals are collected during the
cutting process under different tool wear conditions. Then, time-domain statistical features,
which are commonly used in the machining process, are extracted from the force signals
to form the feature space containing tool wear information. Using CAGS, the samples are
divided into several clusters with different densities and thus the tool wear information is
clarified. To accomplish TCM, the cluster density factor is proposed to transfer the density
of a cluster to a value corresponding to tool wear.

2.2. Feature Extraction

The shear resistance within the workpiece material and the friction between the tool
and the workpiece are the main factors to produce cutting force. The friction between the
tool and the workpiece increases when the tool is worn, thus increasing the cutting force.
For most cutting conditions, the reflection of cutting force on the tool wear state is more
sensitive, and it is also one of the most effective signals to characterize the tool state, so the
cutting force signal is used to characterize the tool wear state in this paper. In addition,
time-domain signals reflect amplitude changes over time. Time-domain feature extraction
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is the simplest and most direct feature extraction method. The time-domain features used
in this paper are as follows.
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(1) Root Mean Square (RMS)

Rmst =

√√√√ 1
N

N

∑
i=1

x(i)2 (1)

(2) Mean Value

x =
1
N

N

∑
i=1

x(i) (2)

(3) Standard Deviation (STD)

σ =

√√√√ 1
N

N

∑
i=1

(x(i)− x)2 (3)

where x (i) is the signal collected within a certain time t during the cutting process,
i = 1, 2, . . . , N.

2.3. Clustering Analysis

In the processing of complex structural parts, due to the lack of off-line test to provide
the necessary prior knowledge, unsupervised pattern recognition method becomes a
necessary option, and clustering algorithm is commonly used in unsupervised pattern
recognition algorithm. In this paper, a clustering method CAGS is used to perform data
mining from the distribution of cutting force features.

For a 2D space S, a dataset D distributed in S can be defined as

D = {X1, X2, . . . , XN} (4)

where N is the number of samples of D, Xi is the ith sample of D.

Xi = 〈xi(1), xi(2)〉 (5)
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A scale sequence SCi is used to divide the ith dimension of S into R parts, which can
be written as

SCi = {sci(0), sci(1), . . . , sci(R)} (6)

As the result, the grid space G is generated.

G = {C1, C2, . . . , CM} (7)

where Ci is the ith cell with following attributes in G

Ci = {location, member, density} (8)

where location is the cell coordinate in the grid space; member records all samples in the cell;
density denotes the number of samples in the cell. The location of Ci can be defined as follows.

location(Ci) = 〈ci1, ci2〉 (9)

where the subscript i can be calculated by

i =
2

∑
j=1

[(
cij − 1

)
Rj−1

]
+ 1 (10)

In Formula (6), sci(j− 1) and sci(j) are the left and right boundaries of cells whose ith
coordinate is c∗j, where * denotes the subscript of the cells. Thus, each sample of D can be
assigned to a cell by using Equations (5), (6) and (9). The resolution R in Formula (6) can be
determined according to the scale of the input dataset by the following formula

R = Int( d√N · fR) + 1 (11)

where Int(x) denotes the forward rounding function, fR is the resolution coefficient.
To achieve the clustering of D, a traversal process is proposed by using an adjacent

cell operator which can be defined as

Aopt = {〈−1, 1〉, 〈−1, 0〉, 〈−1, 1〉, 〈0,−1〉, 〈0, 1〉, 〈1,−1〉, 〈1, 0〉, 〈1, 1〉} (12)

By using the Aopt, the adjacent cells of Ci can be obtained as follows.

location(ACi) = location(Ci) + Aopt (13)

Before clustering, the halo threshold is used to divide the cells into peripheral cells
and core cells.

threH =
∑M

i=1 density(Ci)

M
fH (14)

where fH is halo coefficient, M is the total number of non-null cells. If the density of a cell is
higher than threH, it could be defined as core cell. Otherwise, it is peripheral cells.

The clustering process is performed through two main stages including a core cell
traversal and a peripheral cell traversal. Figure 3 is the flowchart of the main process of
CAGS. Different from other density-based clustering methods, CAGS calculates the mean
density of each cluster as an interface to find the intrinsic information of the dataset. The
mean density of the kth cluster is defined as

density(k) =
∑Nk

i=1 density(Ci)

Nk
(15)

where Nk is the number of cells of the kth cluster.
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2.4. Tool Condition Recognition

Affected by various factors, the cutting force signals in the machining process are
highly stochastic and non-stationary, by which the tool wear information is always hidden
in the statistical correlation of the cutting force features. Generally, it is known that the
cutting force signal increases with tool wear when other conditions remain unchanged.
However, a statistical tendency is found through a large amount of cutting data that
the within-class scatter increases with tool wear. That is, the more severe the tool wear,
the sparser the distribution of the corresponding cutting force features. In contrast, the
statistical tendency is effective in characterizing tool wear rather than the value of cutting
force and its features. This could be attributed to the dynamic property of the cutting force
generation process, and it will be reported in the subsequent studies.
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To transfer the statistical correlation to quantitative tool wear information, a cluster
density factor is defined as follows.

War(i) =
density(i)− density0

density0 · T
(16)

where War(i) is the density factor of the ith cluster obtained by CAGS, density0 is the
smallest value of the mean density of all clusters, density(i) is the mean density of the ith
cluster, T is the truncation coefficient. As a rule of thumb, the T can be set to 5.54.

3. Experiments

To verify the effectiveness of the unsupervised TCM system, a series of experiments are
conducted, including a whole life-cycle wear experiment under the same milling condition,
a tool wear experiment under variable milling conditions and a tool wear experiment under
the same turning condition. A three-axis piezoelectric dynamometer (Kistler, type 9257A,
Winterthur, Switzerland) is used to collect cutting force signals in machining processes, as
shown in Figure 4a. The cutting force signal is initially preamplified by a multichannel
charge amplifier (Kistler 5070), as shown in Figure 4b, and then transferred directly to data
acquisition card sampling at 10 kHz.
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3.1. Test I: Whole Life-Cycle Wear Experiment under Same Milling Condition

This test is conducted to verify the performance of the proposed system for condition
monitoring of the entire tool life evolution process. The experiment is carried out at
MAKINO FNC86-A20 vertical machining center. The workpiece (Ti-6Al-4V) with a size of
150 × 100 × 30 mm is clamped to the dynamometer. In addition, a Mitsubishi cutter (type
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APMT1135PDER-H2) is fixed to a 12 mm diameter cutter bar. Cutting tool and workpiece
are as shown in Figure 5.
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In this experiment, a type of down-milling operation is used, in which the milling
spindle speed is 1060 r/min, the cutting speed is 39.9 m/min, the cutting depth is 0.4 mm,
the cutting width is 6 mm and the feeding rate is 0.1 mm/tooth. The flank wear is measured
after each cutting of the 35 cuttings and the mean value of the wear zone is taken as the VB
value [28]. When the VB value reaches or exceeds 0.3 mm, the tool life limit is considered
to be reached. Figure 6 shows the tool wear diagram of three different states.

Appl. Sci. 2023, 13, 7226 8 of 21 
 

MAKINO FNC86-A20 vertical machining center. The workpiece (Ti-6Al-4V) with a size 
of 150 × 100 × 30 mm is clamped to the dynamometer. In addition, a Mitsubishi cutter (type 
APMT1135PDER-H2) is fixed to a 12 mm diameter cutter bar. Cutting tool and workpiece 
are as shown in Figure 5. 

 
Figure 5. Cutting tool and workpiece in Test I. 

In this experiment, a type of down-milling operation is used, in which the milling 
spindle speed is 1060 r/min, the cutting speed is 39.9 m/min, the cutting depth is 0.4 mm, 
the cutting width is 6 mm and the feeding rate is 0.1 mm/tooth. The flank wear is measured 
after each cutting of the 35 cuttings and the mean value of the wear zone is taken as the 
VB value [28]. When the VB value reaches or exceeds 0.3 mm, the tool life limit is consid-
ered to be reached. Figure 6 shows the tool wear diagram of three different states. 

   
(a) (b) (c) 

Figure 6. Tool morphology under different tool wear states in Test I: (a) initial wear; (b) middle 
wear; (c) severe wear. 

3.2. Test II: Tool Wear Experiment under Variable Milling Conditions 
This experiment is conducted to test the performance stability of the monitoring sys-

tem under variable milling conditions. On the basis of Test I, the cut depth is changed to 
1 mm, the cutting width is changed to 22 mm, the diameter of cutter bar is changed to 25 
mm, the number of cutters is changed to 4, the cutting speed and feed rate are set as shown 
in Table 1, and other options remain unchanged. Cutting tool machining workpiece is as 
shown in Figure 7. In this experiment, three different parameter groups are set 
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3.2. Test II: Tool Wear Experiment under Variable Milling Conditions

This experiment is conducted to test the performance stability of the monitoring system
under variable milling conditions. On the basis of Test I, the cut depth is changed to 1 mm,
the cutting width is changed to 22 mm, the diameter of cutter bar is changed to 25 mm,
the number of cutters is changed to 4, the cutting speed and feed rate are set as shown
in Table 1, and other options remain unchanged. Cutting tool machining workpiece is as
shown in Figure 7. In this experiment, three different parameter groups are set respectively
to conduct the experiment. Table 1 shows the specific parameters of the experiment. The
flank wear is measured after each cutting as shown in Figure 8.
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Table 1. Different parameters of milling tool wear experiment.

Test ID Spindle Speed (r/min) Cutting Speed (m/min) Feed per Tooth/mm

A 382 29.98 0.1
B 382 29.98 0.15
C 509 39.95 0.1
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3.3. Test III: Tool Wear Experiment under Same Turning Condition

This test is used to verify the robustness of the proposed system on the turning process,
which is completely different from the milling process. The workpiece is GH4169 superalloy
bar with a diameter of 100 mm and a length of 200 mm. In this experiment, the spindle
speed of milling is 500 r/min, the feeding rate is 0.1 mm/r, the cutting speed is 157 m/min
and the cutting depth is 0.2 mm. The flank wear is measured after each cutting and is as
shown in Figure 9.
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Figure 9. Tool morphology under different tool wear states in Test III: (a) initial wear; (b) middle
wear; (c) severe wear.
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4. Results and Discussion
4.1. Cutting Force Signal and Feature Extraction

The force signals in the process of continuous milling have been collected through Test
I, and the force signal waveforms of three different tool wear states are shown in Figure 10.
The spindle rotational period can be divided into two stages, as labeled in Figure 10, where
Stage I is the cutting process of the cutter and Stage II is the idle process in which the cutter
has been separated from the workpiece. Thus, the cutting force is nearly 0 N in Stage II. For
the milling process, RMS of the cutting force in the feed direction and the vertical radial
direction is extracted as the common feature.
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To create a dataset reflecting the statistical correlation with tool wear, cutting force
signals are partitioned into segments with a length of six spindle rotational periods. Thus,
3500 samples corresponding to the 35 cuttings are obtained, including 1600 samples of
initial wear, 1300 samples of middle wear and 600 samples of severe wear. The scatter of
samples is shown in Figure 11 and parts of the cuttings are marked. Since the tool wear
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values increase gradually from NO. 1 to NO. 35, the samples with different tool wear states
highly overlap with each other. In addition, the tendency that the within-class scatter
increases with tool wear is visible.
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Figure 11. Sample distribution diagram in Test I.

Compared with the force signal waveforms in Test I, the cutting processes fill up the
whole spindle rotational period since four cutters are used in Test II. The stages from I to IV,
marked in Figure 12, correspond to cutting processes of four cutters, respectively. Without
loss of generality, the same features with Test I are extracted.

Due to the disturbance factors such as spindle runout, there is a difference in cutting
force waveform between the cutting processes of different cutters, as shown in Figure 12. To
eliminate the above influence, a sufficiently long sample length should be chosen. However,
limited cutting force signals are collected in this test. Therefore, a proper balance should be
struck between the sample length and the number of samples, and the length of a spindle
rotational period is used for partitioning cutting force signals. As the result, 1080 samples
corresponding to the 12 cuttings are obtained, the scatter of samples is shown in Figure 13
and parts of the cuttings are marked. The samples of NO. 1 to NO. 3 and NO. 9 to NO.
11, corresponding to initial wear, have a concentrated distribution in the bottom-left of
Figure 13. The samples of NO. 4 to NO. 8 correspond to middle wear and the samples
NO. 12 correspond to the severe wear. The tendency that the within-class scatter increases
with tool wear appears again as shown in Figure 13. However, the samples corresponding
to middle wear and severe wear are distributed in different regions because of different
cutting parameters. For example, the samples of NO. 1 to NO. 3 (Test ID: A) and NO. 6 to
NO. 7 (Test ID: B) are separated, for which both correspond to initial wear. In addition,
the samples of NO. 4 (Test ID: A) and NO. 8 (Test ID: B) are separated, for which both
correspond to middle wear.

In Test III the force signals in five cutting processes including initial wear (NO. 1,
NO. 2), middle wear (NO. 3, NO. 4) and severe wear (NO. 5) are collected, respectively.
Figure 14 shows waveforms of three different tool wear states. It can be seen that no
periodicity can be found from the cutting force waveforms of the turning process. Thus,
features different from the milling process should be used. In this study, STD of the
cutting force in the feed direction and the vertical radial direction is extracted as the
common feature.
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in vertical radial direction under initial wear, (c) force in feed direction under middle wear, (d) force 
in vertical radial direction under middle wear, (e) force in feed direction under severe wear, (f) force 
in vertical radial direction under severe wear. 
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in vertical radial direction under middle wear, (e) force in feed direction under severe wear, (f) force
in vertical radial direction under severe wear.
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Since the collection of cutting force signal is intermittent, the 500 samples of the cutting
processes are separately distributed in Figure 15, which is different from Test I in that the
samples are distributed consecutively in Figure 11. However, the important statistical
correlation between tool wear and the distribution of cutting force features still exists.

4.2. Clustering and Tool Condition Identification

The dataset obtained from Test I is inputted into CAGS, where the noise coefficient
is set to 0.2, the resolution coefficient is set to 0.5, the halo coefficient is set to 2, and the
merge coefficient is set to 0.1. The clustering results are shown in Figure 16. The samples of
35 cuttings are finally partitioned into six clusters, that is, the samples of NO. 1 to NO. 7
are recognized as cluster I, the samples of NO. 8 to NO. 14 are recognized as cluster II, the
samples of NO. 15 to NO. 16 are recognized as cluster III, the samples of NO. 17 to NO. 20
are recognized as cluster V, the samples of NO. 21 to NO. 27 are recognized as cluster IV,
and the samples of NO. 28 to NO. 35 are recognized as cluster VI. In addition, some samples
that deviate from the core samples are detected as noise points. For a clustering method,
clustering labels are randomly generated and have no specific meaning. That is, tool wear
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conditions could not be obtained from clustering labels. Thus, most of the unsupervised
methods are difficult to use for online monitoring.
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Figure 16. Clustering results of Test I.

To address the above problem, Formulas (15) and (16) are used to reveal the robust
information of tool wear conditions from cluster densities. The results are listed in Table 2,
which shows the corresponding relationship between the actual tool wear conditions and
the predicted wear conditions. It can be found that the density factor War effectively
matches VB. Therefore, almost all of the predicted wear conditions obtained by using War
successfully match the actual tool wear conditions obtained by VB.
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Table 2. Tool wear condition monitoring results of Test I.

Cutting
Number VB (mm) The Actual Tool

Wear Condition
Clustering

Label
Cluster
Density War The Predicted Tool

Wear Condition

NO. 1 0.05 Initial wear I 7.01 0 Initial wear
NO. 2 0.05 Initial wear I 7.01 0 Initial wear
NO. 3 0.055 Initial wear I 7.01 0 Initial wear
NO. 4 0.06 Initial wear I 7.01 0 Initial wear
NO. 5 0.065 Initial wear I 7.01 0 Initial wear
NO. 6 0.07 Initial wear I 7.01 0 Initial wear
NO. 7 0.075 Initial wear I 7.01 0 Initial wear
NO. 8 0.08 Initial wear II 6.39 0.02 Initial wear
NO. 9 0.08 Initial wear II 6.39 0.02 Initial wear

NO. 10 0.09 Initial wear II 6.39 0.02 Initial wear
NO. 11 0.09 Initial wear II 6.39 0.02 Initial wear
NO. 12 0.09 Initial wear II 6.39 0.02 Initial wear
NO. 13 0.09 Initial wear II 6.39 0.02 Initial wear
NO. 14 0.10 Initial wear III 5.21 0.06 Initial wear
NO. 15 0.10 Initial wear III 5.21 0.06 Initial wear
NO. 16 0.10 Initial wear III 5.21 0.06 Initial wear
NO. 17 0.11 Middle wear V 4.14 0.13 Middle wear
NO. 18 0.12 Middle wear V 4.14 0.13 Middle wear
NO. 19 0.12 Middle wear V 4.14 0.13 Middle wear
NO. 20 0.12 Middle wear V 4.14 0.13 Middle wear
NO. 21 0.13 Middle wear IV 3.98 0.14 Middle wear
NO. 22 0.14 Middle wear IV 3.98 0.14 Middle wear
NO. 23 0.14 Middle wear IV 3.98 0.14 Middle wear
NO. 24 0.15 Middle wear IV 3.98 0.14 Middle wear
NO. 25 0.15 Middle wear IV 3.98 0.14 Middle wear
NO. 26 0.16 Middle wear IV 3.98 0.14 Middle wear
NO. 27 0.17 Middle wear IV 3.98 0.14 Middle wear
NO. 28 0.26 Middle wear VI 2.48 0.33 Severe wear
NO. 29 0.27 Middle wear VI 2.48 0.33 Severe wear
NO. 30 0.30 Severe wear VI 2.48 0.33 Severe wear
NO. 31 0.31 Severe wear VI 2.48 0.33 Severe wear
NO. 32 0.33 Severe wear VI 2.48 0.33 Severe wear
NO. 33 0.33 Severe wear VI 2.48 0.33 Severe wear
NO. 34 0.33 Severe wear VI 2.48 0.33 Severe wear
NO. 35 0.33 Severe wear VI 2.48 0.33 Severe wear

In Test II, all samples with different cutting parameters of this test are fed into CAGS,
where the noise coefficient is set to 0.2, the resolution coefficient is set to 1, the halo
coefficient is set to 1, and the merge coefficient is set to 0.1. The clustering results are shown
in Figure 17, where six clusters are discovered by CAGS. The samples of NO. 1, NO. 2,
NO. 3, NO. 5, NO. 9, NO. 10 and NO. 11 are recognized as cluster I, the samples of NO. 6
and NO. 7 are recognized as cluster II, the samples of NO. 12 are recognized as cluster III,
the samples of NO. 8 are recognized as cluster IV, the samples of NO. 4 are recognized as
cluster V and VI classes. In this stage, less tool wear information than seen in Test I can be
directly seen in the distribution of cutting force features, because of the influence of the
change cutting parameters. Specifically, samples with the same tool wear condition (NO.
1 and NO. 6) may be distributed in different regions, and vice versa (NO. 7 and NO. 12).
Thus, tool wear information is difficult to be separated from cutting parameters. However,
as shown in Table 3, the cluster density can be used to indicate tool wear conditions as its
insensitivity to cutting parameters.

In addition, the cluster density factor War is used to predict tool wear states under
three different cutting parameters. It can be found that War provides fault tolerance to the
whole TCM system, although an incorrect partition is obtained by CAGS. For example, the
samples of NO. 4 are partitioned into cluster V and VI, which should be recognized as a
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single cluster. However, the War of cluster V and VI are 0.25 and 0.27, respectively. The
monitoring of tool wear condition is unaffected.
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Table 3. Tool wear condition monitoring results of Test II.

Test ID Cutting
Number VB (mm)

The Actual
Tool Wear
Condition

Clustering
Label

Cluster
Density War

The Predicted
Tool Wear
Condition

A

NO. 1 0 Initial wear I 11 0 Initial wear
NO. 2 0.07 Initial wear I 11 0 Initial wear
NO. 3 0.09 Initial wear I 11 0 Initial wear
NO. 4 0.26 Middle wear V, VI 4.57, 4.33 0.25, 0.27 Middle wear

B

NO. 5 0 Initial wear I 11 0 Initial wear
NO. 6 0.07 Initial wear II 8.85 0.04 Initial wear
NO. 7 0.11 Middle wear II 8.85 0.04 Initial wear
NO. 8 0.29 Middle wear IV 4.21 0.29 Middle wear

C

NO. 9 0 Initial wear I 11 0 Initial wear
NO. 10 0.07 Initial wear I 11 0 Initial wear
NO. 11 0.11 Middle wear I 11 0 Initial wear
NO. 12 0.31 Severe wear III 4 0.31 Severe wear

In this Test III, samples of the turning process are fed into CAGS, where the noise
coefficient is set to 0.2, the resolution coefficient is set to 1, the halo coefficient is set to 0.5, and
the merge coefficient is set to 0.1. Clustering results are shown in Figure 18, where the five
groups of samples are finally clustered into four classes. Based on clustering results, the War
of each cluster is calculated and listed in Table 4. The predicted wear conditions fully match
with the actual tool wear conditions, although the War of cluster III has a difference with the
VB of NO. 3 and NO. 4. The results of this test demonstrate the robustness of the proposed
TCM system, which is effective for variable cutting processes such as milling and turning.
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Table 4. Tool wear condition monitoring results of Test III.

Cutting
Number VB (mm) The Actual Tool

Wear Condition
Clustering

Label
Cluster
Density War The Predicted Tool

Wear Condition

NO. 1 0 Initial wear I 12.25 0 Initial wear
NO. 2 0.06 Initial wear II 8.08 0.09 Initial wear
NO. 3 0.28 Middle wear III 5.90 0.19 Middle wear
NO. 4 0.29 Middle wear III 5.90 0.19 Middle wear
NO. 5 0.34 Severe wear IV 4.27 0.34 Severe wear

4.3. Performance Comparison

In this paper, the prediction accuracy of the proposed method is verified by comparing
the recognition accuracy with several state-of-the-art supervised methods, including BP
neural network, Bayesian network and support vector machine (SVM). The verification
is achieved based on the dataset of Test II. In order to realize quantitative analysis of
prediction accuracy, the accuracy [29] of different models is calculated by comparing the
predicted tool wear states with the actual tool wear states. As it is known that the training
process is necessary in supervised algorithms, to compare the experimental results more
objectively, three groups of data under cutting parameters A, B and C in test II are utilized
as the training data, respectively. Correspondingly, the other two groups of data are
taken as the test data. For each of the above supervised methods, optimum parameters
are selected after many tests. The obtained results are shown in Tables 5–7, while the
unsupervised method proposed in this paper can directly obtain the prediction results
without any training, and the prediction accuracy is shown in Table 8. It can be seen that
the proposed method outperforms the state-of-the-art supervised methods. For each test
dataset in Tables 5–7, prediction accuracy varies with the training dataset, demonstrating
that supervised monitoring methods are unstable with respect to cutting parameters. In
addition, the prediction accuracy of our method for Test I and Test III is 94% and 100%,
respectively. However, it is evident that worse results would be obtained by supervised
methods, when taking the data of Test II as the training dataset to process the data of Test I
or Test III.
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Table 5. Prediction accuracy of BP network on Test II.

Training Dataset
(Test ID)

Test Dataset

A B C

A - 67% 63%
B 83% - 72%
C 65% 66% -

Table 6. Prediction accuracy of Bayesian network on Test II.

Training Dataset
(Test ID)

Test Dataset

A B C

A - 62% 66%
B 75% - 70%
C 83% 53% -

Table 7. Prediction accuracy of SVM on Test II.

Training Dataset
(Test ID)

Test Dataset

A B C

A - 75% 50%
B 76% - 50%
C 75% 0% -

Table 8. Prediction accuracy of proposed method on Test II.

A B C

Accuracy 100% 75% 75%

5. Conclusions

In this paper, a cluster-based tool condition monitoring (TCM) system is established
and validated. The proposition of a novel clustering method based on adjacent grids
searching (CAGS) and a tool condition monitor based on cluster density factor are the key
aspects. The main conclusions of this work are listed as follows.

(1) The proposed TCM system performs successfully under variable cutting parameters
and even variable cutting processes such as milling and turning. The prediction accu-
racy of our system for Test I, Test II (A, B, C) and Test III is 94%, 100%, 75%, 75% and
100%, respectively. In contrast, the highest prediction accuracy of BP neural network,
Bayesian network and SVM for Test II (A, B, C) is 83%, 75% and 72%, respectively.
Specifically, in the TCM of milling process under variable cutting parameters (Test II),
our system presents robustness when the dataset is fed in total into the TCM system.
This capability is required in the case of unknown cutting parameters.

(2) An important statistical correlation between tool wear and the distribution of cutting
force features is revealed to find robust information indicating tool wear conditions.
Since the cluster density is dimensionless, it will not be affected by changes in the
magnitude of the cutting force caused by variable cutting parameters. Moreover, only
a common time-domain feature extraction is needed rather than frequency-domain
analysis or even time-frequency analysis.

(3) A novel clustering method CAGS is proposed to realize unsupervised monitoring.
Most unsupervised methods are difficult to use in TCM since the output labels could
not match real-world information. However, in addition to randomly generated
cluster labels, CAGS also outputs further intrinsic information of the dataset such as
cluster density. This intrinsic information could be used to indicate the real-world
properties of each cluster.
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(4) A cluster density factor is proposed to accomplish the TCM process, which can convert
the cluster density into the value reflecting actual tool wear. Experimental results
indicate that the factor is easy to obtain by using a stationary truncation coefficient T,
which is set to 5.54 in all tests in this paper. This factor can be widely used in variable
cutting processes.

(5) From the perspective of experimental design, a full test set is conducted. A whole
life-cycle wear experiment under the same milling condition is firstly carried out to
simulate the TCM of cutting process of a large-scale workpiece. A tool wear experi-
ment under variable milling conditions is then performed to verify the effectiveness of
our method for machining a complex part with multiple operations. This is completely
different from the composition of multiple independent cutting tests, since the cutting
signals are mixed up as can be seen in Figure 13. In this experiment, the TCM system
is blind to the switching of cutting parameters. Finally, a tool wear experiment under
the same turning condition is conducted to test the robustness of the proposed system
on a different cutting mode.

Further works of the proposed method include optimizing CAGS to provide more
accurate density information by adapting higher dimensional feature space and constructing
the common feature sets for more cutting processes such as drilling and ultra-precision milling.
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