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Abstract: Recently, some facilities have utilized the dual-energy subtraction (DES) technique for chest
radiography to increase pulmonary lesion detectability. However, the availability of the technique is
limited to certain facilities, in addition to other limitations, such as increased noise in high-energy
images and motion artifacts with the one-shot and two-shot methods, respectively. The aim of this
study was to develop artificial intelligence-based DES (AI–DES) technology for chest radiography to
overcome these limitations. Using a trained pix2pix model on clinically acquired chest radiograph
pairs, we successfully converted 130 kV images into virtual 60 kV images that closely resemble the
real images. The averaged peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) between
virtual and real 60 kV images were 33.8 dB and 0.984, respectively. We also achieved the production of
soft-tissue- and bone-enhanced images using a weighted image subtraction process with the virtual
60 kV images. The soft-tissue-enhanced images exhibited sufficient bone suppression, particularly
within lung fields. Although the bone-enhanced images contained artifacts on and around the lower
thoracic and lumbar spines, superior sharpness and noise characteristics were presented. The main
contribution of our development is its ability to provide selectively enhanced images for specific
tissues using only high-energy images obtained via routine chest radiography. This suggests the
potential to improve the detectability of pulmonary lesions while addressing challenges associated
with the existing DES technique. However, further improvements are necessary to improve the
image quality.

Keywords: dual-energy subtraction; chest radiography; artificial intelligence; deep learning; pix2pix

1. Introduction

Lung cancer is the disease with the highest mortality and the second-highest inci-
dence of cancer worldwide [1,2]. Since early-stage lung cancer may have a better prog-
nosis with appropriate treatment, early diagnosis and accurate staging are critical [2,3].
Randomized controlled trials, including the National Lung Screening Trial (NLST), have
demonstrated that the use of low-dose computed tomography (CT) for lung cancer screen-
ing reduces the mortality by 20% compared to chest radiography [4,5]. Chest radiography
lacks effectiveness [4], and the American Cancer Society Lung Cancer Screening Guidelines
recommend low-dose CT rather than chest radiography [6]. Nevertheless, due to the low
cost, low radiation dose, and high adoption rate of the equipment, chest radiography is
widely performed for lung cancer screening, in addition to low-dose CT [7–9].

Additionally, some facilities utilize the dual-energy subtraction (DES) technique for
chest radiography [10]. This technique can produce images that emphasize tissues with
particular linear attenuation coefficients [11] and typically produces soft-tissue-enhanced
and bone-enhanced images [12]. It has been reported that soft-tissue-enhanced images can
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improve the ability to detect pulmonary lesions [13–16]. Oda et al., compared the perfor-
mance of radiologists in detecting pulmonary lesions by clinical chest radiography with
and without the DES technique, and their receiver operating characteristic (ROC) analysis
demonstrated the statistically significant superiority of using DES images [15]. Manji et al.,
reported that soft-tissue-enhanced images obtained through the DES technique statistically
significantly reduced the reading time of radiologists and slightly improved the diagnostic
accuracy of pulmonary lesions [16]. The superiority of soft-tissue-enhanced images ob-
tained via the DES technique in the diagnosis of COVID-19 has been also confirmed [17].
Furthermore, research on advanced DES techniques, such as the optimization of exposure
conditions [18] and the automatic determination of weight factors for bone and soft tissue
enhancements in the subtraction process [19], has been actively reported.

However, such a DES technique has some problems. First, only limited numbers of
facilities own the necessary systems. Second, there are several problems associated with
the imaging techniques of the one-shot and two-shot methods. In the one-shot method,
two images are simultaneously obtained at different energies by placing a thin copper plate
between two imaging detectors [20]. Because of the copper plate, noise characteristics can
deteriorate the quality of high-energy images [21]. In the two-shot method, on the other
hand, X-ray exposure is carried out twice at different energies [22]. As a result, motion
artifacts and dose increments are unavoidable.

Therefore, we aim to address these issues by developing a technique to virtually
generate low-energy images from high-energy images using artificial intelligence (AI). This
development of AI-based DES (AI–DES) does not require a specific imaging detector with a
metal plate or multiple exposures. Moreover, the AI-DES can arbitrarily select the enhanced
tissue by adjusting the weight of the image subtraction process. Consequently, our AI-DES
has the potential to provide more enriched information than existing methods, where
bone-suppressed images are directly produced [23–31]. For instance, Liu et al., developed
an AI model to generate DES-like soft tissue images, but their approach primarily focused
on suppressing bone tissues, making it difficult to selectively enhance specific tissues [25].
Similarly, Bae et al., developed a generative adversarial network (GAN)-based bone sup-
pression model for chest radiography, and demonstrated that its ability to detect pulmonary
lesions is comparable to that of a DES technique [26]. Cho et al., achieved bone suppression
on pediatric chest radiographs by utilizing computed tomographic images of adults and
pediatrics to train the AI model [27]. In contrast, our AI-DES, by adapting weighted image
subtraction with artificially synthesized low-energy images, has a significant advantage
in terms of generating not only soft-tissue- or bone-enhanced images but also selectively
enhanced images of tissues with a specific linear attenuation coefficient. However, this
paper mainly focuses on generating soft-tissue- and bone-enhanced images for comparison
with existing DES systems as an initial report on the development of AI-DES.

We employed pix2pix [32], which is a well-established image-to-image translation net-
work, to construct the AI network. Pix2pix has been widely used in many image domain
transformation tasks, such as image colorization and style transfer. It is also extensively
used for medical imaging. Yoshida et al., adopted pix2pix to correct motion artifacts in mag-
netic resonance (MR) images [33]. Sun et al., achieved denoising of low-dose single-photon
emission-computed tomography (SPECT) images using pix2pix [34]. Although pix2pix usu-
ally requires identical positional information between the paired images, our task of generating
low-energy images from high-energy input images can deal with this constraint.

The main contributions of this work are as follows:

1. We developed an AI-based DES system to provide soft-tissue- and bone-enhanced
images using virtually generated low-energy images;

2. The virtual low-energy images were generated through the AI technique from only
high-energy images, which can be obtained by routine chest radiography;

3. AI-DES has the potential to provide specific tissue-enhanced images while avoiding
issues associated with DES systems, such as multiple exposures and noise increments;
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4. A comparison of the generated images with those produced by a clinically applied
system suggests that AI-DES can achieve superior sharpness and noise characteristics.

Furthermore, although this is a future-expanded perspective, the novelty of the AI-DES
is that it allows for the selection of enhanced tissues by adjusting the weight in the image
subtraction process, in comparison to existing works.

In Section 2, we first introduce the developed AI-DES system. Then, we describe
image datasets and prepossessing steps for AI training. Next, we specify the training setups
and explain the methods used to evaluate similarity between the generated and ground
truth images. Section 3 presents the generated images in comparison to the ground truth.
Section 4 discusses the performance, limitations, and future perspectives of our AI-DES.
Finally, Section 5 summarizes and concludes this work.

2. Materials and Methods
2.1. AI-DES Development

Our developed AI-DES consists of an AI network and a weighted image subtraction
process. We first describe the AI network, then explain the image subtraction process.

2.1.1. AI Network

We employed pix2pix for our AI network to convert high-energy images into low-
energy images. This is a variant of a conditional generative adversarial network (cGAN) [35].
Unlike a typical cGAN that produces images from a random noise vector, the generator
of pix2pix takes images as input and transforms them into images of a different domain
by learning the relationship between the two domains [32]. The discriminator receives an
image pair of two domains and attempts to determine whether the pair is real or fake.

Figure 1 illustrates the pix2pix network used in this study. The generator learns to
convert high-energy images into virtual low-energy images similar to the corresponding
real low-energy images. Simultaneously, the discriminator aims to distinguish between the
pair of real high-energy and virtual low-energy images and the pair of real high-energy
and low-energy images. The learning process is expressed as a min–max game with an
adversarial loss function given by

min
G

max
D

LcGAN(G, D) = E
x∼Phigh ,y∼Plow

[logD(x, y)] + E
x∼Phigh

[log(1− D(x, G(x)))], (1)

where x ∼ Phigh represents high-energy images, y ∼ Plow represents low-energy images,
G is the generator, and D is the discriminator [34]. G attempts to minimize Equation (1),
while D attempts to maximize it.

Pix2pix also imposes a constraint on the L1 distance between the generated and real
images to make the generator produce images that are closer to the ground truth, as follows:

L1(G) = E
x∼Phigh ,y∼Plow

[||y− G(x)||1]. (2)

Thus, the objective function of pix2pix can be expressed as:

G∗ = min
G

max
D

LcGAN(G, D) + λL1(G), (3)

where λ = 100 was used in this study.
We implemented the pix2pix network by modifying a publicly available code [36].

Specifically, we changed the resolution of each layer of the generator and discriminator to
produce images with a resolution of 1024 × 1024. Otherwise, the same architecture as the
original pix2pix [32] was used. The details are described below and in Section 2.3.
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Figure 1. AI network diagram using pix2pix. The generator attempts to produce virtual low-energy
images that resemble the real low-energy images from high-energy images. The discriminator aims
to distinguish between the pairs containing virtual images and the real image pairs.

Figure 2 and Table 1 show the generator network architecture in AI-DES. The generator
has a 16-layer U-Net [37] structure with symmetric encoder and decoder parts. The encoder
part has eight layers, consisting of two-dimensional convolution (Conv2d: kernel size = 4,
stride = 2, padding = 1), batch normalization (BN), and a LekyReLU activation function.
The decoder part also has eight layers, consisting of two-dimensional deconvolution
(Deconv2d: kernel size = 4, stride = 2, padding = 1), BN, and a ReLU activation function.
Dropout layers were inserted between the first and second, second and third, and third
and fourth layers of the decoder part. The tanh activation function was applied to the final
layer to output the virtual low-energy images. Most importantly, the U-Net architecture
has skip connections that concatenate the mirrored encoder and decoder layers to recover
high-frequency components.

The discriminator has five convolutional neural network (CNN) layers, as shown in
Figure 3 and Table 2. The first layer takes six channels, since the discriminator receives a
pair of two images, each with three channels. The first through third layers downsample the
feature maps using Conv2d (kernel size = 4, stride = 2, padding = 1), while the fourth and
final layers reduce the map resolution by one pixel using Conv2d (kernel size = 4, stride = 1,
padding = 1). The discriminator employs the PatchGAN [38] approach to evaluate multiple
image patches and averages the loss over the output map (126 × 126 × 1) to distinguish
between real and virtual images.
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Figure 2. Generator network used in AI-DES. The network has a 16-layer U-Net structure. The
skip connections concatenate the mirrored encoder and decoder layers to recover high-frequency
components in the generated image quality.

Table 1. Generator architecture in AI-DES.

Type Norm 1, Dropout Activation Input Shape 2 Output Shape 2

Encoder

Layer1

Conv2d (4,2,1)

–

LekyReLU

1024 × 1024 × 3 512 × 512 × 64

Layer2

BN

512 × 512 × 64 256 × 256 × 128
Layer3 256 × 256 × 128 128 × 128 × 256
Layer4 128 × 128 × 256 64 × 64 × 512
Layer5 64 × 64 × 512 32 × 32 × 512
Layer6 32 × 32 × 512 16 × 16 × 512
Layer7 16 × 16 × 512 8 × 8 × 512
Layer8 8 × 8 × 512 4 × 4 × 512

Decoder

Layer9 Deconv2d (4,2,1) BN

–

4 × 4 × 512 8 × 8 × 512

Layer10

ReLU+Deconv2d (4,2,1)

BN+Dropout
8 × 8 × 512 16 × 16 × 512

Layer11 16 × 16 × 512 32 × 32 × 512
Layer12 3 2× 32 × 512 64 × 64 × 512

Layer13
BN

64 × 64 × 512 128 × 128 × 256
Layer14 128 × 128 × 256 256 × 256 × 128
Layer15 256 × 256 × 128 512 × 512× 64

Layer16 – Tanh 512 × 512 × 64 1024 × 1024 × 3
1 Normalization. 2 Width × height × channel.
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Figure 3. Discriminator network used in AI-DES. The network comprises five convolutional neural
network layers. It takes either a pair of real high-energy and virtual low-energy images or a pair
of real high-energy and low-energy images as input . The network then outputs a feature map that
determines whether the pair is real or fake.

Table 2. Discriminator architecture in AI-DES.

Type Normalization Activation Input Shape 1 Output Shape 1

Layer1
Conv2d (4,2,1)

–

LekyReLU

1024 × 1024 × 6 512 × 512 × 64

Layer2
BN

512 × 512 × 64 256 × 256 × 128

Layer3 256 × 256 × 128 128 × 128 × 256

Layer4
Conv2d (4,1,1)

128 × 128 × 256 127 × 127 × 512

Layer5 – – 127 × 127 × 512 126 × 126 × 1
1 Width × height × channel.

2.1.2. Weighted Image Subtraction

We assumed that raw data of monochromatic low- and high-energy images in direct-
conversion flat-panel detector (d-FPD) systems have pixel values of PL and PH , respectively
as expressed by [11,39]

log10(PL) = −(µB(L) · tB + µS(L) · tS), (4)

log10(PH) = −(µB(H) · tB + µS(H) · tS), (5)

where µB and µS are the linear attenuation coefficients of bone and soft tissues at low (L)
or high (H) energy, respectively; tB and tS denote the thicknesses of bone and soft tissues,
respectively; and PL and PH are proportional to low- and high-energy X-ray intensity
transmitted through the tissues, respectively, since d-FPD systems have a linear response
to X-ray intensity. The weighted subtraction of Equations (4) and (5) is given by:

KH · log10(PH)− KL · log10(PL) = (KL · µB(L)− KH · µB(H))tB + (KL · µS(L)− KH · µS(H))tS, (6)

where KL and KH are weight factors.
When (KL · µB(L)− KH · µB(H)) equals zero, Equation (6) represents the emphasized

difference in logarithmically amplified data of X-ray intensity transmitted through soft
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tissues at low and high energies. Finally, it corresponds to the pixel values (Psub) of the
specific tissue-enhanced images, as expressed by

Psub = KH · log10(PH)− KL · log10(PL). (7)

Apart from the raw data, such as PL and PH , Psub denotes the pixel values for viewing,
where log-amplified X-ray intensity distribution is exhibited.

Here, the weight factor (ωS) for soft-tissue-enhanced image generation is given by:

ωS =
KH
KL

=
µB(L)
µB(H)

. (8)

Similarly, the weight factor (ωB) for bone-enhanced images is given by:

ωB =
KH
KL

=
µS(L)
µS(H)

. (9)

It should be noted that ωS and ωB in Equations (8) and (9) represent theoretical values.
In this study, we obtained the Psub of soft-tissue- and bone-enhanced images by using the
raw data of real high-energy and virtual low-energy images, as expressed by

Psub = ω · log10(PH)− log10(PL), (10)

where ω is a weight factor. We adjusted the value of ω for each test case to most selectively
emphasize the target tissues. We focused on generating soft-tissue- and bone-enhanced
images to compare the performance with that of an existing DES system. However, the
AI-DES can provide the option of arbitrarily targeting specific tissues for enhancement by
adjusting the weight factor.

2.2. Dataset Preparation

We used raw data of chest radiographs taken by a clinically applied two-shot DES
system (Discovery XR656, GE Healthcare, Chicago, IL, USA) at Kitasato University Hos-
pital (Sagamihara City, Japan) to create our datasets. The tube voltages were 130 kV for
high-energy images and 60 kV for low-energy images. The imaging detector, consist-
ing of amorphous silicon with a cesium iodide (CSI) scintillator, is a d-FPD type with
3524 × 4288-pixel arrays. The total number of cases was 300.

We first cropped Digital Imaging and Communications in Medicine (DICOM)-formatted
images with a 12 bit contrast resolution to 2022 × 2022 pixels centered on the lung
region. The images were converted into tagged image file format (TIFF) images with
1024 × 1024 pixels using the bilinear interpolation method. The image pair consisting of
130 kV and 60 kV images from each patient was input to AI–DES after being normalized to
a range of 0–1 for training. We used 240 pairs of images for training, 30 pairs for validation,
and 30 pairs for testing. ImageJ software (1.53e, National Institutes of Health, Bethesda,
MD, USA) was used to set up these datasets.

2.3. Training Environment and Parameter Settings

We used an Intel Core (TM) i7-9700K CPU and an NVIDIA GeForce RTX 2080 with
8 GB GPU memory for training. GPU acceleration was enabled using CUDA version
10.0.130, and cuDNN version 7.4.1.5-1+cuda10.0 was utilized. The implementation was
performed using Python 3.7.10 and the PyTorch 1.10.0 framework on an Ubuntu 18.04.4 LTS
operating system. We set the maximum number of epochs to 4000 and the batch size to 2.
Adam optimization was used with the following momentum parameters: β1 = 0.5 and
β2 = 0.999. We dynamically adjusted the learning rates as the training progressed. The
learning rate of the generator started at 0.002 and decreased linearly by 0.002/4000 per
epoch. The learning rate of the discriminator also decreased linearly by 0.02/4000 per
epoch, starting from 0.02.
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2.4. Performance Evaluation

We evaluated similarity between real and virtually generated 60 kV images for the
test dataset cases. In addition, image quality of soft-tissue- and bone-enhanced images
generated by our AI-DES was evaluated based on their similarity to those obtained by
Discovery XR656, which is assumed to be the ground truth. Frèchet inception distance
(FID) has been widely used for performance evaluation of GAN models [40,41]. However,
this metric measures distances between synthetic and real data distributions; that is, FID
evaluates not the similarity between each real and fake sample but the entire similarity
between the two groups. Hence, we evaluated the similarity between each generated image
and its corresponding ground truth using the peak signal-to-noise ratio (PSNR), structural
similarity (SSIM) [42,43], and multiscale SSIM (MS-SSIM) [44] instead of FID.

PSNR is an index based on the perceived sensitivity of noise components. It calculates
the noise ratio relative to the maximum value between two images in decibels, as follows:

PSNR = 20 log10

(
Pmax

MSE

)
, (11)

where MSE is the mean square error (MSE) between two images, and Pmax is the maximum
value of the image pixels. In this study, Pmax was set to 1 because we normalized the pixel
values of each image dataset, as mentioned previously in Section 2.3. The higher the value
of PSNR, the more similar the two images are.

SSIM assumes image similarity using three components of brightness, contrast, and
structure [42]. It has been reported that SSIM is more consistent with human perception
and subjective evaluation than PSNR [45]. The images become more similar when the
SSIM value is closer to 1. SSIM is calculated by dividing each region of interest (ROI) and
averaging the respective SSIM values to estimate the overall similarity between the two
entire images (x,y). We set the ROI size to 3 × 3 in this study. The calculation of SSIM
between two corresponding ROIs is defined as follows:

SSIMROI(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (12)

where µx and µy are the local averages, σx and σy are the local standard deviations, and σxy
is local covariance. C1 and C2 are given by

C1 = (K1L)2, (13)

C2 = (K2L)2, (14)

where K1 = 0.01, K2 = 0.03, and L = 1 were used in this study.
MS-SSIM has been introduced as an alternative metric of SSIM to evaluate image

details at various resolutions [44]. It can overcome the shortcomings of SSIM, which tends
to underestimate spatial translation and overestimate image blurring [46]. MS-SSIM is
computed by combining the three components of SSIM on multiple scales, as follows:

SSIM(x, y) = [lM(x, y)]αM ·
M

∏
j=1

[cj(x, y)]β j [sj(x, y)]γj . (15)

The two images (x,y) are iteratively low-pass-filtered and downsampled by a factor of
2. The scale of the original image is 1, while that of the most reduced image is M. The
brightness is compared only at scale M, and we refer to this as lM(x, y). The contrast
and structure components are compared at each scale, denoted as cj(x, y) and sj(x, y),
respectively, for the jth scale. Wang et al. [44] obtained five-scale parameters in which
the SSIM scores agreed with subjective assessments: β1 = γ1 = 0.0448, β2 = γ2 = 0.2856,
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β3 = γ3 = 0.3001, β4 = γ4 = 0.2363, and α5 = β5 = γ5 = 0.1333. We set M = 5 and used these
five-scale parameters in the present study.

We also subjectively evaluated the image quality of the soft-tissue- and bone-enhanced
images generated by AI-DES in comparison to those obtained using Discovery XR656.
The subjective evaluation was conducted by three authors (A.Y., A.K., and T.I.), who are
all radiological technologists, to determine whether the both images of identical patients
looked similar.

3. Results
3.1. Generated Virtual Low-Energy Images

The real and 60 kV images virtually generated by our AI network for four test cases
are presented in Figure 4a–d. The real and generated images look quite similar to each
other. The calculated PSNR, SSIM, and MS-SSIM values for each case are shown at the
bottom of the figure. The average PSNR, SSIM, and MS-SSIM values across all test cases
were 33.8 dB, 0.984, and 0.957, respectively.

Figure 4. Examples of low-energy images virtually generated by our trained AI network. Four test
cases (a–d) are presented here. The similarity indices between real and virtual images are presented
at the bottom of each figure.

3.2. Soft Tissue and Bone Images

Figure 5 shows soft-tissue- and bone-enhanced images generated using Equation (10)
for four test cases. The weight factors (ω) used in the weighted subtraction are presented
in the lower-right corner of each image. As shown in the left column in Figure 5, the
soft-tissue-enhanced images demonstrate that the soft tissues were well-retained, and bone
tissues were effectively suppressed, although the edges of the clavicles, ribs, and spine
are faintly presented. On the other hand, as seen in the right column in Figure 5, the
bone-enhanced images exhibited relatively suppressed soft tissues. However, the enhanced
lower thoracic and lumbar spine are poorly visualized, as they appear to be blacked-out.
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Figure 5. Examples of soft-tissue- and bone-enhanced images generated by AI-DES for four test cases
(a–d). The weight factors used in the subtraction process are presented in the lower-right corner of
each image.
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Table 3 presents the average and standard deviation of PSNR, SSIM, and MS-SSIM
values across all test cases, evaluating the similarity between soft-tissue-enhanced images
obtained using AI-DES and Discovery XR656, as well as the similarity between bone-
enhanced images. Additionally, Table 3 includes weight factors used in weighted image
subtraction of AI-DES, as well as the similarity indices between the real and virtual 60 kV
images, as explained in Section 3.1. The PSNR, SSIM, and MS-SSIM values for soft-tissue-
and bone-enhanced images are significantly lower than the indices for 60 kV images. Table 3
also demonstrates that the values of ω varied slightly among patients, but ω values for soft
tissue enhancements were consistently higher than those for bone enhancements.

Table 3. Similarity indices (average ± standard deviation) for all test cases and weight factors used
to produce soft-tissue- and bone-enhanced images in AI-DES.

PSNR SSIM MS-SSIM Weight Factor

60 kV images (virtual and real) 33.8 ± 5.39 0.984 ± 0.00554 0.957 ± 0.0514 –
Soft tissue images (AI-DES and Discovery) 21.1 ± 2.56 0.711 ± 0.0551 0.794 ± 0.0640 2.47 ± 0.159

Bone images (AI-DES and Discovery) 18.3 ± 1.97 0.433 ± 0.0827 0.571 ± 0.101 1.52 ± 0.102

Figures 6 and 7 compare our soft-tissue- and bone-enhanced images, which were
generated from the real 130 kV and virtual 60 kV images, to those obtained using Discov-
ery XR656 for the respective cases. The weight factors and calculated PSNR, SSIM, and
MS-SSIM values are also shown for the soft-tissue- and bone-enhanced images. While the
Discovery system uses real 60 kV images in the subtraction process, our AI-DES utilizes
virtually generated 60 kV images. Not only in these two cases but most test cases, the
soft-tissue-enhanced images demonstrated that the bone shadows within the lung fields
were successfully suppressed in both systems. However, our soft-tissue-enhanced images
contained artifacts, implying the presence of thoracic and lumbar spines. Furthermore,
in some cases, the mediastinum or liver area appeared overly bright in our soft-tissue-
enhanced images when adjusting the contrast within the lung fields to match that in the
images produced by the Discovery system, as particularly seen in the case of Figure 7.

Subsequently, as compared in Figures 6 and 7, we confirmed that the bone images
produced by the Discovery system exhibited remarkably more selective enhancement for
bone tissues across the entire image. In contrast, our bone-enhanced images presented
comparably enhanced ribs but contained artifacts in and around the region where the lower
thoracic and lumbar spines should be depicted.

Figures 8 and 9 also compare the soft-tissue- and bone-enhanced images generated
by AI-DES to those generated by the Discovery system for other test cases, as well as
enlarged views of specific areas. The enlarged views revealed that the images generated
by AI-DES (the upper row in Figures 8b and 9b) exhibited superior sharpness and noise
characteristics, particularly in the bone-enhanced images, compared to those generated by
the Discovery system (the lower row in Figures 8b and 9b). Alternatively, the soft-tissue-
enhanced images generated by the Discovery system showed better contrast, particularly
in depicting pulmonary vessels and soft tissue lesions, and more effectively suppressed
bone shadows.

Taken together, our bone suppression within the lung fields was relatively successful ,
although the similarity indices were not substantially high. In other words, AI-DES was
able to selectively enhance soft tissues, especially within lung fields, comparable to the
existing DES system using only high-energy images. Nonetheless, bone edge artifacts and
excessive contrast were exhibited in the mediastinum and liver areas. The red arrows in
Figures 6 and 7 indicate pulmonary lesions. Although these lesions can already be easily
observed in the real 130 kV images, both AI-DES and the Discovery system successfully
enhanced the lesions in the soft-tissue-enhanced images.
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Figure 6. An example of soft-tissue- and bone-enhanced images generated by AI-DES with real
130 kV and virtual 60 kV images in comparison to the enhanced images generated by the Discovery
XR656 system. The weight factors and similarity indices between the enhanced images generated by
AI-DES and Discovery XR656 are presented. The red arrow indicates a pulmonary lesion.

Figure 7. Another example of soft-tissue- and bone-enhanced images generated by AI-DES with real
130 kV and virtual 60 kV images in comparison to the enhanced images generated by the Discovery
XR656 system. The weight factors and similarity indices between the enhanced images generated by
AI-DES and Discovery XR656 are presented. The red arrows indicate a pulmonary lesion.
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Figure 8. Comparison of soft-tissue- and bone-enhanced images obtained by AI-DES and Discovery
XR656 for a test case. (a) Overall views of the enhanced images. The weight factors and similarity
indices between the enhanced images generated the two systems are also presented. (b) Enlarged
views of the specific areas are enclosed by the orange and blue dotted boxes in the overall views.

Figure 9. Comparison of soft-tissue- and bone-enhanced images obtained by AI-DES and Discovery
XR656 for another test case. (a) Overall views of the enhanced images. (b) Enlarged views of specific
areas are enclosed by orange and blue dotted boxes in the overall views.
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4. Discussion

The main purpose of this study was to produce soft-tissue- and bone-enhanced images
from only high-energy images by developing an AI-DES system. The performance of the
AI model was assessed by image similarity between the generated and real low-energy
images. The overall performance of the AI-DES system was evaluated by comparing the
image quality of the soft-tissue- and bone-enhanced images with those produced by a
clinically applied DES system.

As shown in Figure 4, our AI–DES successfully generated virtual low-energy images
that closely resembled the real low-energy images. The image similarity indicated a high
level of the indices (PSNR = 33.8 dB, SSIM = 0.984 and MS-SSIM = 0.957). Our system
achieved this result without the need for a specific imaging detector with a metal plate or
multiple X-ray exposures. Consequently, AI-DES has the potential to reduce the image
noise and X-ray dose compared to existing DES systems. Additionally, its motion-artifact-
free nature resulting from avoidance of multiple exposures makes AI-DES particularly
valuable for elderly or critically ill patients who may have difficulty in holding their breath.

Furthermore, in the soft-tissue-enhanced images obtained via the weighted subtraction
process, bone tissues within the lung fields were effectively suppressed, although faint
residual bone edges or shadows were observed. We also confirmed that the contrast
of pulmonary lesions was clearly enhanced in some cases, as indicated by red arrows
in Figures 6 and 7. Nevertheless, the soft tissue contrast was slightly inferior to that of
the clinical system, as shown in Figures 8b and 9b. Alternatively, AI-DES demonstrated
advantages in terms of sharpness and noise characteristics. Overall, we subjectively verified
that the image quality in the lung fields is almost comparable to that in the clinically applied
system. However, these limited cases provide only weak evidence regarding the usefulness
of AI-DES for improving lesion detectability. Therefore, further investigation is needed to
determine whether AI-DES can truly improve the detectability for a larger number of cases.

The similarity indices (PSNR = 21.1 dB, SSIM = 0.711, and MS-SSIM = 0.794) for
our soft-tissue-enhanced images were considerably lower than the results of existing AI
models for bone suppression in chest radiography [23,25,28–31]. Zhou et al., generated
bone-suppressed chest radiographs with a resolution of 256 × 256 using a cGAN-based
model citeref-DcGANand reported an average PSNR of 35.5 dB and an SSIM of 0.975 for
the similarity between the generated images and the ground truth. Rajaraman et al., also
developed a CNN model called DeBoNet, which suppresses bones in chest radiographs
with a resolution of 256 × 256 [30]. They achieved image similarity to the ground truth
produced with commercial software, with an average PSNR of 36.8 dB, an SSIM of 0.947,
and an MS-SSIM of 0.985. The low similarity indices of our soft-tissue-enhanced images
can be attributed to bone edge artifacts and excessive contrast outside the lung fields, as
well as the presence of black or white areas beyond the body contours where pixel values
are nearly 0 or extremely high. Undoubtedly, our generated images need improvements by
artifact reduction. However, a more substantially meaningful comparative analysis would
have been provided by excluding the outer areas of the body contours for similarity index
calculation. Additionally, it should be noted that our image generation was accomplished
with a resolution of 1024 × 1024, which is certainly a greater challenge compared to
256 × 256 image synthesis.

On the other hand, the generated bone-enhanced images contained noticeable blacked-
out artifacts on and around the spines, despite the successful suppression of soft tissues
and the selective enhancement of ribs. The ribs and clavicles demonstrated significantly
superior sharpness and noise characteristics compared to the images obtained by the
Discovery system, as shown in Figures 8b and 9b. However, the visibility of the spines was
much lower than that of the clinically applied system, primarily due to the presence of
blacked-out artifacts. Considering the importance of selectively enhanced bone images for
the detection of bone fractures or tumors, addressing this issue is crucial. In addition, some
of the soft-tissue-enhanced images contained faint bone shadows, as previously mentioned.
We attribute these issues to the following three factors.
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First, the training dataset was limited to only 240 cases. Training the AI network on
a larger image dataset may address these issues, although our AI network has already
produced virtual low-energy images that closely resemble real images. In future studies,
we intend to investigate whether the training dataset contains misalignments between high-
and low-energy images owing to patient motion. Removing misaligned data may further
improve the performance of the AI network.

Secondly, we wonder whether the weight factors used in the subtraction process were
not optimized. We determined the individual values of ω for each patient to generate more
selectively enhanced soft tissue and bone images. However, these values may not have been
optimal. Moreover, bone thickness and density vary across different body locations, even
within the same patient. Accordingly, it is possibly challenging to keep all bone shadows
but completely eliminate soft tissues in the entire image with a single weight factor. Even
so, we believe that selectively enhanced tissue images aid in lesion detection if target
tissues were effectively enhanced. Therefore, we will attempt to selectively emphasize
target tissues by optimizing the weight factor in future studies.

Thirdly, the effect of quantization error was perhaps more prominently visualized
through log amplification in the subtraction process. Alternatively, the cause of the artifacts
may be attributed to the discrepancy between the virtual and real low-energy images,
despite their high similarity indices. We noticed that the location of black artifacts around
lower thoracic and lumbar spines in bone-enhanced images corresponded to areas with
excessively high X-ray absorption, where the pixel values ranged from 0 to 2 in real high-
energy and virtual low-energy images. We speculate that numerical errors of such small
values are further enhanced by logarithmic conversion, resulting in noticeable artifacts. We
performed the subtraction process using 12 bit image data, but in future studies, we plan to
use images with higher contrast resolution to eliminate artifacts.

Here, we discuss the computational complexity of our AI-DES. We adopted the widely
used pix2pix with a few changes, so its implementation was not a challenging task. Despite
using only 240 cases for training, the similarity between the produced and target images
was high enough to support stable performance. Although the network requires paired
data of high- and low-energy images, the preprocessing is far from a complex computation.
However, due to the high resolution of the generated images (1024 × 1024), the batch size
had to be limited to a maximum of two to prevent an excessive GPU load. Next, the AI-DES
requires the application of a weighted image subtraction process to the images generated
by the AI network. In our current method, the weight factors are determined manually
through visual inspection in order to emphasize the desired tissues to the greatest extent
possible. Taken together, we consider that the construction of our AI network is no more
complicated than those proposed in existing studies to directly generate bone-suppressed
images [23–31]. However, the image subtraction process, which is the latter part of AI-DES,
requires human intervention and time rather than computational complexity. While we
also aim to automate the subtraction process in future work, we anticipate that it will
involve complex computations, as attempted by Do et al. [19].

This study is also subject to some limitations, as described below. First, we used
anonymized image data and did not include any patient information, such as gender, age,
presence or absence of lesions, or medical history. Evaluating the performance separately
according to various categories may provide useful insights for further improvements in
this development. Particularly, a comparison of the performance between normal and
diseased patients would be valuable. Next, a bias may have been introduced introduced in
this study due to the use of image data collected at a single site using a specific imaging
system. It is necessary to verify the performance with other datasets in future studies.
Moreover, the image quality of the tissue-enhanced images generated by AI-DES was
assessed subjectively by only three radiological technologists. Future studies should involve
radiologists or thoracic physicians to evaluate the image quality more comprehensively.

To conclude this paper, we present one more points of superiority of the AI-DES
system. It is possible to create selectively enhanced images of tissues with any linear
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attenuation coefficient by adjusting the weight factor in the subtraction process. Although
this initial development report was focused on generating soft-tissue- and bone-enhanced
images, in future work, we aim to generate enhanced images targeting specific lesions
for individual patients. This approach will be feasible due to the utilization of virtual
low-energy images, since it differs from existing image processing approaches that directly
create bone-suppressed images [23–31].

5. Conclusions

Our developed AI–DES successfully generated virtual low-energy images from high-
energy images obtained in routine radiography. We demonstrated that the virtual low-
energy images have a high similarity to real images. Additionally, the AI-DES achieved
the production of soft-tissue- and bone-enhanced images through weighted subtraction
processing. The soft-tissue-enhanced images showed comparable quality, especially within
lung fields, to those produced by the existing DES system while avoiding difficulties such
as increased noise and exposure dose increments. The bone-enhanced images showcased
advantages in terms of sharpness and noise characteristics, although noticeable artifacts
on and around lower thoracic and lumbar spines need to be addressed. In future work,
we aim to improve the image quality, particularly in bone-enhanced image generation, by
making modifications to the AI-DES. It is also essential to evaluate the performance by
involving radiologists or thoracic physicians for a wide range of image cases.
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