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Abstract: Successful application of external photon beam therapy in oncology requires that the
dose delivered by a medical linear accelerator and distributed within the patient’s body is accurately
calculated. Monte Carlo simulation is currently the most accurate method for this purpose but is
computationally too extensive for routine clinical application. A very elaborate and time-consuming
part of such Monte Carlo simulation is generation of the full set (phase space) of ionizing radiation
components (mainly photons) to be subsequently used in simulating dose delivery to the patient.
We propose a method of generating phase spaces in medical linear accelerators through learning,
by artificial intelligence models, the joint multidimensional probability density distribution of the
photon properties (their location in space, energy, and momentum). The models are conditioned with
respect to the parameters of the primary electron beam (unique to each medical accelerator), which,
through Bremsstrahlung, generates the therapeutical beam of ionizing radiation. Two variants of
conditional generative adversarial networks are chosen, trained, and compared. We also present the
second-best type of deep learning architecture that we studied: a variational autoencoder. Differences
between dose distributions obtained in a water phantom, in a test phantom, and in real patients
using generative-adversarial-network-based and Monte-Carlo-based phase spaces are very close to
each other, as indicated by the values of standard quality assurance tools of radiotherapy. Particle
generation with generative adversarial networks is three orders of magnitude faster than with Monte
Carlo. The proposed GAN model, together with our earlier machine-learning-based method of
tuning the primary electron beam of an MC simulator, delivers a complete solution to the problem of
tuning a Monte Carlo simulator against a physical medical accelerator.

Keywords: cancer; machine learning; medical simulations; neural networks; radiation therapy

1. Introduction

External photon beam therapy (EBRT) is universally applied in treating oncological
diseases. The success of EBRT crucially depends on accuracy in the design and delivery
of the therapy plan, the quality of which must be evaluated prior to its actual delivery
to the patient. As determined by several factors, which include the type of cancer, the
patient’s condition, and other medical considerations, the medical staff of the oncology team
formulate the therapy goals of EBRT, which are next implemented within the treatment
planning system (TPS). The therapy plan is then designed by the TPS to best meet the
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required therapy goals within the set of pre-defined clinical tolerances [1]. An executable
therapy plan may be considered as a uniquely specified sequential schedule according
to which various parts of the medical linear accelerator (linac) system—the gantry head,
the main collimators, the leaves of the multileaf collimator, the therapy table, the beam
intensity and timing controls, etc.—are to be moved or controlled in order to accurately
deliver the ionizing radiation, so as to obtain the required distribution of the dose within
the body of the patient.

At the first step of radiotherapy quality control, it is verified that the developed therapy
plan meets the desired therapy goals, e.g., that the dose delivered to any part of the target
volume is not lower than that prescribed, or that the dose delivered to organs at risk (such
as the spinal cord) does not exceed any threshold value specified by the oncologist.

At the second stage of quality control, it is verified that the therapy plan that has passed
the first stage of quality control can be correctly executed by the linear accelerator (linac)
system. The planned dose of ionizing radiation is delivered to a specialized phantom, and
the correctness of the planned 3D dose distribution is estimated from measurements made
with this phantom. Any discrepancies between the measured and planned (calculated)
dose distributions must then be carefully assessed before the patient can be actually treated.
For example, it may occur that the TPS has designed some excessive dose gradients in
the planned dose distribution. Moreover, the accelerator system may not deliver the dose
exactly as planned because, in the process of therapy planning, inhomogeneities within the
patient’s body are not handled accurately enough by the dose calculation algorithms of the
TPS. If the initially prepared and calculated therapy plan does not pass this second stage of
quality control, it must be re-designed and again submitted to second-stage quality tests.

It should be recognized that discrepancies between calculated and measured dose
distributions observed over the second stage of quality control may arise either from
inaccuracies in dose calculations or from inaccuracies in dose measurements. For example,
most treatment planning systems calculate the dose distribution within the irradiated
volume based on approximate algorithms, such as Pencil Beam Convolution (PBC) [2], the
Anisotropic Analytical Algorithm (AAA) [3], or the ACUROSE XB (AXB) algorithm [4].
An alternative approach is Monte Carlo (MC) modeling [5], also based on approximations
but more accurate than analytical algorithms, especially in the task of determining dose
distributions in heterogeneous regions [6], which may widely differ in mass density, as is
the case for lung and bone volumes in radiotherapy.

The current challenges in applying MC modeling in the clinical radiotherapy environ-
ment are not only due to high computational costs but also to the need to appropriately tune
the primary electron beam parameters in the MC simulator of a medical accelerator—in
order to align the MC-calculated dose distributions with those actually measured under
controlled conditions, typically in water phantoms used in clinical dosimetry.

A machine-learning-based solution to resolve this MC tuning issue has been demon-
strated in our previous work [7]. In particular, the results of Monte Carlo simulations of
medical linear electron accelerators depend on the values of up to four parameters of the
primary electron beam, which, through the Bremsstrahlung process, generates the X-ray
radiotherapy beam. In MC simulations of a specific linear accelerator, uncertainties in the
exact values of these parameters are a limiting factor. In this previous work, we showed
how to reconstruct these primary beam parameters using machine learning tools, from
measurements of depth and lateral dose distribution profiles in a water phantom.

The next step in the MC simulation of dose delivery is to obtain the so-called phase
space in a plane perpendicular to the central axis of the beam of ionizing radiation. The
phase space is a collection of particles (photons, electrons, and positrons), where, for each
particle, its energy, momentum, and the coordinates of the point of crossing the phase
space plane are stored. The phase space plane is situated below the target, the flattening
filter, and the ionizing chamber. As the specification of particles crossing the phase space
plane is independent of any plan specification, the same phase space can be used for any
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therapy plan to simulate the transport of ionizing radiation over increasing depths of the
radiation beam.

A general disadvantage of using a fixed phase space is that uncertainties related to
the calculation of dose distributions in the volumes of phantoms or in the patient’s body
depend on the number of particles stored in the phase space. Decreasing the uncertainty of
dose calculations requires the addition of an increasingly larger number of particles to the
phase space. In Monte Carlo simulation, this is computationally very expensive.

Generative adversarial networks (GANs) have been proposed as a solution to speed up
this step, also leading to a decrease in disk space requirements for phase space storage [8].
Properties of particles in the phase space (position, direction of momentum, and energy)
can be generated by a GAN instead of a costly simulation. Such a GAN can then be used on
the fly for simulations in standard patient-specific quality assurance (QA) of radiotherapy
plans. For an introduction to GANs, we refer the reader to [9]. Among alternative phase
space modeling methods are continuous normalizing flow variational autoencoders and
Bayesian models sampled using Markov-Chain-Monte-Carlo-type algorithms [10–12].

Earlier work on GAN-based models has been limited to the generation of particles for
a single set of parameters of the primary electron beam. Thus, a phase space must be first
generated using MC, to be later used to train a linac-specific GAN. Finally, new particles
can be generated using the trained GAN. Consequently, if a phase space for a new set of
parameters of an electron beam is needed for a new linac device, the whole process of MC
data collection, training, and validation of a GAN model must be repeated.

Here, we propose to use a more general GAN architecture that can take any val-
ues of the parameters of the primary electron beam as input on which the GAN is
conditioned and then be applied to generate a corresponding phase space. Thus, the
proposed approach is applicable to any specific linear accelerator. The proposed GAN
model (which can be accessed at either https://github.com/taborzbislaw/PhSpGAN or
https://doi.org/10.5281/zenodo.7986115 for the exact version used in this work), together
with our previously developed machine-learning-based method of tuning the primary
electron beam of the MC simulator by exploiting measurements of depth and lateral dose
distribution profiles in a water phantom (https://github.com/taborzbislaw/DeepBeam),
delivers a complete solution to the problem of tuning the MC simulator against any specific
physical linear accelerator.

2. Materials and Methods
2.1. Linac Simulator

All computer models described in this paper exploited the Monte Carlo simulation
PRIMO software [13], version 0.3.1.1772, of the Clinac 2300C/D linear accelerator (Varian
Medical Systems Inc., Palo Alto, CA, USA) in 6 MV operation mode. The PRIMO software
has several variance reduction options, which enhance the MC-based generation of particles
in the phase space. In our case, only interaction forcing for electrons in the target was
activated. As for other variance reduction options, an additional discrete parameter (a
statistical weight) is assigned to each particle in the beam of ionizing radiation. For example,
when using splitting roulette [14] variance reduction, the statistical weight can acquire
four values, two of which are very rare. Because GANs are not designed to learn discrete
distributions (the differentiability of the generator of a GAN implies continuous outputs
of the generator), we used MC data generated without such variance reduction methods.
Running phase space generation without variance reduction increases the computational
cost of generating the phase space (and thus training data for our GAN models) but bears
no impact on the MC simulation of particles transported along the radiation beam.

2.2. Conditional Generation with Electron Beam Parameters

In this study, we focus on estimating the conditional multidimensional probability
distribution of parameters that characterize the three types of particles of ionizing radiation
present in the beam: photons, electrons, and positrons. In a typical phase space, approxi-

https://github.com/taborzbislaw/PhSpGAN
https://doi.org/10.5281/zenodo.7986115
https://github.com/taborzbislaw/DeepBeam


Appl. Sci. 2023, 13, 7204 4 of 14

mately 99.50% of particles are photons, 0.48% are electrons, and positrons constitute the
remaining 0.02%. In our phase space study, we consider only the probability distribution of
photon parameters, as other particles present in the phase space contribute a very small
fraction to the total dose. In particular, we have verified, in simulations performed for
volumes of water phantoms or of patient bodies, that removing all electrons and positrons
from the phase space and replacing them with photons sampled from the same probability
density distribution as that of photons already present in the phase space has no significant
effect on the spatial dose distribution. In fact, the probability distributions of parameters
of electrons or positrons can be learnt independently from the probability distribution
of photon parameters; thus, training GAN models for particles other than photons and
obtaining a mixture of all three types of particles is a straightforward extension of the
present work.

The aforementioned multidimensional probability distribution of parameters charac-
terizing particles of ionizing radiation can, in principle, be conditioned on four parameters
of the primary electron beam used in the MC simulation of dose delivery: the average
energy of electrons colliding with the target, the full width at half maximum (FWHM) of
the distribution of electron energies, the size of the focal spot, and the beam divergence [7].
Of these four parameters, the FWHM of the energy spectrum of the electron beam was
previously found not to be identifiable [7] against standard laboratory measurements of
dose distribution profiles in water phantoms (i.e., its value bears no significant effect on the
shapes of these profiles), so, in this work, the default value of FWHM = 0 MeV is assumed.

Photons in the phase space are described by six parameters: position coordinates X, Y
in the plane perpendicular to the beam axis; the direction of momentum (MX, MY, MZ),
which is a unit vector; and the energy of the photon. The GAN models considered in this
study are thus trained to learn the 6D probability distribution of the above six photon
parameters conditioned on a 3D vector of parameters of the primary electron beam.

2.3. GAN Architecture

Two different conditional GAN architectures derived from the Wasserstein GAN
model [15] were compared: CGAN [16] and Robust CGAN (denoted RoCGAN) [17].
Neural network architectures of both the CGAN and RoCGAN models employ the same
discriminator but differ in the generator architecture. The discriminator consists of four
consecutive dense layers with 400 neurons each, with a leaky ReLU activation function. A
vector of six parameters of a photon concatenated with the three parameters of the primary
electron beam serves as input to the discriminator. The output, when transformed by a
sigmoid function, is the probability that the sample was obtained from the true distribution
(however, as Wasserstein loss is used during training, this sigmoid transformation is not
applied at the training phase). Values of hyperparameters were selected based on prior
results [8].

The CGAN generator takes as input a Gaussian noise vector of length 8 with zero
mean and an identity covariance matrix concatenated with three parameters of the electron
beam. Initial layers have the same structure as that of the discriminator, except that the last
layer consists of 400 neurons with a sigmoid activation function. It is then followed by a
dense layer composed of six neurons with no activation, corresponding to the generated
parameters of photons. Their outputs are truncated to ranges [0, 6] for energy (in MeV),
[−200, 200] for particle coordinates (in mm), [−1, 1] for momentum direction components
perpendicular to the beam axis, and [0, 1] for the coordinate of momentum parallel to the
beam axis (unit-free).

The RoCGAN generator is also supplied by the same input as that of the CGAN
generator, and an additional input with a vector of six values representing the parameters
of a real photon. Both inputs are independently transformed by two layers of the same type
as that applied in the CGAN generator. Next, there are two copies of the same layers, one
for each input. Weights in these layers are kept identical in the learning process. They have
the same architecture as the CGAN generator, starting with the part with 400 dense layers
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until output truncation. The final output has six parameters for the generated photon and
six parameters for the true photon that was provided as an input. Thus, the generator of a
RoCGAN model learns simultaneously two tasks in its two partially shared branches: the
task of generating photons at its first output from noise at the first input, and the task of
reconstructing at the second output the real photons presented at the second input.

At the photon generation stage, the CGAN receives as input an 8D Gaussian noise
variable with zero mean and an identity covariance matrix concatenated with a 3D vector
of conditional parameters. When generating new photons, RoCGAN receives as its first
input the same data as the CGAN. The data presented at the prediction stage at the second
input of a RoCGAN can be arbitrary, as the second output is ignored when generating
photons.

CGAN and RoCGAN also differ in the loss function used during training. In the case
of CGAN, it is simply the Wasserstein loss, while, in the case of RoCGAN, it is the sum of
the Wasserstein loss, the mean square error between the second input and the second output
(autoencoder loss), and the mean square error between the latent vectors of its two branches.
The details of implementation can be found directly in the code, which is available at https:
//github.com/taborzbislaw/PhSpGAN or https://doi.org/10.5281/zenodo.7986115.

2.4. InfoVAE Architecture

Various architectures of the variational autoencoder (VAE) [18] family were tested
as alternatives to models of the generic adversarial network family. The best results
were obtained for the model of the Information Maximizing Variational Autoencoders
(InfoVAE) [19] family, which uses the Maximum Mean Discrepancy (MMD) function [20]. A
basic autoencoder architecture comprising two symmetrical neural networks, and encoder
and decoder, connected with a latent layer, was proposed as a generalization of the PCA
technique for dimensionality reduction problems. Such architectures lacked, however,
content creation capabilities because of irregularities in the latent space. To handle this
deficiency, significant modification was proposed, which led to defining the variational
autoencoder (VAE). Any VAE architecture is non-symmetric by definition, where the
encoder maps a data instance to a smooth distribution over the latent space, rather than
to a single point. This, in turn, helps to reproduce the complicated patterns present in a
given data set, also enabling new data generation. The InfoVAE consists of two neural
networks, an encoder and a decoder, where the second network acts as a generator. The
encoder network consists of a common part and two analogous paths responsible for the
vector of expected value and vector of variance. The common part consists of 6 layers. The
first layer takes 6 phase space parameters as input and converts them into 200 parameters
(6, 200). The second layer expands the 200 parameters to 400 (200, 400). This is followed
by 4 layers of 400 neurons each. Then, a layer of (400, 400), (400, 200), and (200, 4) follows
for each of the two paths mentioned. Thus, the chosen architecture features a 4D latent
space. After each of these layers, except for the last one, a batch normalization layer and
leakyReLU activation functions are added. The decoder consists of 9 layers. The first layer
takes 4 parameters as input and extends them to 200 (4, 200), and the second one extends
the received 200 to 400 (200, 400). The next 5 layers have 400 neurons, followed by a layer
that reduces the number of parameters from 400 to 200 (400, 200), and, finally, a layer that
reduces this from 200 to 6 parameters that represent parameters of the generated photon
(200, 6). After each of the layers in the decoder, except for the last one, the ReLU activation
function is used. In the case of the InfoVAE model, parameter truncation is not used. The
decoder network is used to generate new photons by supplying it with a 4D Gaussian noise
vector at the input.

2.5. Training and Testing Data

To learn the conditional six-dimensional probability distribution of parameters charac-
terizing the particles of ionizing radiation, the values of the three conditional parameters
for the training set were taken on a regular grid with mean energy between 5.6 MV and
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6.4 MV in 0.1 MV steps, the focal spot size ranging between 0 mm and 4 mm in 0.5 mm
steps, and beam divergence ranging between 0° and 3° in 0.5° steps. For each of these
567 grid nodes, 107 photons were generated by MC simulations and used for training. To
obtain a smooth energy spectrum, photons originating from electron–positron annihilation
(about 1% of all photons) were removed from the training data.

Testing of the trained models was performed on 10 selected sets of electron beam
parameters at points between nodes of the training grid. Each node Pi = (Ei, ri, αi), i ∈
{0, 1, . . . , 9} is described by a tuple containing initial beam energy, focal spot size, and
beam divergence. Nodes chosen to test the ability of the model to interpolate between the
training sets of parameters are given in Table 1.

For each of the testing sets of the electron beam parameters, two phase spaces con-
sisting of 7 ×108 particles were generated: the MC phase space, generated by PRIMO, in
which photons, electrons, and positrons were present, and a GAN-based phase space in
which only photons were present. These phase spaces were then used to assess the quality
of our GAN models. Figure 1 presents a sample contour plot of the marginal distribution
of phase space P0 projected onto position coordinates X and Y.

Table 1. Test phase space parameters.

Phase Space
Beam

Energy
(MV)

Focal Spot
Size (mm)

Beam
Divergence
(Degrees)

P0 5.65 2.25 2.25
P1 5.65 0.25 0.25
P2 5.65 3.75 0.25
P3 5.65 0.25 2.75
P4 5.65 3.75 2.75
P5 6.35 0.25 0.25
P6 6.35 3.75 0.25
P7 6.35 0.25 2.75
P8 6.35 3.75 2.75
P9 6.05 2.25 2.25

Figure 1. Contour plot of the marginal distribution of particle X and Y coordinates for phase space
P0. The red circle of radius 5.5 cm denotes the area outside of which particles in phase spaces were
rejected for GAN training.
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Tests of the InfoVAE model were conducted for only one phase space with an average
energy of 5.8 MV, focal spot size 1 mm, and beam divergence 0°. The training space
consisted of 6 million photons and the test space of 4 million photons.

2.6. Evaluation

In GAN training, generic measures of the discrepancy between distributions of ran-
dom variables must be applied. However, the final evaluation should be performed using
clinically relevant figures of merit. To this end, lateral and depth dose profiles in a water
phantom of size 40 cm× 40 cm× 40 cm were compared for spatial dose distributions calcu-
lated with MC-based and GAN-based phase spaces. The dose distributions in the water
phantoms were calculated for three open radiation fields [7]: 30 cm× 30 cm, 10 cm× 10 cm,
and 3 cm× 3 cm.

Four different radiotherapy plans were also considered. Two of these were IMRT
prostate plans: a clinical plan described elsewhere [21], denoted P1, and a plan based on the
I2 test taken from the AAPM TG-119 report [22], and denoted P2. The second plan (P2) was
also recalculated with respect to the I’mRT phantom® (IBA Dosimetry, Walloon Brabant,
Belgium). The other two radiotherapy plans were VMAT head and neck plans—a clinical
one based on patient HN-HGJ-092 from the Head-Neck-PET-CT collection [23,24], denoted
HN1, and another, denoted as HN2, based on the I3 test from the AAPM TG-119 report.
This second plan was recalculated for the Alderson Rando phantom. For each predefined
structure in each plan, dose–volume histograms (DVH) [25] and gamma passing rates
(GPR) [26] were calculated and evaluated.

3. Results

Within the model validation process, we evaluated the differences in the probability
density distributions of the PRIMO-generated and GAN-generated phase spaces, and next
applied the standard quality figures of merit to selected radiotherapy plans.

3.1. Evaluation of Probability Distributions

In Figure 2, we show histograms of the one-dimensional marginal distributions of the
test phase spaces. The histograms were calculated using Gaussian kernel density estimation.
Medians and quartiles of the probability densities were also calculated. Differences between
density estimates for PRIMO-generated and GAN-generated distributions were calculated
for each tested space. Next, the medians of the absolute differences between these estimates
were calculated, as well as the first and third quartiles, independently at each parameter
value.

In Figure 3, we present the same types of distributions obtained in the same manner
as those presented in Figure 2, but using the trained InfoVAE model. Although this model
is able to capture the overall shapes of the respective marginal distributions, the differences
are clearly larger than those observed in the case of the GAN model.

3.2. Evaluation of Dose Distributions

Results of water phantom validation are shown in Figure 4. Root mean squared
differences (denoted RMS) between profiles generated from the PRIMO phase spaces and
GAN phase spaces were calculated for all test settings. Some profiles with the largest and
smallest differences are shown in Figure 4. Depth profiles were computed along the beam
axis, where the phase space with the highest error was P3 for the CGAN model and P4 for
the RoCGAN model. The lateral profiles were computed along the Y axis at 6.9 cm depth,
which was greater than the depth at which the maximum dose occurred and represented
about 80% of the maximum dose. In this case, the phase spaces with the highest errors
were P3 for the CGAN model and P6 for the RoCGAN model, respectively.
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Figure 2. Histograms of test phase spaces. Solid color denotes median of kernel density estimates
for training and test phase spaces, respectively. Green dashed lines denote first and third quartiles
of probability densities. Solid lines denote median absolute differences between PRIMO-generated
and GAN-generated probability estimates. Dashed lines correspond to first and third quartiles of
absolute differences.

Figure 3. Probability density estimates for the training space used in the InfoVAE model. Densities
calculated from PRIMO-generated phase space are depicted in blue, while densities for the InfoVAE-
generated phase space are shown in orange.

Next, gamma passing rates (GPR) for 2%/2 mm tolerance [26] and relative dose
differences to 5% and 95% of the region volume (denoted, respectively, ∆D5 and ∆D95) [25]
in selected regions of interest were calculated for each phase space and plan. These regions
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included the planned target volume (PTV), gross target volume (GTV), clinical target
volume (CTV), brain, brain stem, spinal cord, prostate, mandible, and submandibular

glands. Relative dose differences to N% were calculated as ∆DN = |Dcmp,N−Dref ,N
Dref ,N

|, where
Dref ,N is the smallest reference dose to be received in the N% most irradiated volume;
similarly, Dcmp,N refers to the same quantity in the compared dose distribution. Results are
presented in Table 2 for both models. In an ideal situation, the GPR is equal to 100% and
relative dose differences are equal to 0%.

Table 2. Evaluation of the CGAN and RoCGAN models as applied to radiotherapy plans. Average
2%/2 mm gamma passing rates and relative absolute differences in D5 and D95 overall PTV and OAR
ROIs have been set. The last row contains the p-value of the Wilcoxon signed-rank test for equality of
mean values of respective columns for CGAN and RoCGAN models. All quantities except p-values
are given in percent.

Plan P1 P2 HN1 HN2

Phase Space GPR ∆D5 ∆D95 GPR ∆D5 ∆D95 GPR ∆D5 ∆D95 GPR ∆D5 ∆D95

CGAN

P0 96.99 0.01 0.40 97.68 0.66 3.00 98.87 1.03 2.74 98.85 0.71 1.16
P1 96.66 0.20 0.09 98.06 0.89 2.34 99.24 0.21 1.85 98.65 0.48 0.56
P2 97.74 0.15 0.19 98.40 0.78 2.15 99.63 1.19 3.49 99.11 0.42 0.53
P3 96.30 0.26 0.50 97.05 0.76 3.18 98.08 1.19 2.66 98.71 0.32 1.02
P4 93.99 0.06 0.78 97.08 0.60 2.76 95.12 1.92 2.10 97.10 1.26 1.84
P5 94.87 0.55 0.48 98.67 0.94 2.52 99.70 0.36 1.51 99.02 0.71 0.82
P6 97.23 0.61 0.78 98.96 0.74 2.00 99.75 0.27 1.36 99.14 0.69 0.87
P7 97.95 0.02 0.50 98.02 1.15 2.56 98.53 1.30 2.09 98.89 0.49 0.87
P8 98.70 0.01 0.31 99.05 0.70 2.07 99.67 0.98 1.04 99.50 0.55 0.82
P9 98.05 0.01 0.35 98.57 0.68 2.42 99.80 0.47 1.68 99.27 0.46 0.56

mean 96.85 0.19 0.44 98.15 0.79 2.50 98.84 0.89 2.05 98.82 0.61 0.91
std 1.40 0.21 0.21 0.68 0.15 0.37 1.36 0.52 0.70 0.62 0.25 0.37

RoCGAN

P0 97.98 0.11 0.11 98.33 0.28 1.09 99.78 0.25 0.54 99.28 0.14 0.27
P1 97.38 0.21 0.29 98.32 0.20 2.08 99.80 0.18 2.01 99.29 0.14 0.10
P2 97.19 0.31 0.60 98.28 0.28 1.79 99.81 0.17 1.22 98.96 0.37 0.53
P3 97.87 0.16 0.19 98.26 0.38 2.16 99.80 0.12 1.79 99.37 0.03 0.18
P4 97.89 0.08 0.08 98.21 0.23 1.58 99.78 0.31 1.50 99.25 0.16 0.01
P5 93.06 0.76 0.93 98.54 0.38 0.54 99.83 0.27 1.29 99.07 0.72 0.86
P6 97.55 0.57 0.77 99.06 0.44 1.11 99.79 0.27 1.66 99.34 0.53 0.64
P7 99.06 0.04 0.08 98.61 0.44 2.07 99.85 0.27 2.08 99.51 0.06 0.13
P8 99.24 0.10 0.07 99.27 0.23 1.96 99.85 0.33 1.68 99.57 0.21 0.30
P9 98.84 0.05 0.07 99.13 0.19 1.08 99.86 0.33 0.84 99.42 0.12 0.10

mean 97.61 0.24 0.32 98.60 0.31 1.55 99.81 0.25 1.46 99.31 0.25 0.31
std 1.66 0.23 0.31 0.38 0.09 0.53 0.03 0.07 0.47 0.18 0.21 0.26

p-value 0.1309 0.1309 0.3750 0.0195 0.0020 0.0020 0.0020 0.0077 0.1309 0.0098 0.0039 0.0108

The speed of phase space generation was compared by the requirement to generate
350 million photons to the given phase space. PRIMO required about 24 h on 48 CPU cores
to complete the task with splitting roulette variance reduction activated. With this option
disabled, the time increased to 60 h on 48 CPU cores. The RoCGAN model can generate a
phase space of the same size in about 1 h on a single CPU core; thus, the GAN generates
photons over 1000-times faster than MC with variance reduction and over 2800-times faster
than MC without variance reduction.
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(a) Phase space P7 = (6.35 MV, 0.25 mm, 2.75°) (b) Phase space P5 = (6.35 MV, 0.25 mm, 0.25°)

(c) Phase space P3 = (5.65 MV, 0.25 mm, 2.75°) (d) Phase space P4 = (5.65 MV, 3.75 mm, 2.75°)

(e) Phase space P8 = (6.35 MV, 3.75 mm, 2.75°) (f) Phase space P3 = (5.65 MV, 0.25 mm, 2.75°)

(g) Phase space P3 = (5.65 MV, 0.25 mm, 2.75°) (h) Phase space P6 = (6.35 MV, 3.75 mm, 0.25°)

Figure 4. Dose profiles calculated from the PRIMO-generated phase space and GAN-generated phase
space, with bands representing two standard deviations of dose uncertainty, as reported by PRIMO.
(a–d) Depth profiles at beam axis. (e–h) Lateral profiles along the Y axis at depth 6.9 cm. In panels
(a,b,e,f) are shown profiles for which the RMS value was the lowest among all test phase spaces.
The remaining four profiles are those for which the corresponding RMS value was the highest. All
profiles have been normalized to 1.0 relative dose at 6.9 cm beam depth in water.
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4. Discussion

In this study, conditional generative adversarial networks were proposed to learn
the joint multidimensional probability density distribution of the properties of photons
(location in space, energy, and momentum) included in the phase spaces of medical linear
accelerator simulators. Because the networks are conditioned with respect to the parameters
of the primary electron beam (unique to individual medical linear accelerators), the trained
models are generic and can be used to generate phase spaces for arbitrary parameters of
the primary electron beam within the limits over which the training data were collected.

Histograms shown in Figure 2 demonstrate that differences between the PRIMO-
generated and GAN-generated phase spaces are much smaller than the densities them-
selves, with a few exceptions related to areas with large gradients of probability density.
Notably, the high variability of density between phase spaces exhibited by the Z component
of momentum is well reflected by the RoCGAN model.

Doses delivered to a water phantom calculated based on the RoCGAN-generated
phase spaces closely match the doses from PRIMO-generated phase spaces. As seen in
Figure 4, differences in delivered dose, even in the worst case, are not much larger than
their statistical uncertainty in the case of lateral profiles and within statistical uncertainty
for depth profiles. As indicated by the p-values of the Wilcoxon signed-rank test in Table 3,
the CGAN and RoCGAN models have similar levels of error for depth profiles. For the
lateral dose profiles, the RoCGAN model delivers a significantly lower level of error with
respect to MC-based profiles.

Importantly, any loss of accuracy due to the application of machine learning models
does not significantly affect the predicted dose distributions in test plans P1, P2, HN1,
and HN2, as demonstrated by the high gamma passing rates and low dose differences in
Table 2. For the P1 plan, the CGAN and RoCGAN models work equally well, as judged
from the p-values in Table 2, but for the remaining three plans, the RoCGAN model delivers
a significantly lower level of error.

The results of simulating dose delivery to water phantoms, to test phantoms, and to
patients indicate that the MC-based and GAN-based phase spaces can, in most cases, be
used interchangeably. Because the generation of particles with GANs is 1000-times faster
than that with MC, GANs can be used on the fly to increase the amount of particles in the
phase space, thus improving the precision of dose calculation in phantoms or in patients.

Table 3. RMS distances between dose distributions in a water phantom for different open field sizes.
The first three groups of columns correspond to lateral profiles for different field sizes and the last two
columns correspond to the depth profile of the 30 cm× 30 cm field. Values are given as percentage of
the maximum dose in the profile calculated from PRIMO-generated phase space. The ’mean’ and ’std’
rows contain, respectively, the mean and standard deviation of values in their respective columns.
The last row contains the p-value of the Wilcoxon signed-rank test for equality of mean values of
RMS for CGAN and RoCGAN models.

30 cm × 30 cm 10 cm × 10 cm 3 cm × 3 cm Depth

CGAN RoCGAN CGAN RoCGAN CGAN RoCGAN CGAN RoCGAN

P0 3.134 1.282 1.568 0.685 0.691 0.568 0.008 0.008
P1 2.846 1.247 1.900 0.667 1.596 0.492 0.009 0.007
P2 2.459 1.471 1.108 0.748 0.525 0.418 0.008 0.008
P3 5.323 1.506 3.181 1.055 1.768 0.335 0.009 0.008
P4 4.359 1.093 1.534 0.887 0.520 0.508 0.008 0.010
P5 2.498 1.185 1.629 0.920 1.234 0.541 0.008 0.007
P6 2.899 1.915 1.035 1.106 0.486 0.476 0.008 0.007
P7 3.885 1.802 2.290 1.009 1.264 0.533 0.007 0.008
P8 1.477 1.043 1.109 0.671 0.459 0.291 0.007 0.008
P9 2.241 1.068 1.358 0.667 0.589 0.430 0.007 0.008

mean 3.112 1.361 1.671 0.841 0.913 0.459 0.008 0.008
std 1.067 0.290 0.623 0.166 0.477 0.086 0.001 0.001

p-value 0.0020 0.0039 0.0020 0.9219
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The universality of the conditional GANs was achieved at the cost of handling a large
volume of training data—almost 570 MC phase spaces, each containing some 107 particles,
were generated. This resulted in some 0.5 TB of data collected. Such a massive simulation
campaign could not be completed without the grid infrastructure of our University.

As mentioned in the Introduction, we decided not to use variance reduction techniques
when preparing the training data for conditional GANs. This decision was made after a
comprehensive series of experiments aimed at reproducing the results of [8] based on phase
spaces generated with variance reduction techniques. Because these experiments were not
successful, we decided to collect MC training data with variance reduction switched off.
After the successful reproduction of the results of Sarrut, Krah, and Letang [8] with such
data, we were able to extend their work to the application of conditional GANs. Arguably,
one could try to retrieve discrete weights that are assigned to phase space particles when
using variance reduction, from continuous outputs of GANs—this is how the classification
task is solved with deep models. However, the outputs of classification networks can be
interpreted as probabilities, which guide the assignment of discrete classes to classified
objects, based on continuous outputs. This is not the case for phase spaces, which is another
argument not to use variance reduction when preparing training data for our GAN models.

The same arguments concerning the continuity of the learnt probability distributions
led us to remove annihilation photons from the training data. The absence of these photons
in GAN-generated phase spaces is clearly visible in Figure 2. Of course, one may train
some regression model to predict how the fraction of annihilation photons in phase spaces
depends on the parameters of the electron beam. One may also fit the probability density
functions of the parameters of these photons (except their energy, which is fixed). The
results of this study demonstrate, however, that the absence of annihilation photons in
GAN-generated phase spaces does not affect the dose distributions in either phantoms
or patients.

Note that in the description of the architectures used in this study, some values of
hyperparameters were mentioned, such as the number of neurons in dense layers, equal to
400, or the dimensionality of the noise vector at the input of the generator, equal to 8. These
parameters were reported in the study of Sarrut, Krah, and Letang [8] as being optimal for
the task of photon generation and, for this reason, were also used in our study. Because the
models described in this study are extensions of their model, the optimal hyperparameters
of our model may differ from the optimal hyperparameters reported for their GAN model.
The results found for the hyperparameters that they suggested [8] are, however, sufficient
to justify our decision not to search for any better hyperparameters.

The model that we propose is more general than other approaches to fast and efficient
phase space generation. For example, Tian et al. [27], in their GPU-based approach, assume
rotational symmetry of their phase space—which need not apply in the case that we
consider. GAN-based modeling could also be considered as an alternative in modeling
particle therapy, as shown, e.g., by Wang et al. [28]. A general drawback of GAN-based
modeling is, however, the limited possibility of robust error estimation—unlike in analytical
and Monte Carlo calculations. The legal and ethical issues that increasingly accompany
advances in artificial intelligence techniques in medical diagnostics and therapy—including
radiotherapy–should also be acknowledged [29].

In addition to GANs, we evaluated several other types of models in our initial inves-
tigations. We finally rejected them either as not being accurate enough (such as models
based on the variational autoencoder approach) or because we found the process of parti-
cle generation too slow for the intended purpose of the model (for example, continuous
normalizing flow models). We also paid considerable attention to models of the variational
autoencoder family. Although such models were able to generate realistic phase spaces
(in particular, the InfoVAE model discussed in this work), their results, already for one
training space (nonconditional), were of lower quality than those of the CGAN or RoCGAN
models. In addition, the use of the MMD member in the loss function entailed a much
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higher computational cost of training the model than that for models of the GAN family.
This led us to reject this family of generative models.

5. Conclusions

A fast machine-learning-based method for the generation of phase spaces in a linac
at the level below the flattening filter was presented in this study. The trained model can
produce particle data for different initial values of electron energy, focal spot size, and
beam divergence of the linac, much more quickly than the present Monte Carlo simulations.
Results of the evaluation of phase spaces generated in such a manner indicate that such
phase spaces are sufficiently accurate for the purposes of simulating further stages of dose
delivery in a radiotherapy system.
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