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Featured Application: Benefiting from its convenient derivation without resorting to complex
learning algorithms, our smoothness harmonic approach can be deployed in numerous neuro-
scientific discoveries. This includes differentiating various types of neuropsychiatric disorders
by utilizing the extracted smoothness harmonics and exploring the distinctive harmonic features
between sleep and awake states of in vivo neuronal recordings.

Abstract: Despite fMRI data being interpreted as time-varying graphs in graph analysis, there has
been more emphasis on learning sophisticated node embeddings and complex graph structures
rather than providing a macroscopic description of cortical dynamics. In this paper, I introduce the
notion of smoothness harmonics to capture the slowly varying cortical dynamics in graph-based
fMRI data in the form of spatiotemporal smoothness patterns. These smoothness harmonics are
rooted in the eigendecomposition of graph Laplacians, which reveal how low-frequency-dominated
fMRI signals propagate across the cortex and through time. We showcase their usage in a real
fMRI dataset to differentiate the cortical dynamics of children and adults while also demonstrating
their empirical merit over the static functional connectomes in inter-subject and between-group
classification analyses.

Keywords: computational neuroscience; fMRI data; graph analysis; connectome Laplacian analysis;
cortical dynamics

1. Introduction

Functional magnetic resonance imaging (fMRI) methods, with their superior spa-
tial resolution [1], have become valuable tools in both clinical and research settings [2]
for studying brain activity in healthy and neuropsychiatric conditions. By leveraging
the blood-oxygen-level-dependent contrast [3] or the arterial spin-labeling technique [4],
these methods enable the investigation of intricate neural processes. However, the high-
dimensional nature of fMRI data, coupled with the presence of dominant ultra-slow oscilla-
tions (0.01–0.25 Hz) [5], poses a significant challenge in extracting meaningful spatiotem-
poral patterns of cortical dynamics from fMRI data.

One common approach to revealing spatiotemporal patterns of cortical dynamics
in high-dimensional fMRI data is through graph analysis. The human cortical network
can be interpreted as a graph [6,7], where nodes and edges represent brain regions and
the connectome between regions, respectively. Graph analysis can be a powerful tool for
examining spatiotemporal patterns of neural activity associated with nodes and edges.
However, the use of graph analysis in fMRI data often emphasizes identifying the (time-
varying or static) network topology of the cortex [8,9] and learning low-dimensional nodal
representations [10,11] or graph embedding [12] to reflect high-dimensional fMRI signals.
A macroscopic graph-analysis-based description of cortical dynamics based on fMRI data
remains largely unexplored.
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In this communication, we introduce the concept of smoothness harmonics: the graph-
based features that capture the slowly varying oscillation patterns in fMRI signals across
the cortex and over time. These smoothness harmonics are derived through Laplacian
eigendecomposition analysis [13] and provide low-frequency-dominated representations
of cortical dynamics in ultra-slow fMRI signals. The resulting spatial and temporal smooth-
ness harmonics serve as direct macroscopic descriptions of slow cortical dynamics without
the need for complex learning algorithms.

We investigate the applicability of the proposed smoothness harmonic approach in
real fMRI data, specifically using the age-development fMRI dataset [14]. Our analysis
reveals distinct spatiotemporal patterns of slow cortical dynamics for children and adults.
Consistent with previous findings, brain regions that exhibit the most-pronounced spatial
harmonic differences between children and adults are associated with higher cognitive
function and development in the theory of mind. Remarkably, the extracted smooth-
ness harmonics, serving as discriminative features, outperform the static functional con-
nectomes and graph embedding in terms of inter-subject similarity and between-group
classification analyses.

The remainder of this communication is organized as follows. In Section 2, we provide
an in-depth introduction of the smoothness harmonic method within the framework of
treating time-varying brain activity patterns as a graph. In Section 3, we present a proof-
of-concept demonstration using a real fMRI dataset to illustrate the applicability of the
proposed smoothness harmonic approach. Finally, in Section 4, we discuss the potential
and challenges of applying smoothness harmonics in neuroimaging modalities other than
MRIs, with the aim of inspiring future neuroscientific discoveries.

2. Graph-Based Smoothness Harmonic
2.1. Time-Varying Brain Activity as a Graph

Before introducing the concept of smoothness harmonics, it is necessary to model time-
varying brain activity in terms of a static graph. Let Gt = (V , E) be an undirected graph
on time t, where V represents the set of time-varying nodes, which can be represented
as an N-dimensional feature representation. A graph signal can be represented by a
function f : V → Rn that assigns a scalar value to each node at time t. The nodes are
interconnected by a set of edges E ⊂ V × V , which can also be characterized as an N × N
feature representation, i.e., E ∈ RN×N .

In time-varying brain activity, the nodes V can be interpreted as the brain activation
patterns in the region-of-interest (RoI), while the edges represent the connectome between
RoIs (Figure 1). Thus, a graph signal f can be represented as an [N, T] matrix to express the
cortical dynamics over N RoIs throughout T time points. Importantly, we choose to utilize
a static graph (E ) instead of a dynamic graph that assumes the graph structures evolve
over time (Et) to represent time-varying brain activity. This preference for a static graph
over a dynamic one arises for two reasons: Firstly, the validity and reliability of estimating
dynamic functional connectomes are still under question, and it remains uncertain whether
these estimated time-varying graph structures truly reflect the underlying neurophysiologi-
cal processes [15,16]. Secondly, from an application perspective, employing a static graph
significantly reduces the computational cost compared to the heavy computational burden
associated with dynamic graph analysis.
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Figure 1. Time-varying brain activity as a graph. The sizes and widths of nodes and edges represent
the strength of their respective feature values. We characterize the brain activity that evolves through
T time points (representing the duration of recorded brain activity) as a graph. In this graph, the
nodal features represent the region-of-interest (RoI) brain activations V , while the edges represent
the connectomes E between RoIs. As time progresses, i.e., from Gt1 to Gtn , the nodal features change
accordingly, while the edge features remain the same.

2.2. Smoothness Harmonic

The concept of smoothness harmonics is based on the eigendecomposition analysis of
the graph Laplacian. Formally, considering the previously defined graph G with N nodes
(RoIs) and N × N edges (connectomes), we can compute the symmetric graph Laplacian
L(G) using L(G) = D− A, where D is the degree matrix and A is the adjacency matrix.
In an undirected graph, the adjacency matrix A can be represented as E , where Ai,j = Ei,j.
This adjacency matrix can be derived from the functional connectome [17]. The degree
matrix D can be computed as D = ∑N

j=1 A(i, j).
According to graph theory [18,19], smoothness refers to the degree of variation exhib-

ited by a graph signal f across the nodes of a graph G. Conventionally, the smoothness
of a graph can be quantified using the quadratic form of the graph Laplacian, f TL(G) f .
In the context of fMRI signals, which are predominantly characterized by ultra-slow os-
cillations, we propose measuring the smoothness of a graph based on the least-varying
component, namely the first eigenvector associated with the smallest eigenvalue in the
eigendecomposition of the graph Laplacian.

Let k denote the number of eigenvectors. We can obtain the eigenvector matrix Uk
as follows: L(G) = UkΛUT

k , where Λ is a diagonal matrix with the Laplacian eigenvalues
λ1, λ2, ..., λk, and Uk is the orthonormal matrix consisting of the corresponding eigenvectors
(arranged as columns).

Since the first eigenvector of the eigendecomposed graph Laplacian is associated with
the low-frequency and slowly varying component of the graph [20], we extract the first
eigenvector, denoted as Uk=1, to represent the slowly varying harmonic of the graph [17].
These slowly varying harmonics in cortical dynamics are believed to reflect changes in the
brain’s local network architecture, such as the reconfiguration of small-scale functional
modules or alterations in the strength of local connections [21]. By utilizing the extracted
slowly varying harmonic Uk=1, we derive the resulting smoothness harmonics (Etemp( f )),
which quantify the extent to which a graph signal f varies on the slowly varying harmonic,
as follows:

Etemp( f ) = ( f ⊗Uk=1)
T · f , (1)

where ⊗ denotes the broadcastable element-wise multiplication, allowing the resulting
matrix ( f ⊗Uk=1)

T to obtain the size of [T, N].
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2.3. Temporal Smoothness Index and Spatial Smoothness Brain Map

The previously defined smoothness harmonic (Etemp) captures the slowly varying
harmonic in terms of the time-by-time graph, revealing how these harmonics propagate
over time. To obtain a simplified measure of the temporal smoothness harmonic, we
extract the diagonal component from the time-by-time graph. This yields a scalar indicator
that conveniently represents the level of temporal smoothness harmonic (see Figure 2,
upper plot).

Figure 2. Temporal and spatial smoothness harmonics to reflect the spatiotemporal pattern of
cortical dynamics. Upper plot: the production process of temporal smoothness index. The temporal
smoothness index of a graph can be obtained from the diagonal elements of a time-by-time graph,
which illustrates how slowly varying cortical dynamics evolve over time. Lower plot: the production
process of the spatial smoothness brain map. The spatial smoothness brain map is obtained by
projecting a region-of-interest (RoI)-by-RoI graph onto a brain surface map. The diagonal elements of
this graph indicate how slowly varying cortical dynamics propagate across the cortex.
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Interestingly, since the graph signal f contains both spatial and temporal informa-
tion regarding the recorded cortical dynamics, we can calculate a spatial version of the
smoothness harmonic (Espat( f )) using the following procedure:

Espat( f ) = (Uk=1 ⊗ f ) · f T . (2)

where the broadcastable operator ⊗ ensures element-wise multiplication between Uk=1
and f ; we broadcast Uk=1 to match the dimensions of f , resulting in a matrix (Uk=1 ⊗ f )
with a size of [N, T].

The diagonal elements of spatial smoothness harmonics unveil the spatial distribution
of smoothness harmonics across the cortex, represented as a region-of-interest (RoI)-by-RoI
graph that illustrates their spatial propagation pattern. This graph can be projected onto a
brain surface to generate (a) brain map(s) for visualization purposes (see Figure 2, lower
plot). The full Python notebook showcasing the computational steps for producing Etemp( f )
and Espat( f ) is available at https://github.com/LeonBai/SH (accessed on 1 April 2023).

3. Application in Age-Development fMRI Data

We provide a demonstration of the efficacy of our proposed smoothness harmonics in
capturing age-related variations in cortical dynamics using fMRI data. Our spatiotemporal
smoothness harmonics surpass conventional static functional connectivity patterns, offering
a more comprehensive understanding of cortical dynamics in children and adults that
reflects their developmental changes in cognition.

3.1. Dataset and Preprocessing

The fMRI data utilized in this study were sourced from the age-development (children
versus adults) movie-watching dataset released by [14]. The selection of this passive
stimulus fMRI dataset, as opposed to task-evoked or resting-state fMRI datasets, was driven
by two primary considerations. Firstly, passive stimulus perception has been observed
to significantly reduce head motion, resulting in enhanced imaging quality compared to
task-evoked fMRI setups [22]. Secondly, given that all subjects viewed the same movie clip,
we assumed near-identical stimulus perception across all subjects, facilitating group-wise
analysis without necessitating intricate between-subject alignment techniques typically
employed in resting-state fMRI datasets [23].

In the age-development study, a total of 155 subjects participated, comprising 33 adults
and 122 children. During the MRI acquisition session, all subjects were instructed to watch
a silent 5.6-min animated movie titled “Partly Cloudy” [24]. Structural and functional MRI
data were acquired using a three-Tesla scanner equipped with a standard 32-channel head
coil. The anatomical images of each subject were subsequently normalized to the Mon-
treal Neurological Institute (MNI) template. Following the removal of motion-correlated
artifacts, each subject’s neuroimaging time course consisted of 149 time intervals with
a repetition time (TR) of 2 s. To facilitate preprocessing, skull stripping was performed
using the individual T1-weighted (T1w) reference image, followed by spatial normalization
to the widely used nonlinear MNI152 template, specifically, the MNI152nlin2009ascym
template (the default spatial template used in the fMRI-prep application for fMRI image
preprocessing: https://fmriprep.org/en/stable/spaces.html (accessed on 1 May 2022)).

3.2. f and Estimated E
To extract region-of-interest (RoI) signals from the voxel-wise fMRI data, we utilized

the MSDL brain atlas [25], which provides an intermediate parcellation scheme consisting
of 39 nodes. This atlas allowed us to define distinct brain regions of interest. By mapping
the fMRI data onto this parcellation, we obtained subject-level graph signal matrices ( f )
for all 155 participants. Each matrix had a size of [39, 149], where the first dimension
represented the spatial resolution (39 RoIs) and the second dimension represented the
temporal resolution (149 time intervals).

https://github.com/LeonBai/SH
https://fmriprep.org/en/stable/spaces.html
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To estimate the functional connectome, we computed the Pearson’s correlation coeffi-
cient between each pair of time series Vt for the 155 subjects. This resulted in 155 subject-
level connectivity matrices (E ) with dimensions of [39, 39], where each element represents
the correlation strength between two corresponding brain regions (nodes) in the MSDL
brain atlas. These estimated connectivity matrices can be interpreted as static functional
connectomes (sFCs) and serve as a representation of the functional connectivity patterns
for each subject. These sFCs are used for comparative analyses in our study, allowing us
to evaluate the performance of the proposed smoothness harmonics against conventional
static functional connectivity measures.

3.3. Extracted Smoothness Harmonics and Their Merits

The analysis of the smoothness harmonics, both in terms of spatial smoothness brain
maps (Espat( f )) and temporal smoothness index (Etemp( f )), reveals distinct cortical dynam-
ics between children and adults. Figure 3A illustrates the results, showing that children
exhibit overall more stable brain activity throughout the movie clip compared to adults.
This finding aligns with previous research suggesting that children may demonstrate
greater attentiveness during cartoon-watching situations compared to adults [14].

Of particular interest is the significant difference observed in the spatial smoothness
of brain maps between adults and children (Figure 3B). In cortical regions associated with
higher cognitive functions and the development of the theory of mind (caring about others’
thoughts), such as the superior frontal sulcus (SFS), right temporoparietal junction (Right
TPJ) [26], and the inferior frontal gyrus (IFG) [27], notable distinctions between children
and adults are observed. These findings are consistent with previous studies investigating
the neural basis of developmental differences between children and adults in developing
the theory of mind [28–30].

The use of smoothness harmonics as discriminative features in inter-subject similarity
and between-group classification analyses yielded interesting results. Figure 3C and the
first row of Table 1 demonstrate that highly consistent inter-subject brain patterns were
identified when using smoothness harmonics for both adults and children. In contrast,
the utilization of the static functional connectomes (sFCs) as an alternative only achieved
compatible inter-subject similarity for the children’s group, as indicated by the overall score
of 0.628.

Table 1. Usages of sFCs and smoothness harmonics in inter-subject similarity and between-
group analyses.

sFCs Smoothness Harmonics

Inter-subject similarity

Overall: 0.628 Overall: 0.446

Between-adults: 0.318 Between-adults: 0.654
Between-children: 0.624 Between-children: 0.632

Between-group classification
accuracy (%) 64.6± 2.12 80.7± 1.13

It is noteworthy that the overall score for smoothness harmonics was much lower
(0.446) compared to that of the sFC approach. This lower score can be interpreted as a
failure of the sFC approach to effectively capture the group-wise differences between adults
and children. These results highlight the superior performance of smoothness harmonics
as discriminative features in capturing meaningful variations and distinctions in cortical
dynamics between different age groups.



Appl. Sci. 2023, 13, 7130 7 of 10

Figure 3. Extracted smoothness harmonics in the age-development fMRI dataset [14]. (A) Attained
temporal smoothness indexes for the group-wise adult and child fMRI data. The raw indexes were
normalized to the range of [0, 1] for ease of comparison. (B) Differences in the extracted spatial
smoothness harmonics between adults and children are represented in a pairwise spatial format,
with the color bar indicating the harmonic value difference between the two groups. The three
most-differentiated brain regions, highlighted in light red colors, are the superior frontal sulcus (SFS),
the right temporoparietal junction (Right TPJ), and the inferior frontal gyrus (IFG). The produced
brain maps are displayed for the hemispheres from coronal, sagittal, and horizontal views from
left to right. (C) The inter-subject similarity was assessed based on either the static functional
connectome (sFC) on the left or the estimated smoothness patterns on the right. In both correlation
matrices, the first 33 subjects represent adults, while the remaining subjects represent children. The
color bar indicates the cosine similarity. The abbreviation index indicates that sFC stands for static
functional connectome.
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Notably, in our attempt to classify phenotypes between children and adults using
both sFC and extracted smoothness as discriminative features, we conducted a simple
classification analysis. Since the classification accuracy is largely determined by the classifier
and the volume of the discriminating features used in training [31], we employed the
respective features (sFC: 39× 39; smoothness harmonics: 39× 39) to train an individual
SVM and evaluated its classification performance on the testing dataset (training/testing
ratio: 2/8). Over 10 repetitions (the second row of Table 1), the smoothness harmonics
demonstrated a clear empirical advantage over sFC in classifying adults from children.

Additionally, we also applied an off-the-shelf graph embedding approach, namely the
Graph2Vec method [12], to the age-development dataset, producing an identical number of
discriminative features (39× 39) for training another independent SVM. When evaluated
on the same testing set, these graph-embedding features yielded an average classification
accuracy of 76.6%, demonstrating the superiority of our approach over other static graph
analysis methods.

These results provide compelling evidence that the smoothness harmonics capture
meaningful differences in cortical dynamics between children and adults, highlighting the
potential of this approach for studying developmental processes and cognitive functions.

4. Discussion

In this communication, we present graph-based smoothness harmonics as a powerful
tool for capturing the slowly varying spatiotemporal patterns of cortical dynamics in
fMRI data. The temporal smoothness index and spatial smoothness brain map derived
from the smoothness harmonics provide valuable insights into the propagation of slowly
varying cortical dynamics across the entire cortex over time. By applying this approach to
age-development fMRI data, we demonstrated the versatility of smoothness harmonics in
discerning differences in cortical dynamics between adults and children, thereby reflecting
the age-related variations in the development of the theory of mind. These findings
highlight the potential of smoothness harmonics as a valuable tool for investigating and
understanding cortical dynamics in various contexts.

Undoubtedly, graph analysis has been widely employed in the study of cortical dynam-
ics, ranging from early attempts to model brain connectomes as small-world networks [6,32]
to more recent advancements in deep graph neural networks for learning nodal repre-
sentations of graph signals [12,33] and exploring complex brain topology to investigate
neuropsychiatric disorders [34]. However, our proposed smoothness harmonic approach
stands out from these existing methods in two key aspects. Firstly, our method is specifi-
cally designed for the analysis of fMRI data. It captures the predominant slow-frequency
oscillations that are characteristic of fMRI signals through the extraction of smoothness har-
monics. This targeted approach enables a more-focused examination of cortical dynamics
in the context of fMRI studies. Secondly, unlike the complex learning algorithms used in
other approaches, our smoothness harmonic approach relies solely on the well-established
eigendecomposition framework. This ensures a straightforward and easily implementable
methodology. This simplicity and convenience make our approach accessible to researchers
and facilitates its application in diverse fMRI studies.

The introduction of smoothness harmonics opens up exciting future opportunities to
explore and compare various types of neuropsychiatric disorders based on their extracted
smoothness harmonics. Additionally, as a potential avenue for future research, the concept
of smoothness harmonics can be applied to dynamic graph analysis to address the growing
demand for dynamic functional connectivity analysis [35]. However, when applying this
concept to other neuroimaging modalities such as EEG and MEG data, it is important
to consider incorporating additional non-slow harmonics to accommodate the specific
characteristics of those modalities. Overall, the graph-based smoothness harmonic has the
potential to provide valuable insights into the spatiotemporal dynamics of brain activity
and contribute to advancements in the field of neuroscience.
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