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Abstract: Precisely detecting puncture times has long posed a challenge in medical education. This
challenge is attributable not only to the subjective nature of human evaluation but also to the insuffi-
ciency of effective detection techniques, resulting in many medical students lacking full proficiency
in injection skills upon entering clinical practice. To address this issue, we propose a novel detection
method that enables automatic detection of puncture times during injection without needing wearable
devices. In this study, we utilized a hardware system and the YOLOv7 algorithm to detect critical
features of injection motion, including puncture time and injection depth parameters. We constructed
a sample of 126 medical injection training videos of medical students, and skilled observers were
employed to determine accurate puncture times. Our experimental results demonstrated that the
mean puncture time of medical students was 2.264 s and the mean identification error was 0.330 s.
Moreover, we confirmed that there was no significant difference (p = 0.25 with a significance level of
α = 0.05) between the predicted value of the system and the ground truth, which provides a basis for
the validity and reliability of the system. These results show our system’s ability to automatically
detect puncture times and provide a novel approach for training healthcare professionals. At the same
time, it provides a key technology for the future development of injection skill assessment systems.

Keywords: medical education; computer vision; clinical injection skill; automatic puncture detection;
YOLOv7

1. Introduction

Medical injection is a commonly utilized technique for delivering medications and
vaccines to patients across various healthcare settings [1]. This method of administration
offers several advantages, including rapid relief and accurate dosing, making it a primary
choice for millions of individuals in need of treatment [2]. However, injections come
with inherent risks such as discomfort, infection, and adverse drug reactions [3], making
the accuracy of this technique crucial for ensuring positive patient outcomes. Despite its
importance, achieving accuracy in medical injections is a complex process that requires
careful consideration of multiple factors, and this challenge has persisted over time [4–7].
Therefore, it is essential to explore the factors that contribute to accurate injections, as well
as potential strategies to improve injection accuracy and mitigate risks [8].

1. Intricacy. Vascular puncture is an intricate procedure that demands a high level of
precision and dexterity [9]. The healthcare practitioner must identify the appropriate
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vein and skillfully insert the needle at the precise depth, ensuring its firm anchorage
within the vein.

2. Limited visibility. Veins are frequently inconspicuous, particularly in patients with
dark skin or dehydration. This may pose a challenge for novice practitioners in terms
of vein localization and manipulation.

3. Patient apprehension. Many patients experience anxiety or trepidation when it comes
to needle injections, which may impede the efficacy of inexperienced practitioners.
Novices may inadvertently aggravate patient anxiety by lacking self-confidence or
spending too much time on the procedure.

4. Inexperience. Vascular puncture, like any other skill, necessitates practice and pro-
ficiency [10]. Novice professionals may have inadequate exposure to the procedure
during their training and limited opportunities to perform it on patients.

In view of these challenges, vascular puncture has emerged as a complex skill for
novice nurses to acquire [1]. Therefore, it is crucial that extensive training in vascular
puncture is given. Nonetheless, the current disruption caused by the COVID-19 pandemic
has led medical institutions, including those involved in medical education, to suspend
in-person lectures [11,12]. To surmount the constraints imposed by social distancing, an
innovative approach to the crisis is necessary, involving distance learning and online
evaluation techniques [13,14].

At this stage, numerous hospitals employ simulation training for nursing skills that
involve physical procedures, in conjunction with theoretical learning, thereby offering a
secure means of delivering medical education [15–18]. The advantage of this approach is
that it allows novice professionals to practice in a secure and controlled environment, as
well as to receive constructive feedback on their skills. Majima et al. [5,6] utilized a high-
speed magnetic hand-motion capture device, Hand-MoCap, to establish a measurement
system that is customized for measuring phlebotomy techniques. This technique enables
novice medical students to acquire injection skills by mimicking the demonstration of an
experienced practitioner and validating the instructor’s and student’s techniques through
precise measurements. However, the comparison is subjective and does not offer an
objective or quantitative evaluation of the injection technique. Saito, M. et al. [7] developed
a learning support system for blood collection techniques. The system calculates the angle of
the syringe in relation to the arm model and displays the difference between the instructor’s
and the student’s angles in real-time, thereby providing quantitative feedback. However, it
has certain limitations in that it requires individual calibration for each student. To further
replicate nursing decision making in a realistic environment, virtual reality (VR) can also
be utilized. Loukas et al. [16] conducted a study to evaluate the effectiveness of simulation
training on medical students’ intravenous (IV) intubation skills. Studies have shown that
novices’ injection skills significantly improved after simulator training, and these findings
have been replicated in other medical student populations as well [4,19]. Furthermore,
ongoing education could also help to build confidence and proficiency in novice healthcare
professionals [20]. However, these studies did not demonstrate a significant difference in
the accuracy of intravenous injections.

YOLOv7 [21] is an advanced object detection model that can be trained on various
types of images. With its fast and accurate object detection capabilities, YOLOv7 can
be helpful in many medical applications. For example, Sapitri A. I. et al. [22] devised a
deep learning mode requiring the YOLOv7 framework to detect fetal hearts (measuring
approximately 4–8 cm) in ultrasound videos in real-time. The effectiveness of YOLOv7
in detecting small objects was confirmed through validation studies [23,24] and has the
potential to aid medical professionals in accurate medical diagnoses. Durve M. et al. [25]
evaluated the performance of the YOLOv5 and YOLOv7 models, along with DeepSORT, for
droplet identification and tracking in microfluidics. Their results showed that YOLOv7 is
faster, but lighter YOLO models can achieve real-time tracking. Oka S. et al. [26] developed
an image recognition system for detecting dental instruments during treatment to prevent
injuries and leftover instruments. YOLOv4 and YOLOv7 were used, with mean detection
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accuracy ranging from 85.3% to 89.7%. These studies not only demonstrate the faster
detection speed and detection accuracy of YOLOv7, but also highlight its efficacy as a
detection method for identifying instrument components.

This study aims to address the issues highlighted in the aforementioned research
by proposing an automatic puncture time detection method that utilizes the YOLOv7
algorithm. The aim of the proposed methodology is to detect time-related parameters in
simulated injection training and obtain characteristic parameters such as puncture depth
through post-processing. The major contributions of this study can be outlined as follows:

1. Develop a novel multi-camera data acquisition system capable of capturing video data
directly from medical injection education alongside relevant parameters, including
operation time and reverse blood detection.

2. The area of significance for the injection operation is manually demarcated, followed
by the application of image processing techniques such as image rotation and segmen-
tation to train an automated needle detection model based on YOLOv7.

3. Utilize the trained model to calculate the original needle length and puncture timing
of injection, thereby providing a novel evaluation metric for medical injection training
feedback and a crucial technique for establishing a subsequent evaluation system.

Section 2 provides an overview of the materials and data collection, including the
design and implementation of the multi-camera data acquisition system. Section 3 details
the YOLOv7 algorithm for clinical injection needle detection and the image processing
techniques employed. Section 4 presents the experimental results, analyzes the errors, and
verifies the robustness of the study. Section 5 provides a comprehensive discussion of the
conclusions and implications of the study, including potential future research directions.

2. Materials and Data Collection
2.1. Multi-Camera Injection Analysis System

The system configuration is illustrated in Figure 1a, which is comprised of a timing
device, a multi-camera system, a VICON verification system (a 3D motion analysis system),
an arm model, and a reverse blood detection device. The precise parameters are enumerated
in Table 1 as follows.

Table 1. VICON system and Multi-camera system specifications.

System Camera Type Model Resolution Frame Rate Company

VICON
Verification System

High-speed
cameras Vero 2048 × 1088 330 FPS VICON Company

HD
full-synchronous

high-speed camera
Vue 1920 × 1080 30 FPS VICON Company

Multi-Camera
System CMOS cameras DFK 33UX290 1920 × 1080 40 FPS IMAGINGSOURCE

General camera - 1920 × 1080 30 FPS -

The camera configuration of the VICON verification system is depicted in Figure 1b,
which includes 11 Vero cameras and one Vue HD full-synchronous high-speed camera.
In this experiment, the Vero cameras were sampled at 100 Hz. The multi-camera system,
as shown in Figure 1c, comprises four CMOS cameras that are directly connected to a
personal computer (PC) and the VICON system to construct the operator’s hand injection
model separately. Figure 1d displays the general camera for puncture detection, which
is employed to monitor the puncture time during the injection. The timing device and
the reverse blood detection device are shown in Figure 1e. The PC is linked to the timing
device via a type C interface. Moreover, the photo sensor in the reverse blood detection
device is linked to the Arduino main board of the timing device. The PC is responsible for
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power supply and data transmission, while the arm model is powered independently. The
data acquisition software system was developed using Microsoft Visual C# 2022.

Figure 1. The multi-camera injection analysis system. (a) System configuration, indicating the location
of the multi-camera system with red boxes and the location of the general camera with blue boxes.
(b) The shooting range of the VICON system. (c) Four multi-cameras using CMOS. (d) The general
camera. (e) Injection arm model, timing device, and reverse blood detection device equipment.

2.1.1. Timing Mechanism

The system’s timing button is fashioned using an Arduino development board, as
illustrated in Figure 2. To initiate the operation, the operator needs to press the white
button, which triggers the start signal to be sent to both the multi-camera system and the
VICON system. Upon completing the injection simulation training, the operator can stop
the timing by pressing the white button again, which transmits the end signal. This simple
process enables accurate timekeeping of the entire operation duration.

Figure 2. Timing device to record operation time.

2.1.2. Multi-Camera System

The system utilized a total of five cameras for analyzing hand injection actions, com-
prising four CMOS cameras for recording these actions, and one general camera for de-
tecting the moment of the injection stabbing. It is important to note that in addition
to the multi-camera system discussed in this paper, the VICON system, which contains
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12 cameras, was also incorporated for the testing experiments. As the study did not con-
sider a hand injection model, only the camera used for detecting the moment of injection is
discussed in this study, as illustrated in Figure 3.

Figure 3. General camera for detecting the moment of injection stabbing.

2.1.3. Reverse Blood Detection Devices

‘Reverse blood’, also referred to as ‘backflow’ or ‘reflux’, is a phenomenon frequently
encountered in medical procedures such as blood withdrawal or IV initiation [27]. Figure 4
shows the reverse blood during an injection.

(a) Before puncturing the vessel (b) After puncturing the vessel

Figure 4. Reverse blood in injection process. After puncturing the blood vessel, some blood flows
back into the needle.

This phenomenon results from pressure fluctuations within the blood vessel upon
puncture, which temporarily leads to the opposite direction of blood flow [28]. The oc-
currence of reverse blood is typically regarded by healthcare professionals as indicative
of a successful operation. In this experiment, we aim to detect reverse blood to evaluate
the success of the injection, for which we have developed a hardware device employing a
photo sensor. The operational principle of this device is illustrated in Figure 5.

(a) The working principle (b) Experimental installation

Figure 5. Reverse blood detection devices.

A working principle diagram of the reverse blood detection device is shown in
Figure 5a. When either no injection training is being conducted or the needle has not



Appl. Sci. 2023, 13, 7120 6 of 20

yet punctured the skin, no blood flows within the blood vessel, and, hence, the photo
sensor reliably outputs a stable signal by sensing the LED located on the opposite end of
the needle tube, as shown in Figure 6 from 0 s to 17 s. Nevertheless, the figure reveals the
presence of extraneous disturbances, stemming from ambient illumination and interference
originating from the VICON system’s IR camera.

Once the needle is inserted into the vein, however, the reverse blood takes place,
wherein the blood flows back into the syringe via the needle, resulting in a discernible
alteration in the signal transmitted by the photo sensor, as depicted in Figure 6, spanning
the time interval of 17 s to 22 s. The oscillations observed during this phase are a product
of simulating a regular pulsation in the human body. It is worth noting that, through nu-
merous preliminary experiments, we have ascertained that all saturation signal variations,
due to this remarkably rapid transformation, surpass a threshold of 100, as delineated in
Table 2 . Therefore, we were able to determine the exact point in time when the reverse
blood occurred and record the exact time of detection.

Figure 6. The signal of the photo sensor.

As illustrated in Figure 5b, we have designed the sensor hardware keeping in mind
the need to avoid some disturbance to the operator’s posture during the injection process.
Hence, we have employed 3D printing technology to miniaturize the photo sensor and fix
it onto the injection needle. Furthermore, to counteract occasional noise interference, we
have wrapped the sensor with black tape to mitigate any possible light interference.

Table 2. Comparison of the saturation alteration upon the occurrence of the reverse blood phenomenon.

Count Saturation Value of
Previous Frame

Saturation Value of
Subsequent Frame

Difference

1 29 247 218
2 47 179 132
3 18 178 160
4 15 203 188
5 24 224 200
6 20 258 238
7 95 225 130
8 92 212 120
9 53 264 211
10 30 171 141

2.2. Experimental Subjects

The primary aim of this study was to automate the detection of the puncture time
during medical injection training. To accomplish this aim, a total of 126 medical students
in grades 4–6 from Chiba University School of Medicine participated in the study. These
students had completed a basic nursing skills course and had learned injection techniques
through instructional videos but lacked practical experience in a clinical setting. Figure 7
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displays the images captured during the data collection process using a multi-camera
system.

Figure 7. Injection experience with a subject.

3. Experiment Method

The YOLO model has gained popularity as a powerful deep learning tool for target
detection [29]. In this experiment, we have chosen YOLOv7 as the baseline model, as it
strikes a good balance between detection accuracy and speed. However, YOLOv7 is a
general-purpose model and is not directly applicable to complex field scenarios [21]. Thus,
in order to achieve target detection of the injection needle, we must optimize the data
and model parameters accordingly. The specific flowchart for the automatic detection of
puncture time in clinical injections using the YOLOv7 algorithm in this paper is shown in
Figure 8.

As depicted in Figure 8, we began by capturing one frame from the camera and rectify-
ing the distortion caused by the wide-angle lens of the camera. During image preprocessing,
we encountered a challenge in calibrating the bounding box as some operators held the
needle horizontally. To overcome this issue, we rotated the image to increase the height of
the bounding box and improve recognition accuracy. We then cropped the frame images
to exclude unnecessary recognition ranges. Once preprocessing was complete, we input
the frame by frame images into our trained YOLOv7 model to identify the needle part
and output the bounding box information. In order to calculate the original length of the
needle, it was necessary to ensure that the needle did not puncture the skin. To enhance
the applicability of the system, we determined the minimum time from the start of the
operator’s timing to skin puncture. Since we input frame by frame, we determined the
minimum time required for puncturing the skin to be 20 frames, experimentally. In our
system, frames with i < 20 were considered as if the needle had not punctured the skin,
frames with i = 20 were used to calculate the original needle length, and frames with i > 20
were considered as if the needle had already punctured the skin during the injection.

We determined the original needle length by employing the diagonal length of the
recognition frame as provided by YOLOv7. Subsequently, we utilized the diagonal length
of the bounding box during the puncture process to calculate the ratio of the needle outside
the skin. Then, we corrected special values of the needle outside the ratio due to hand
occlusion and applied a moving average of the time series of the needle outside the ratio.
Additionally, we selected the best window parameters to obtain smoother information on
the needle puncture. Finally, we automated the detection of the puncture time by evaluating
the ratio of the needle remaining outside the skin. We determined the optimal puncture
time threshold to be 0.96 through comparison tests. If the ratio was >0.96, indicating that the
skin has not been punctured, we proceeded to read the next frame. If the ratio was ≤0.96, it
means that the needle was starting to puncture the skin, and we output the puncture time
to achieve automatic detection.
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Figure 8. Flow chart for detecting puncture time.

3.1. Image Preprocessing

In the initial stage of the experiment, the acquired data underwent preprocessing to
enhance its quality. Calibration was imperative due to the usage of a wide-angle camera
and the data size of 1920 × 1080. To achieve calibration, we utilized the camera calibration
approach suggested by Zhang et al. [30], owing to its effectiveness and simplicity over
conventional methods. The calibration plate was configured with a 9 × 6 corner, each
measuring 10 × 10 mm, as demonstrated in Figure 9.

Figure 9. The calibration plate used in the experiment.

After the image rectification process, we opted to rotate the image by 30° to address
the issue of the operator holding the injection needle at an overly flat angle, as illustrated
in Figure 10.
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(a) Unrotated images (b) Rotated by 30°

Figure 10. Image rotation.

This maneuver significantly enhanced the precision of subsequent experiments since
a flat needle can cause a bounding box’s height to become too small. Rotating the image
amplified the height of the bounding box, leading to more accurate needle height labeling
and facilitating needle detection.

As the needle size was minuscule, direct detection posed a challenge. To overcome
this obstacle, we manually determined a region of interest (ROI) from the original image
based on the injection operation’s location, with the camera and hand model positions
fixed. The resulting image size was 534 × 534, as demonstrated in Figure 11, for the results
of preprocessing.

(a) Original image (b) The image after rectification

(c) Image rotation (d) Extract ROI

Figure 11. Image preprocessing.

3.2. YOLOv7 Model Training

The Pytorch 1.7 deep learning framework and Python 3.8 programming language were
utilized in the experiment, along with CUDA version 11.1. The training data was divided
into a 7:2:1 ratio of training set, validation set, and test set. To ensure differences between
adjacent frames, one frame was extracted every 30 frames during the calibration process,
as the FPS of the generic camera is 30. The input image size remained consistent with the
image preprocessing process to extract an ROI of 534 × 534. To achieve superior training
results and reduce the training time, a learning rate of 0.001, a weight decay coefficient of
0.0005, and the Adam optimizer were employed, while the training batch size was set at
8, and the iteration period was set to 200. The weight files were saved after training for
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subsequent testing. The model output is composed of three parts: the label ID, needle size,
and location information.

As depicted in Figure 12, syringes used in clinical injections are intentionally made
small to reduce the likelihood of causing harm to the patient, but this design also makes
detection of the small targets challenging. In our study, we not only manually defined
the region of interest (ROI) to enhance the accuracy of injection needle detection, but also
discovered that the detection of the needle site alone was inadequate despite multiple
model trainings. Hence, we redefined the detection site, taking into account the detection
process without any interference from the hand grip. Figure 12 displays the precise location
of the detection needle. The YOLOv7 test results ultimately exhibited a 99% accuracy rate
in detecting the needle precisely.

Figure 12. Definition of the needle length—from the needle site of the syringe to the front of the
blue-winged handle.

3.3. Post-Processing
3.3.1. Needle Original Length

In the experiment, we employ the YOLOv7 algorithm to train the needle recognition
model and utilize the diagonal length of the recognition frame to estimate the length of the
needle. The green line represents the length of the injection needle in Figure 13.

Figure 13. Calculation of the length of the needle.

To ensure the precision of the original length detection, it is imperative to verify the
operator’s injection process at this stage. Thus, four experimental parameters were defined
to obtain precise information at this point, namely:

Ts : Start time,

Tn : Needle puncture the skin time,

Tr : Reverse blood generated time,

Te : End time.

(1)

By utilizing these parameters, the operator’s injection training can be effectively cate-
gorized into three distinct phases, preparation time, operation time, and processing time.
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Preparation time = Tn− Ts,

Operation time = Tr− Tn,

Processing time = Te− Tr.

(2)

After establishing the preparation time, our approach is to determine the original
length of the needle by utilizing the bounding box information extracted by YOLOv7
during the preparation time. In order to establish the minimum required operating time
for medical students with limited clinical experience, we relied on data obtained from
17 experts, each with at least three years of clinical injection experience. Ultimately, we
were able to gather reliable results from 40 injections. The data collected from these experts
was analyzed and the findings are presented in Figure 14.

Figure 14. Preparation time data for 17 experts. The results of the preparation time are presented
using the ground truth.

As illustrated in Figure 14, optimizing the system’s practicality entails utilizing the
operator’s minimal operation time and ensuring it remains within the preparation time
stage, thereby ensuring precise calculation of the original needle length. Failing to enforce
a minimum operation time could result in some operators initiating skin puncture and
moving into the second stage (operation time), leading to inaccurate length calculations. To
address this issue, a minimum operation time of 0.694 s was implemented in this study.
Moreover, considering that the camera used in this experiment recorded at 30 frames
per second (FPS), we chose the bounding box at the 20th frame to compute the original
needle length.

3.3.2. Exception Handling

After obtaining the original length of the needle, it enables us to compute the ratio of
the needle section that remains outside the body, which can be calculated as follows:

Needle outside ratio =
Actual length

Original length
× 100% (3)

We can track the change in needle depth during the injection process by monitoring this
percentage of change. However, in practical applications we have observed the following
two situations:

• A single or multiple frames are not recognized.
During data processing, it is possible that certain frames may not be recognized, as
depicted in Figure 15a. In such cases, we adopted an approach to compute the average
value of the previous and subsequent frames of the unrecognizable frame, which was
used as the output for further processing. The resultant processed data is presented in
Figure 15b.
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output =
previous f rame + next f rame

2
(4)

• The calculated percentage is over 100%.
As a result of the YOLOv7 recognition and post-processing calculations, the size of
the bounding box may vary from the true size due to the angle at which the operator
holds it, resulting in a ratio exceeding 100%, as depicted in Figure 15c. In order to align
with practical conditions, the regions that surpass the 100% limit require exception
handling. Since this situation basically occurs in the stage before skin puncture, we
assign randomized values between the skin puncture threshold and 100% to prevent
the threshold from being exceeded and affecting the determination of skin puncture,
as illustrated in Figure 15d. The specific skin puncture threshold will be expounded
upon in Section 3.3.4.

(a) (b)

(c) (d)

Figure 15. Exception handling. (a) The needle was not detected in some frames, which resulted in
the percentage not being able to be calculated. (b) After the exception handling, the result of frame
four was corrected. (c) The initial frames’ results exceed 100%. (d) After the exception handling, the
result of exceeding 100% was corrected.

3.3.3. Moving Average

In the previous section, we resolved some anomalous data by exception handling.
However, the actual data exhibited fluctuations, making it necessary to utilize a moving
average technique to ensure precise determination in subsequent automatic detection of
the puncture time. A moving average is a statistical method used to reduce fluctuations in
data over time by computing the mean of a set of values over a defined time period and
then sliding the time window forward to compute a new average for the following time
period [31]. The final result is shown in Figure 16.
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(a) Before the moving average (b) After the moving average

Figure 16. Moving average processing.

3.3.4. Judgment of the Puncture Moment

In order to automatically detect the moment of puncture, it is crucial to determine an
appropriate threshold value. Ideally, the needle length should gradually decrease from
100% when puncturing occurs. However, in the actual experimental setup, accurately cal-
culating this decline from 100% proves challenging due to variations in operator technique
and the varying angles of the needle resulting from different postures. Therefore, it becomes
necessary to determine a suitable threshold value for this experiment. To achieve this, a
comparative analysis was conducted by smoothing the needle puncture data described in
Section 3.3.3, and the results were evaluated using four threshold values: 95%, 96%, 97%,
and 98%. The outcomes are depicted in Figure 17.

(a) Threshold = 95% (b) Threshold = 96%

(c) Threshold = 97% (d) Threshold = 98%

Figure 17. Relation between predicted puncture time (from our system) and ground truth for
each threshold.
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The primary objective was to strike a balance between minimizing false positives,
where a puncture is incorrectly detected when the needle has not actually punctured the
skin, and minimizing false negatives, where a puncture goes undetected despite the needle
successfully puncturing the skin. To determine the optimal threshold, we compared the
standard deviation (SD) and mean absolute error (MAE) of four different data sets, as
shown in Table 3.

Table 3. Comparing the results of different thresholds.

Threshold (%) 95 96 97 98

Standard Deviation (SD) 0.507 0.484 0.506 0.544
Mean Absolute Error (MAE) 0.358 0.330 0.406 0.539

By conducting a comparative analysis of the standard deviation (SD) of the predicted
puncture time and the mean absolute error (MAE), calculated based on the difference from
the ground truth, the extent of disparity between the predicted and true values can be
evaluated. Consequently, when the threshold value is set to 96%, the standard deviation
reaches its minimum, indicating a relatively concentrated distribution of predicted values
and minimal deviations from the true values. This signifies the superior stability of the
model. Furthermore, by comparing the mean absolute error (MAE) among different
thresholds, one can assess the average level of disparity between the predicted and true
values. Similarly, at the threshold value of 96%, the mean absolute error reaches its
minimum, underscoring the heightened average accuracy of the model. Therefore, this
study opted for a threshold value of 96% to achieve the utmost stability and accuracy in
the model.

4. Results and Analysis
4.1. Results

In our experiment, a total of 126 operators participated. However, data for 17 of these
participants were unavailable due to self-occlusion, wherein 9 participants fully obstructed
the view with their arm while 8 others partially obstructed the view with their finger during
the injection process. Therefore, we analyzed data from a total of 109 participants. The
results of our analysis are presented in Figure 18.

(a) (b)

Figure 18. Results of statistical analysis. (a) Bland–Altman plot between ground truth measurements
and predictions. (b) Significance analysis

The prediction performance of the YOLOv7-based test method proposed in this study
was evaluated by comparing the predicted values with the ground truth. The ground
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truth data were analyzed frame by frame by an expert observer to ascertain the moment
of skin puncture. As shown in the Bland–Altman plot in Figure 18a, the red dashed lines
in the plot indicate the upper and lower permissible limits of agreement (LOA) for the
measured values and the average difference between the measured values between the two
methods. The LOA range from 1.1406 [95% CIs: 0.9828 to 1.2984] s to −0.7600 [95% CIs:
−0.9178 to −0.6022] s. The mean difference in measurements between the methods was
0.1903 [95% confidence intervals (CIs): 0.09829 to 0.2824] s, with a fixed error (one sample
t-test assuming zero population mean, p-value = 0.0001). Figure 18a shows that 104 of the
109 data are within the acceptable range of measured values, which indicates a high level
of correlation between the two values. Furthermore, the average preparation time is 2.264 s
and the mean error is 0.330 s. Figure 18b shows that there is no statistically significant
difference (p = 0.25) between the predicted values and the ground truth, with a significance
level of α = 0.05. This result provides evidence to support the validity and reliability of the
proposed method.

4.2. Analysis

Upon analyzing the obtained results, we identified the reasons behind the considerable
gap between the predicted values and the ground truth. It was discovered that the swift
motion of the hand during the preparation phase of the injection led to the needle becoming
blurred, while the intricate background caused the YOLOv7 model to misidentify objects,
ultimately resulting in an incorrect identification of the key frame (frame 20, 0.5 s), as
depicted in Figure 19.

(a) (b)

Figure 19. Examples of the YOLOv7 misjudgment. (a) The presence of a complex background can
result in inaccurate identification of needles. (b) The presence of a finger in the background causes
recognition errors.

4.3. Validation Experiment

Considering the robustness of the system, we designed two experiments.

4.3.1. Environmental Factors

We experimented with varying the image contrast and brightness of the original data.
The aim was to investigate the effect of the environment on the system’s performance.
Specifically, we employed data from the same person and conducted a single-factor com-
parison analysis by defining the parameters of brightness and contrast variation. The
following steps were taken:

1. We normalized the input image f (x, y) from the range [0, 255] to [0, 1];
2. The parameters of brightness and contrast were defined with the following equations:

g(x, y) = a× f (x, y), 0 < a < 2 (5)

where g(x, y) represents the pixel value of the output image, a represents the changed
brightness value or contrast value, and f (x, y) represents the pixel value of the
original image.

3. Finally, we normalized the resulting image g(x, y) from the range [0, 1] to [0, 255].
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As depicted in Figure 20, we compared the accuracy of YOLOv7 in recognizing each
frame and predicting the puncturing time by altering the brightness of the original video.

Figure 20. The change in brightness.

The evaluation method employed for this purpose is as follows:

Recognition o f f rame (%) =
Success f ully recognized f rames

Total f rames
× 100% (6)

Accuracy o f time (%) =

(
1− |Ground truth− Predicated|

Ground truth

)
× 100% (7)

The results in Figure 21 illustrate that the recognition rate of the needle frames in-
creased significantly from a light intensity of 0.4 and maintained a high level until 1.4.
Moreover, the accuracy of the recognition time reached 100% within the range of 0.7–1.0 in
the recognition time accuracy results under the influence of light intensity.

Figure 21. The result of brightness changes.

Next, the same Equation (5) is used to compare the contrast, as shown in Figure 22, to
change the contrast of the original data.

Figure 22. The change in contrast.

Using the same evaluation metric, the final outcomes were compared, as depicted in
Figure 23. The proposed system exhibits a high level of performance in response to contrast
variation, with the ability to maintain recognition of the needle at light intensity levels as
low as 0.4, and reaching 100% recognition time accuracy at 0.9–1.1. Notably, the system’s
accuracy results remained consistently high at various levels of contrast.
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Figure 23. The result of contrast changes.

4.3.2. Complex Gestural Factors

In order to simulate real-world scenarios as much as possible, we added data from
three additional left-handed operators and three operators who held the syringe incorrectly
using their index and middle fingers to the original data from 126 experimenters. This
additional data was used to further evaluate and test the robustness of our system, as
illustrated in Figure 24.

(a) Left-handed operators (b) Incorrect operation

Figure 24. Complex gestures.

As illustrated in Figure 25, the system’s robustness is verified by its ability to detect
the moment of needle piercing automatically, even when the operator uses their left hand
or incorrectly operates the syringe with their middle finger.

(a) Left-handed operators (b) Incorrect operation

Figure 25. Complex gestures.
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5. Discussion and Conclusions
5.1. Discussion

In this study, we introduce an innovative system for automatic detection of puncture
timing based on clinical injection training. This system exploits image processing and
YOLOv7 techniques to precisely detect the puncture time of trainers throughout the proce-
dure. The proposed approach was assessed on a dataset comprising 109 experimenters, and
it exhibited an average detection error of merely 0.330 s. It is worth noting that this value is
considerably lower than the average total operation time of 11.00 s for each participant.

The system employed image processing techniques, such as region of interest (ROI)
extraction and image rotation, to facilitate the extraction of pertinent information from
frames. Furthermore, the YOLOv7 algorithm was employed to detect the injection needle,
and the appropriate threshold for puncture time was determined through post-processing
and experiments to achieve the final automatic detection of the puncture timing.

Our results illustrate the effectiveness and robustness of the proposed system, even in
challenging scenarios where the operator is left-handed or holds the syringe incorrectly.
These findings imply that the system is potentially applicable in a clinical environment,
where it can facilitate the provision of objective and precise feedback during medical
training for novices, given the current social limitations imposed by COVID-19.

However, our study is not without limitations that could be addressed in future re-
search. One limitation resides in the YOLOv7 model’s incapacity to discern the state of the
punctured vessel. Nevertheless, we hold the belief that ongoing research endeavors and
advancements in computer vision technology possess the capacity to redress this limitation.
This technological breakthrough could potentially be achieved by formulating more sophis-
ticated algorithms or integrating supplementary modalities, such as ultrasound guidance.

Another aspect worthy of consideration is the exploration of additional variables, such
as patient pain perception, which would yield significant value in future clinical trials. Not
only would this yield a more comprehensive assessment to further comprehend patients’
sensations and responses throughout the injection process, but it would also contribute
to the enhancement of comfort and patient satisfaction during the injection procedure.
Furthermore, it would offer guidance for refining injection techniques and training, thereby
augmenting its practical applicability in real-world scenarios.

5.2. Conclusions

In conclusion, our study introduces a novel approach to automatically detect puncture
times during needle insertion image processing using YOLOv7 techniques. Our system has
demonstrated high accuracy and robustness, providing a valuable reference for the future
development of a comprehensive clinical injection skills training system.
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