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Abstract: In scene parsing, the model is required to be able to process complex multi-modal data such
as images and contexts in real scenes, and discover their implicit connections from objects existing
in the scene. As a storage method that contains entity information and the relationship between
entities, a knowledge graph can well express objects and the semantic relationship between objects
in the scene. In this paper, a new multi-phase process was proposed to solve scene parsing tasks;
first, a knowledge graph was used to align the multi-modal information and then the graph-based
model generates results. We also designed an experiment of feature engineering’s validation for a
deep-learning model to preliminarily verify the effectiveness of this method. Hence, we proposed a
knowledge representation method named Entity Descriptor Encoder of Transformer (EDET), which
uses both the entity itself and its internal attributes for knowledge representation. This method can
be embedded into the transformer structure to solve multi-modal scene parsing tasks. EDET can
aggregate the multi-modal attributes of entities, and the results in the scene graph generation and
image captioning tasks prove that EDET has excellent performance in multi-modal fields. Finally, the
proposed method was applied to the industrial scene, which confirmed the viability of our method.

Keywords: scene parsing; knowledge graph; multi-modality

1. Introduction

Scene parsing is a set of multiple tasks that perceive the scene and extract the semantic
and internal connections in the scene. From the complexity of scene parsing tasks, it can be
divided into object detection, entity relationship prediction, scene description generation,
etc. Based on the information carrying capacity of knowledge graph, it can be used as the
intermediate product of some scene parsing tasks. As shown in Figure 1, scene parsing was
regarded as a task based on the multi-modal knowledge graph to solve sub-tasks such as
entity relationship prediction and scene captioning generation.

Knowledge graph is a graph topology for storing and expressing information. It is a
directed graph composed of nodes and edges that can carry information and has powerful
logical representation capability to effectively and intuitively express the relationships
among objects. Logically, the basic constituent elements of the knowledge graph include
entities, relations, and attributes; topologically, the knowledge graph is composed of nodes
and edges. This means that, in the knowledge graph, entities can exist as independent
nodes, relations must be between nodes, and attributes are embedded inside entities and
relations. Since knowledge graphs store and express knowledge in a way that is closer to
how humans do it, they have attracted a lot of attention in the field of artificial intelligence
in recent years, and various organizations have established knowledge graphs in different
domains. The established knowledge graphs include general knowledge graph FB15K [1],
medical knowledge graph DiaKG [2], CORD-19 [3], etc. When building knowledge graphs,
entities are usually required to be objects with distinguishability and independent existence.
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Figure 1. The scene parsing task can be decomposed into multiple sub-tasks based on knowledge graph.

According to the representation of information in them, they can be divided into
knowledge graphs containing only a single modality such as Cora [4] and Citeseer [5]
etc., and multi-modal graphs such as MMKG [6] etc. In a single modality knowledge
graph, there is only one mode of information. The two single modality knowledge graphs
mentioned above only contain text-modal information. The multi-modal knowledge graph
contains information in various forms, and they generally contain information in text,
image modalities, and even audio and video modalities. In order to enable computers
to understand and apply the information in knowledge graphs, a variety of knowledge
representation methods have been proposed.

Traditional knowledge representation methods can be divided into methods based
on information propagation, such as GCN [7] and GAT [8], and methods based on spatial
domain distance such as TransE [1], TransH [9], and TransR [10]. The former methods are
applicable to small-scale graph structure data. They represent information of the nodes
as the aggregation of other nodes connected to them and learn the representation of each
node through the information propagation algorithm. While the latter maps the nodes into
a semantic space, the relationship between nodes is represented by the distance between
nodes mapped in the edge semantic space. Both types of methods have good performance
on a variety of tasks, but it can be found that they treat the attributes as the linked nodes
of entity nodes, which means that the knowledge representation of each entity node no
longer satisfies the distinguishability and independence properties when the knowledge
graph is established.

When choosing a knowledge graph as the intermediate of scene content understanding,
unifying the multi-modal information into the form of a knowledge graph, we can use a
unified structure to align different modal information. It can also be used to solve different
problems, improve the mobility of the scene parsing model, and the knowledge graph
generated by scene tasks could improve the reliability of the generated results. In order
to verify the feasibility of the processing proposed, the scene information needs to be
represented by a graph structure; however, the corresponding datasets and related research
are missing both in the current field of scene paring and the knowledge graph. At present,
large-scale multi-modal knowledge graphs often only provide data and do not provide
corresponding task annotations. Taking MMKG as an example, we can find many small
graphs in the dataset, but the categories of each small graph are not marked. Therefore,
through the data pre-processing, the data in the scene parsing tasks could be transformed
into the nodes, attributes, and edges of the knowledge graph, and then the parsing results
are generated by a deep learning model.

Single-modal information is not enough for a computer to understand the real world,
and multi-modal information is more important for scene perception and cognition than
before. Multi-modal knowledge graphs that use information, such as text, images, audio,
and video, as entities or attributes are increasingly available, so traditional knowledge
representation methods have difficulty representing them in a unified semantic space.

In order to solve the above problems, unify the processing of multi-modal information
on the knowledge graph, and preserve the real characteristics of entities, we proposed
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a structure named Entity Descriptor to form the knowledge representation of an entity,
where the representation result of an entity is related only to its own attributes. The
representation preserves the independence and distinguishability of entity nodes and has
the ability to express multi-modal information. At the same time, the representation can
be perfectly integrated with the transformer [11] structure and can make full use of its
attention mechanism to perceive global information. The new transformer-based encoder,
EDET, which can aggregate the entity features of multi-modal scenes, was validated by
conducting a large number of experiments, and the results show its effectiveness in scene
parsing tasks. The main contributions of this work are as follows:

1. A knowledgerepresentation method named Entity Descriptors was proposed. This
method focuses on the intrinsic multi-modal attributes of entities to ensure that the
entities have independence in the process of forming knowledge representation. The
knowledge representation result formed by this method retains the correlation and
the differences between nodes and has a good clustering effect without training.

2. In order to transform the scene information into knowledge graph representation,
this paper summarized three basic methods to select entity attributes according to
experience. This method is oriented to specific questions, answering the questions of
how to screen, add, transform, delete (ignore), and other operations of the entities and
attributes of the knowledge graph when facing different scenarios, so as to retain useful
information, remove redundancy, and reduce the cost of model training, deployment,
and other stages.

3. A new way of handling scene parsing tasks based on Entity Descriptor was proposed,
and a transformer-based network for multi-modal knowledge mapping tasks was
established. The definition of Entity Descriptor perfectly fits the long sequence input
and global perception of transformer structure, which can still guarantee attention to
the full graph in scenes where entity nodes are independently represented.

2. Related Work
2.1. Knowledge Representation

Conventional convolution methods are only applicable to data in Euclidean space
and are difficult to apply directly to the non-Euclidean graph topological structure data.
Based on the parameter sharing property of convolution kernels in CNNs, GCN has
been proposed by applying the convolution operation analogy to graph structures. This
work used Laplacian matrix representation of graph structures, restricted the perceptual
field of learnable convolution kernels using Chebyshev polynomials, and aggregated the
information of the node itself and its first-order neighboring nodes to form a knowledge
representation of that node. This representation performs well on a variety of graph
structure tasks such as node classification and graph categorization. This method is suitable
for small-scale homogeneous graphs, and the application presupposes that the node has
the LP (Label Propagation) property and that the representation of each node depends on
the nodes connected to it. This property is not applicable in the knowledge graph, where
similar models based on GCN, such as GAT, GraphSAGE [12], etc., have similar problems.

The basic elements of the knowledge graph are entities, attributes, and relationships.
When the distinction between entity nodes and attribute nodes is ignored, attributes can
be expressed in the form of entity-owning attribute–attribute value, at which time the
knowledge graph can be regarded as only two elements—nodes and edges—and all the
information within the graph can be expressed in the form of head-edge-tail, i.e., (h,l,t).
Inspired by the translation invariance of word2vec [13], TransE was proposed to represent
the vectors of nodes and links as satisfying the form h + l = t. Most of the subsequent
extensions based on the TransE method, such as TransH and TransR, expand the semantic
space and replace the distance metric function on this basis. This representation method is
convenient for obtaining the relationship information between entities easily at the time
of application, but due to the complexity of realistic semantics, there may be multiple
relationships between nodes that are difficult to describe by the distance metric function,
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and this method is applicable to the semantic web that requires nodes to all be represented
in the same semantic space, and is not applicable to the multi-modal knowledge graph
scenario.

2.2. Scene Parsing and Multi-Modal Knowledge Graph
2.2.1. Predicate Classification

The scene graph generation task is the task of generating the semantic graph structure
of the scene according to the input scene image, which is a part of the understanding of the
scene content. Predicate classification is one of the sub-tasks of scene graph generation.

In the scene graph generation task, for a given image, the target in the image can be
recorded as a node set, and the relationship between the targets can be recorded as an edge
set, so the scene graph of the image can be represented, that is, the scene graph containing
the target and its associated relationship is generated according to the image. The predicate
classification task obtains the correlation relationship between targets under the condition
of knowing the image and the target in the image. The purpose of the corresponding task
is to obtain the transition probability of various relations between targets in a given set of
relations.

2.2.2. Image Captioning

Image captioning is one of the classic tasks of scene parsing. This task is required
to generate a semantic description based on the input image. The content of the image
captioning task is the intersection of computer vision and natural language processing,
which requires the computer to perceive the high-level semantic information according to
the underlying visual information.

At present, the generative models designed for image captioning mostly use the
structure of image coding—visual feature extraction—description coding—decoding, in
which CNN is commonly used for image coding, RNN, and LSTM for caption generation,
and the related research shows that the structure of a pure transformer is also feasible and
can achieve better results.

3. Our Approach
3.1. Entity Description

In tasks related to graph topology, only two constituent elements—nodes and edges—
are usually considered. The attributes are often considered as nodes and thus the fact
that attributes are intrinsic properties of nodes is ignored; this blurs the definition of basic
constituent elements of a knowledge graph. In the knowledge graph, entity nodes should
be independent and distinguishable; if the scene does not change, the entity node itself
should remain unchanged when it interacts with other entities.

Figure 2 can more conveniently help us understand the importance of entity node
independence. As shown in Figure 2a, in a scene with three entities—a table, a chair, and a
cup—placing the cup on the table or chair will generate different relations cup-on-table
and cup-on-chair, but the cup in this scene is the same cup regardless of the relation with
which object. When we represent this cup using the knowledge representation represented
by GCN, the high-dimensional vector representation of the cup is affected by the entities it
interacts with, resulting in multiple representations of a concrete, physically existing object
in a semantic space, causing the model’s ability to express knowledge to shrink and the
cost of parsing it to increase.

The distinguishability of entity nodes is equally important. In the scene shown in
Figure 2b, when there are many objects that can generate relations with the table, the
distance-based approach in the spatial domain represented by TransE reveals the drawback
that it is difficult to handle complex one-to-many and many-to-many relations, because
at this time a large number of entities generates the same interaction with the central
entity, such as the table, which means that the high-dimensional representations of a large
number of mutually-independent entities are concentrated in a same hyperplane, the
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distinguishability between entities is greatly reduced, and then the relationships between
these entities, and other kinds of relationships involved in the central node, are also difficult
to express.

Figure 2. The differenceof knowledge representation methods. (a) Methods based on GCN; (b) Meth-
ods based on TransE; (c) Our Entity Descriptor method, the asterisk means aggregation operation.

Combining the above reasons, we want to take full advantage of the knowledge
graph. As shown in Figure 2c, the representation of entity nodes focuses on describing
the information of the entities themselves. Suppose entity nodes in the knowledge graph
have the set of attributes A. For its attributes of different modalities, it uses different static
feature extraction networks to represent them as a tensor with the same dimension, while
attributes of the same modality are extracted using the same extraction network to ensure
that a class of attributes is embedded in the same feature space. In order to avoid the
attributes of different modalities from influencing each other, the processes of attribute
acquisition features are all independent of each other, and finally they are stitched together
to distinguish different attributes at different locations. Then, its Entity Descriptor ED can
be expressed as:

ED = Aggregate(W1 × (Concat(σ(W2 × A + b)))), (1)

where W1 is the weight matrix of features, W2 is the attribute embedding matrix. Aggregate
means aggregate function. σ means activation function. In different scenarios, the aggregation
function can choose many methods, such as weighted sum, splicing, and mapping. Splicing
means to connect the obtained attribute tensors back and forth, and the result is a one-
dimensional tensor. Mapping involves converting high-dimensional attribute tensors into
low-dimensional representation tensors through mapping functions or convolutional layers.

Suppose the set of nodes is X = {xi|i = 1, 2, . . . , Nx}; every node has its attributes
set D = {dj|j = 1, 2, . . . , Nd}, then all attributes could be expressed as Y = {yi j|i =
1, . . . , Nx, j = 1, . . . , Nd}, in which yi j means that the value of the ith entity’s jth attribute is
yi j. According to Entity Descriptor, the representation of entity xi should be:

xi = AggregateNd
j=1 yij. (2)

While the aggregation function chooses weighted sum, splicing and mapping methods,
for xi ∈ X, we have:

xi =


∑Nd

j=1 wjyij, ∑Nd
j=1 wj = 1

ConcatNd
j=1

(
yij
)

W0ȲijW1,

(3)

where Ȳij is the representation matrix of attributes and each column vector is the embedded
representation of the corresponding attribute value. W0 means the weight transformation
matrix, the form of which is trainable hidden layers. W1 aims to adjust all types of attribute
vectors to the same dimension. The aggregation of weighted sum is the most direct, but this
method requires manually setting the weight of each attribute and the entity representation
obtained in this way is prone to confusion; splicing retains all attributes of the entity but
usually causes the dimension of the entity representation to be too long to train. Using
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the direct mapping method, although solving the disadvantages of the first two methods,
usually requires the appropriate weight transformation hidden layer in the long-term and
a large number of trainings.

In order to reduce the training time and support the dynamic of new entities, based
on the GCN for graph structure information aggregation, using the triangle matrix U as an
attribute node and the entity link matrix, we can obtain a new aggregation function which
is small and easy to train:

xi = Aggregate
(
Ȳij
)
= σ

(
U−

1
2
(
Ȳij + I

)
U

1
2

)
. (4)

To sum up, when there are few attributes, the aggregation function can choose the way
of weighted sum. When the attribute is short and easy to splice, we can choose splicing as
the aggregation function. When there are many, or complex, attributes, attribute features
should be extracted first and then the aggregation function in Equation (4) should be
selected to aggregate the attribute information.

Entity Descriptor uses each entity’s own attributes to generate the corresponding
representation results, which makes it possible to obtain the same entity representation for
the same entity in different scenes, always maintaining the independent distinguishability
of entity nodes in the process of generating the representation. The generated entity
representations are also distinguishable between different entities of the same class due to
the differences in attributes.

3.2. Attribute Selection Conditions

In the process of scene parsing mentioned above, it is necessary to transform the
data in the scene into a knowledge graph; this part of the work is not annotated in the
current scene parsing dataset. While in a fixed scene, the choice of entity nodes is often
uncontroversial—using the minimum level entity that is involved in the task—what needs
to be discussed is how to choose attributes among the massive data. So, we summarized
three attribute selection conditions to guide the construction of the knowledge graph.

3.2.1. Common Condition: The Characteristics That Entity Nodes of the Same Class Have
Can Be Used as Attributes

In a knowledge graph, entities are the smallest unit involved in the problem. Entity
nodes of the same class should maintain homogeneity, that is, when discussing entity
nodes, the characteristics they all possess can be seen as attributes. When the characteristics
of an entity node are unique and cannot be expressed by other nodes, these characteristics
cannot be treated as attributes and they cannot be merged for similar nodes. The purpose
of this condition is to classify the entity nodes in a knowledge graph, and the processing
methods of similar nodes are unified, which not only conforms to the understanding of
things in the real world but also saves computing resources.

3.2.2. Unique Interaction Condition: An Attribute Cannot Have Multiple Kind of
Relationship Links to Entities of the Same Class

The idea of the unique interaction condition comes from the concept of the lattice
representation method of Formal Concept Analysis. This method expresses things with
their own connotation, and there is only a unique partial order set in the binary relationship
between things and descriptors, that is, under a fixed background and attributes, the
representation of things in that attribute is unique. This condition is to ensure that, in a
class of attributes, there is one and only one kind of relationship between attributes and
entity nodes. In the case of a fixed relationship, a single entity cannot be connected to
multiple homogeneous attributes, while a single attribute can be connected to multiple
homogeneous entity nodes.
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3.2.3. Limited Scope Conditions: Entity Nodes and Attribute Nodes Only Exist in Their
Respective Scopes

When an attribute has the same name as an entity, or both are the same object in reality,
the attribute node and entity node of the object cannot be represented as the same vector.
Although entities and attributes are often represented as nodes in the process of building or
designing knowledge graphs, they are actually completely different. This condition exists
to distinguish attributes and entities. In a knowledge graph, as the size of entity nodes
increases, the links between entity nodes and attributes will become more complex and
some entities may exist as attributes of other entities. Using limited scope conditions to
divide nodes and draw the boundary between entities and attributes can not only represent
entities more clearly but can also more conveniently model entities and attributes separately
to avoid confusion.

3.3. Entity Descriptors in Multi-Modal Tasks

For aggregate functions in Equation (3), the weighted sum and direct splicing ways are
only applicable to the knowledge graph with only a class of entities and simple attributes
while, in most cases, the knowledge graph is complex and with diverse attributes. When
choosing mapping, it not only faces the situation in which the dimension of the obtained
representation is higher than that of the transformer architecture needed, but also faces the
problem that different categories of entity nodes have different vector dimensions and do
not meet the requirements of equal length sequence.

For the problems existing in the aggregation function of mapping, we can imitate
the processing method of high-dimensional patches in CV and set a separate convolution
channel or linear channel for each type of entity. The node representation of the same
entity uses the same channel and different types of entities are processed separately. This
is due to the large difference in attributes between different categories of entities, and the
data of heterogeneous entity representation vectors in the same column may come from
completely irrelevant information. However, using different channels to extract features of
different types of heterogeneous attributes not only compresses the entity representation to
two dimensions, which is easy for the model to learn, but also converts them to the same
dimension while retaining the differences between different types of entity for parallel
processing. This paper uniformly names the models containing Entity Descriptor as EDET
(Entity Descriptor Encoder of Transformer).

In the existing multi-modal graphs, there is no corresponding processing task to verify
the effectiveness of its specific application. Therefore, tasks can be converted into the form of
multi-modal knowledge graphs and then Entity Descriptor can be used to solve the task.

3.3.1. Predicate Classification

While facing the predicate classification task, the attribute selection conditions above
were used to build a knowledge graph of the source data. Then, the entity in scene graph
was noted as N and all n entities set as V = {N1, . . . , Nn}. Each entity node Ni has
attributes including sub-image Ai

image, label Ai
label , and location Ai

bbox. Set the shape of the
feature vector as 1 × 512. Among them, the sub-image uses a pre-trained feature extraction
convolutional model such as VGG16, which could be marked as CNN, and then obtains
a 1 × 512-dimensional feature vector by flattening. The way to process label information
is to establish a vocabulary and then use the word embedding method [14] to obtain the
corresponding vector representation. This methods is marked as embed. The location
information contains less information and its dimension can be expanded to 512 through a
linear layer, which is marked as Linear. The aggregation function chooses to use a 3 × 3
convolutional layer and fills it with padding to maintain the dimension of the final result.
At this time, the Entity Descriptor Xi of the node Ni is expressed as:

Xi = Aggregate(CNN(Ai
image), embed(Ai

label), Linear(Ai
bbox)). (5)
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In the predicate classification, the result that needs to be output is the relationships
between entity nodes, so the representation of relational elements can be ignored when
input and the model structure is shown in Figure 3a. However, knowledge graphs usually
have relationships, so in order to operate uniformly on the model, a set of relationship
edges can be preset using the information they already have. Then, the model structure
is as shown in Figure 3b. For this task, the relative location between the entity nodes can
be used as the preset information of the edges. Suppose two nodes in graph with their
position (x1, y1) and (x2, y2), their relative location r1,2 could be expressed as:

l = arctan(y1 − y2)/ arctan(x1 − x2)

r1,2 = arctanh
[(

el − e−l
)

/
(

el + e−l
)]

.
(6)

Figure 3. EDET: (a) Entity Descriptor Encoder of Transformer. (b) Entity Descriptor Encoder of
Transformer with edge information. ×N means repeat this structure for N times.

3.3.2. Image Captioning

Image captioning is a task for generating the captioning of the current image. Unlike
in the predicate classification task, the scene image in an image captioning dataset does
not mark the target and its location at first. As shown in Figure 4, for the image captioning
task, the Mask R-CNN [15] model is used to obtain the entity and its attribute information.
It should be noted that the entity nodes and attributes obtained here have biases and errors
compared with the entities involved in the annotation sentences of the image captioning.
The bias mainly comes from three aspects: one is that the entity object obtained by the
pre-trained model is not necessarily the entity in the sentence; the other is that the model
can usually recognize the visual target by shape but it cannot recognize backgrounds such
as the sky; third, the model can recognize limited objects, and the target objects involved in
the sentence may not be within the scope of recognition. The source of the error is because
the model cannot achieve 100% accuracy for the target objects within the recognition range.

The entity and its attributes in the image captioning task are treated in the same way as
in predicate classification. Meanwhile, in image captioning, there is another method used to
generate edges for the graph—using a predicate classification model that has been trained in
the previous section. It should be noted that, with this method, the relationship between entity
nodes is trained by external data and has bias which exists in the predicate classification task.
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Figure 4. Pre-processing of image captioning task. Using Mask R-CNN to generate multi-modal
knowledge graph.

4. Experimental Results

In this section, experiments were carried out to verify the ideas proposed above. First,
the effectiveness of our proposed pipeline for scene parsing was verified using semantic
segmentation experiments. This experiment was performed on the ADE20K dataset [16]
and its experimental results show that feature engineering can assist deep learning models.

Secondly, the effectiveness of the Entity Descriptor was verified on the Cora dataset.
Cora is a scientific publication dataset in which data can be expressed in the form of a
graph structure. Then, the feasibility of our proposed attribute selection conditions was
verified on industrial data from real projects.

Finally, the effectiveness of EDET was verified by predicate classification and scene
description tasks on Visual Genome dataset [17] and Flickr30k dataset [18], respectively.
The application of EDET in actual industrial scenes is introduced at last.

4.1. Validation of Feature Engineering of Deep Learning Model

In the previous section, we presented a new solution to scene parsing tasks. It is
important to note that this solution adopts a streaming solution, which is essentially to
give up the end-to-end model and solve the problem as an engineering one—based on
the knowledge graph structure, using the pre-trained model for feature engineering, then
based on the knowledge graph of the deep learning model to solve the task. This method
of using feature engineering to extract prior information has significant advantages in the
interpretability of output results; however, deep learning models have a large number of
parameters and a complex network structure, and are theoretically able to simulate almost
all the operations in feature engineering. In order to support the idea of multi-stage process
processing, feature engineering effectiveness experiments were designed to verify whether
feature engineering is still necessary for the existing deep learning model in this section.

We chose to explore the above problems in the semantic segmentation task. The
purpose of this task was to obtain pixel-level boundaries between different classes of
objects in the image, which is a popular fine-grained classification task in CV. One of the
major pain points facing this task is the accuracy of the object edges.The Laplace edge
detection algorithm is a simple algorithm commonly used in image processing, which can
be regarded as a fixed convolution kernel of 3 × 3. In order to keep the edge information
data dimension consistent with the source data, we used multi layer perceptron with about
50,000 parameters to keep the data dimension.

The influence of adding a few parameters to image segmentation is shown in Table 1.
The effect on mAcc is not significant (4.01–11.18%), while mIoU, which measures the accuracy
at the pixel level, is significantly improved (21.59–37.32%). It can also be seen in Figure 5 that
the model metrics can gain a certain amount of improvement at the beginning of training with
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the inclusion of edge features and can reach higher values after the same number of training
epochs. This shows that even a feature extraction operator with nine fixed parameters can
improve the performance of a model with over 30 million parameters, disproving the implicit
assumption that “the current model structure contains the optimal solution to the problem”
and proving that feature engineering is still necessary in today’s machine learning.

Table 1. Parameter comparison table. (Params: Number of training parameters + number of fixed
parameters, mAcc: Average class accuracy, mIoU: Mean Intersection-over-Union, Score: Average of
mAcc and mIoU).

Model Params mAcc mIoU Score

FCN [19] 35,322,218 67.3 22.7 45.00
FCN + Edge 35,372,394 + 9 70.0 27.6 48.80
PSPNet [20] 46,582,337 68.9 28.4 48.65

PSPNet + Edge 46,632,513 + 9 76.6 39.0 57.80

Figure 5. The effect of a small number of parameters on the training process.

4.2. Validation of Entity Descriptor Representation Methods

After verifying the effectiveness of feature engineering, we proposed the idea of the
Entity Descriptor. In order to verify that the idea of aggregating entity node information
through the Entity Descriptor is feasible, preliminary experiments were performed on entity
descriptors to verify its feasibility in simple tasks of a single-modal knowledge graph, and
then the computer vision task and multi-modal knowledge graph were popularized in the
subsequent experiments.

We chose to verify the validity on the scientific publication dataset Cora. The Cora
dataset contains 2708 scientific publications, 5429 edges, and a total of seven categories.
Treating publications as entity nodes, each entity node consists of 1433 attributes, each
representing a keyword, taking values represented by 0/1 only, corresponding to the
absence/existence of that keyword.

First, the publications were defined as entity nodes, while keywords were defined
as entity properties and reference relationships were defined as relationship edges, and
the reference network was converted into a single-modal knowledge graph. Secondly,
the Entity Descriptor was used to encode entity nodes. The 1433 keyword attributes
constitute a word list of attribute information through the embedding layer to generate
1433 one-dimensional vectors, and the dimension of this attributes vector was set to 128.
Then, the initial encoding of each publication was converted to a two-dimensional vector
of 1433 × 128, using the aggregation function in Equation (4) to encode the entity node
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representation. Finally, the encoding was trained to the same GCN network as the reference
network for 100 epochs.

In the traditional GCN approach, the information propagation properties of the publi-
cation entities are used to obtain a randomness representation and then the classification
results are obtained by a two-layer graph convolution network. Entity Descriptors, on the
other hand, first embed attributes into high dimensions to obtain semantic representations
of the attributes and then fuse the attribute information into the corresponding entity nodes
by trainable weights.

Experimental results can be seen in Table 2 and Figure 6. In the process of generat-
ing node representation, the node representation obtained by the traditional method is
influenced by other adjacent nodes, where the trainable weight is between all nodes in
the whole graph; the node representation obtained by the Entity Descriptor is only related
to the properties of the entity node itself, and its trainable weight is only effective within
the entity. This leads to the effect of the first epoch in Table 2 and Figure 6. The node
representation obtained by the traditional method at the beginning has strong randomness
and the classification accuracy is only 8%, while the Entity Descriptor already has a certain
classification effect at the initial time, with a classification accuracy of 37%, far more than
that of the traditional method. After the training of the same model and the same iters
(100 epochs), the model classification accuracy of the traditional method was 77%, while
that of the Entity Descriptor representation method was 82%, and the performance was
improved by 6.49 percentage points.

Figure 6. Performance of Entity Descriptor and traditional method in knowledge representation.

Table 2. Performanceof GCN and ED + GCN on Cora.

Model mAcc, Epoch = 1 mAcc, Epoch = 100

GCN 8% 77%
ED + GCN 37% 82%

The results of the Entity Descriptor validity experiment show that the Entity Descriptor
can obtain better knowledge representation results at the beginning of encoding the entity
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node, retain the original clustering nature of the entity, and drive the model to learn more
information so as to generate better results.

4.3. Validation of Attributes Selection Conditions

To verify the effectiveness of our selection methods, we chose four entities in the
industrial dataset: machine door, safety door, spindle, manipulator, and using the pro-
posed attributes selection conditions to create a multi-modal graph. The entities and their
selected attribute information are shown in Table 3, and the final multi-modal graph can be
generated as shown in Figure 7.

Table 3. Selected attributes of entities in industrial dataset.

Entity Attribute Has Part Type Image

Machine Door plug Parts X
Spindle bearing Parts X

Safety Door plug Equipment X
Manipulator jaws Parts X

Figure 7. Multi-modal knowledge graph extracted from industrial data by attribute selection methods.

After obtaining node representations in the experiment, the node representation vector
of each entity was compressed into the same two-dimensional space, and the distance
between two representations shows the similarity of the two nodes. Four experiments were
performed, including all attributes, without the Has Part attribute, without the Type attribute,
and without the Image attribute. The experimental results, respectively, were expressed in
dark red, pink, blue, and green nodes, and different entity nodes with different shape nodes.
Machine door, spindle, safety door, and manipulator were marked as triangle, square,
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rhombus, and circle, respectively. The results of the final attribute selection conditional
validity experiment are shown in Figure 8.

Figure 8. Our selection methods could help researchers filter entity attributes from massive data and
build usable knowledge graphs.

In Figure 8, it can be seen that the similarity between the node representations obtained
by using all attribute aggregation is not much different. When the Type attribute is masked,
the similarity between machine door and safety door node representation increases; when
the Has Part attribute is masked, the similarity of machine door, spindle, and manipulator
node representations increases; when the sub-image information of entity nodes is masked,
the similarity between all node representations is further improved.

Based on the results obtained by the aggregation of all attributes, the reason for the
change of node representations was analyzed. Combining the attribute information, it can
be seen that, when Type is ignored, the node representations of the same Has Part attribute
become closer. Similarly, when ignoring the Has Part attribute, nodes of the Parts type
become more similar. Compared with the other two attributes, the images contain too
much redundant information, such as background information, and the similarity between
all nodes is improved after the image attribute is ignored.

Experimental results show that attribute selection conditions can assist in judging
which attributes are key attributes among entities, and the selected attributes can preserve
the independence and separability of entity nodes. This has certain research significance for
the large-scale development of knowledge graphs and the development of models based
on knowledge graphs.

4.4. Performance of EDET in Scene Parsing
4.4.1. Predicate Classification

In the scene graph generation task, our model is only involved in the relationship
generation part, so only the metrics in the predicate classification PredCls were compared.

The relationships in the Visual Genome dataset have the characteristics of long-tailed
distribution. To overcome this difficulty, we chose to use focal loss as the loss function for
EDET. The performance of EDET in predicate classification is shown in Table 4 and Figure 9.

Table 4. Performance of EDET in predicate classification.

Method R@20 R@50 R@100

Graph-RCNN [21] - 54.2 59.1
Neural-motifs [22] 58.5 65.2 67.1

NODIS [23] 58.9 66.0 67.9
VC-Tree [24] 59.8 66.2 67.9
GPS-Net [25] 60.7 66.9 68.8

EDET 62.7 68.6 70.3
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Figure 9. Predicate classification by EDET. Shows that EDET is able to mine deep semantic associations.
The green arrow represents correct prediction results, while the red arrow represents incorrect prediction
results.

The results show that EDET can generate excellent scene parsing in the scene graph
predicate classification task. R@K means the recall rate of the top K prediction results.

4.4.2. Image Captioning

In the section above, two methods to construct relationship edges within the knowl-
edge graph were proposed for the image captioning task, respectively—the unbiased
relative position relationship and the biased relationship obtained by previous predicate
classification model. Although the latter carries the biased information in other models,
the semantic information of the connotation is richer than that of the former, and it is
also more logically instructive for the generated semantic description. The same model
was used to train on two knowledge graphs, and the model was marked as EDET and
EDET+, respectively. ‘+’ here means that it carries the data on the other training sets (the
relationship information from the Visual Genome dataset). The performance comparison of
the two models with others on the Flickr30k dataset is shown in Table 5. Figure 10 shows
examples of the scene image description generated by the two models.

Table 5. Performanceof EDET and EDET+ in image captioning. EDET+ means using extra data from
the trained EDET model in the previous experiment. ×means that the generation of result does not
rely on extra training data, while X means using extra training data.

Method Extra Training Data BLEU-4 CIDEr METEOR SPICE

BRNN [26] × 15.7 24.7 15.3 -
MetaLM [27] × - 43.3 - 11.7
Cornia [28] X 21.3 46.4 20.0 -
SimNet [29] X 25.1 65.0 22.1 16

Unified VLP [30] × 30.1 67.4 23.0 17
EDET × 30.7 66.7 - 15.3

EDET+ X 33.2 71.6 - 21.2
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Figure 10. Image captioning by EDET and EDET+.

According to the data in Table 5, it can be seen that the EDET model also has an
excellent performance in the image captioning generation task, especially in the SPICE
index. The reason for the improvement of the SPICE index is that the description of EDET
itself is generated based on the data of the graph structure, and the basis of the SPICE index
is to use a semantic concept tree, which is similar to the graph structure. It proves that
EDET generates a description that is smoother and more consistent with the grammatical
structure than other models. The results shown in Figure 10 also confirm this. It can be
found in Table 5 that, after using the trained model in the predicate classification task to
generate biased semantic relationships, both model performance and semantic fluency
were improved and it basically completely expresses the scene information contained in
the multi-modal graph.

The bottleneck of EDET is not the model structure, but the object detection in the
pre-processing. There are only 90 fixed classes of entities that can be detected by Mask
R-CNN, which is far less than the number of entities that appear in practice, and limits the
performance of our model.

4.5. Entity Descriptor and EDET in Industrial Application

The previous experiment confirmed the feasibility and effectiveness of the Entity Descrip-
tor and EDET model on the public dataset; this will appear in the section on the industrial
scene parsing-related tasks with discussion of the application of EDET in the actual industrial
scenarios.

4.5.1. Construction of Industrial Knowledge Graph

First, it was necessary to clarify the constructed graph-oriented usage scene. In this
case, the facing industrial scene was the fault analysis in the production process. Rapid
warning and preliminary diagnosis of the fault information on the production line can
prevent the occurrence of a large range of faults and, according to the preliminary diagnosis
results, it can effectively shorten the time and labor cost of troubleshooting and improve
the production efficiency.

Secondly, after clarifying the use scenarios, the massive data were analyzed and
classified to find out the objects that meet the application requirements so as to avoid the
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impact of excessive redundant industrial data. By analyzing the database and comparing
the structure of the data table, combined with the project requirements, the final selected
entities and relationships are shown in Tables 6 and 7, respectively.

Table 6. Selected entities and their attributes on industrial knowledge graph by attribute selection
conditions.

Entity Number Entity Type Attributes

0 Equipment Parts, sub-images, produced by, etc.
1 Order Standardized work order content
2 Production Line Workflow
3 Work Center Location
4 Workflow Workflow code
5 Parts Parts and components
6 Product Parts, subordinate categories, sub-images, etc.
7 Parameters Category
8 Fault Fault code
9 Fault Phenomenon Context description

10 Check Steps Step description
11 Solution Content of solution

Table 7. Relationships on industrial knowledge graph.

Relation Number Relation Definition Relation Label Relation Constraint ([A:B], Entity Number)

0 A has part B Has Part [0 or 5:5]
1 A is order of B Order of [1:6]
2 A is produced on B Produced On [1:2]
3 A has process B Has Process [2:4]
4 A work on B Work On [4:3]
5 A has fault B Has Fault [4:8]
6 A has parameters B Params [0 or 4 or 6:7]
7 A has phenomena B Occur [0 or 4 or 6:9]
8 A is the performance of B Has Phenomena [9:8]
9 A has solution B Solution Is [8:11]

10 B may be the solution of A May Solution [9:11]
11 A has step B Start Step [9:10]
12 B is the next step of A Nest Step [10:10]
13 B is the final result of A Final Solution [10:11]

After determining the entity and the entity relationship, the attribute selection condi-
tion was used to filter the attribute of the entity. For example, each equipment entity has
a standard value in the production process, which can be regarded as an attribute of the
equipment entity according to the common condition. However, some devices have more
than one standard value because they measure multiple locations or types of parameters
during operation. According to the unique interaction condition, multiple standard value
nodes owned by the device entity need to be fused; a standard value attribute node was
used to represent it uniformly and the representation method can use strings, key-value
pairs, etc. At the same time, in the scene, there are situations where parts and products
have the same name or the product is even a part of a device and parts are components of
the device entity. According to the limited scope condition, in the process of constructing
and applying the map, the node needs to be split; one exists as a component attribute and
the other exists as a product entity node.

Through the analysis of more than tens of millions of data points, a large-scale knowl-
edge graph with expansion, and in line with the practical application needs, was established.
Parts of the knowledge graph are shown in Figure 11.
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Figure 11. Industrial knowledge graph constructed by attributes selection conditions. Different colors
represent different types of entities or attributes.

4.5.2. Application of EDET on the Fault Analysis

In order to monitor the production line, a month of data were obtained before the fault
parameters as a dataset, and each fault was divided into three stages: “fault”, “the fault
will happen”, “normal”. After marking the dataset, the fault analysis based on the deep
learning model was transformed into a graph classification task based on a knowledge
graph.

Even if the same equipment is available between different production lines, their func-
tions and monitoring parameters in the manufacturing process of different production lines
may be different, so separate modeling and monitoring should be conducted for each pro-
duction line. In the implementation of the monitoring of each production line, the operation
process is fixed, namely, the following monitoring of different production lines is implemented
by the system automation: obtain production line equipment data, obtain the attribute in-
formation of equipment models, components, and parameters using the entity node vector
representation, input the whole production line serialized vector into the EDET model of
native transformer architecture, and obtain the classification results through MLP classifica-
tion. After one month of historical data training, the model is put online and, when a certain
amount of real-time monitoring results and feedback information are accumulated after the
launch, the new data are collected to continue the EDET model so as to achieve the effect of
lasting training, continuous optimization, and man–machine collaboration.

In order to achieve the purpose of rapid response of the system, the system also needs
to build an offline knowledge base. As shown in Figure 12, the parameters of the Entity
Description substructure on each scene are stored separately as a model.

When the system listens to the production line, the monitoring data of the same device
are also two different entities with independence and differentiation at different times,
while the Entity Descriptor can retain the independent separability of the entity. This
means that when the scene needs to realize the function of rapid response, we only need to
input graph data to the Entity Descriptor stored in an offline knowledge base to generate a
representation vector, and then the similarity between different scenes can be calculated
by their representation. However, it should be noted that the parameters in the Entity
Descriptor are also constantly updated under the action of continuous training. After
each update, the parameters stored in the offline knowledge base also need to be changed
accordingly.
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Figure 12. Realization of offline knowledge base.

5. Conclusions

This paper was oriented to the scene parsing task. In view of the powerful repre-
sentation ability of knowledge graphs, we proposed a new multi-stage process of scene
parsing based on a multi-modal knowledge graph and a deep learning model. By using the
mentioned process to solve the scene parsing task and in the process of repeatedly building
the knowledge graph, we found that, in the specific scene, the selection of graph entities is
not controversial, while the selection of graph attributes is not only faced with massive data
but also profoundly affects the independent separability of the entity and the quality of the
knowledge graph. Therefore, through observation and summarizing the experience, this
paper obtained three attribute selection conditions for the construction of the knowledge
graph, which provide guidance for multiple operations of attribute nodes.

After obtaining a high-quality knowledge graph through attribute selection conditions,
we set out to preserve the independence and distinguishability of entities in the real world
when representing entity nodes. For this reason, the Entity Descriptor representation method
based on a knowledge graph structure was proposed. This method is simple to implement
and can be plug-and-play with only a few changes to various models. The model embedded
with the Entity Descriptor is called EDET. In the follow-up experiments, the effectiveness
of the EDET model in solving problems was proved in terms of predicate classification and
image captioning.
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