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Abstract: This study aims to provide analytical solutions for circular plates coated or undercoated
with functionally graded materials (FGMs) having Young’s modulus functionality through the radius.
The circular plates are subjected to thermal loads in radial and thickness directions. Because of the
uncoupled stretching–bending problem of the radially FGM circular plate, the bending equilibrium
equations in terms of displacements of the FGM-coated or -undercoated circular plates with Young’s
modulus based on the power–law function were established individually. General solutions for the
homogeneous portion or FGM ring of the radially FGM-coated or -undercoated circular plate were
developed separately. Subsequently, analytical thermal solutions for the radially FGM-coated or
-undercoated circular plate were evaluated by solving the simultaneous boundary and continuity
conditions equations. The analytical results were validated by comparing them with finite element
solutions. When degenerated, they coincided with those of the homogeneous circular plate in the
literature, enhancing the obtained solutions’ reliability. These analytical solutions provide valuable
insights into the plates’ responses and expand the understanding of their mechanical behaviors under
thermal loads. Furthermore, the effects of the FGM thickness, the material index, and the thermal
loading conditions on the mechanical behaviors were under investigation. This parameter study
offers valuable perspectives into the influence of these factors on the plate’s structural response and
aids in the optimization and design of FGM-coated or -undercoated circular plates.

Keywords: radially FGM-coated circular plate; radially FGM-undercoated circular plate; thermal-
bending analytical solution; finite element solution

1. Introduction

Functionally graded materials (FGMs) offer several advantages owing to their unique
composition, wherein the volume fractions of the constituents gradually vary in specific
profiles. FGMs offer effective resistance against high temperatures and substantial reduc-
tion in thermal stresses [1]. The literature concerning FGM plates under thermal loads
has witnessed a rapid increase in recent times. Chung and Chang [2] derived series
solutions for FGM plates with a continuously varying coefficient of thermal expansion
along the thickness direction. These solutions were derived for FGM plates experiencing
linear temperature variations in the z-direction. Chung [3] extended the analysis to ob-
tain closed-form solutions for FGM plates with temperature changes in both the x- and
z-directions. The study demonstrated that by appropriately selecting material gradation
from the derived closed-form solution, the deflection of the FGM plate in the thickness
direction can be effectively minimized under thermal loading. In the study conducted by
Golmakani [4], a comprehensive analysis was presented for shear deformable FGM plates
under thermo-mechanical loads. The analysis considered different boundary conditions
and employed a first-order shear deformation plate theory and the von Karman equations
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to accurately capture large deflections. Dai et al. [5] investigated the thermoelastic solution
of a clamped-circular thin FGM plate by utilizing the classical plates theory. Their findings
highlighted the significant impact of factors on the thermoelastic behavior of the FGM circu-
lar plate during transient conditions. Parandvar and Farid [6] explored the large amplitude
vibration behavior of functionally graded plates under the influence of thermal load and
random pressure. Alibeigloo [7] conducted a bending solution of a sandwich circular plate
undercoated with a functionally graded layer under the combined thermal and mechanical
loadings. The study employed the generalized differential quadrature method for the
analysis. Ding and Wu [8] developed a hybrid optimization approach, combining a genetic
algorithm with a complex method. The objective was to optimize the material constitution
of a multi-layered FGM plate. Zhang et al. [9] examined the dynamic thermal buckling and
post-buckling behavior of annular plates made of imperfect FGMs, using principles from
the nonlinear plate theory. Zarga et al. [10] utilized a straightforward quasi-3D shear defor-
mation theory to analyze the thermo-mechanical bending characteristics of sandwich plates
composed of functionally graded materials. The researchers investigated the influence
of the thermal load, geometric parameters, and gradient index on the bending response
of the FGM sandwich plates. A detailed investigation was carried out by Vaghefi [11]
to analyze the thermo-elastoplastic bending response of sandwich plates characterized
by functionally graded (FG) face sheets and a combination of FG and homogeneous core
materials. The research conducted by Moleiro et al. [12] focused on the multi-objective
design optimization of FGM plates, consisting of a primary layer made of FGM, with
the possibility of including metal and/or ceramic faces. Considering the temperature
dependence of material properties is crucial in the thermal analysis of FGMs, particularly
in the context of thermal buckling [13–15]. Furthermore, researchers such as Akgöz and
Civalek [16] have examined the thermal vibration behavior of temperature-dependent FGM
microbeams, while Javani et al. [17] have investigated annular FGM plates.

Among numerous studies on FGMs, an interesting issue is the FGM used as the coated
or undercoated layers; this is attributed to the fact that incorporating FGMs as coated or
undercoated layers in a sandwich or multi-layer plates results in remarkably uniform stress
distributions between adjacent layers [18]. Stress intensity factors of composite media with
cracked coating–substrate interfaces were investigated by Chi and Chung [19] utilizing
the finite element method. The study highlighted the potential of FGM in mitigating
stress singularities along the interfaces. Based on the Fourier series expansion method,
Han et al. [20] conducted a comprehensive investigation on the buckling behavior of
a cylindrical shell coated with FGM under thermal loading conditions. Mao et al. [21]
simulated the sliding interaction between an FGM-coated half-plane and a homogeneous
half-plane to investigate the frictional heat and thermal contact resistance in brake systems.
The research findings showed that an appropriate choice of gradient type can effectively
regulate the coupled thermoelastic instability observed in the sliding system. Utilizing
the higher-order shear deformation plate theory, Daikh and Megueni [22] conducted a
research study to explore the effects of various factors, such as the plate aspect ratio
and thermal loading conditions, on the critical buckling temperature of FGM sandwich
plates. Dung and Nga [23] presented a comprehensive analysis of the post-buckling
characteristics of eccentrically stiffened sandwich plates supported on elastic foundations
under different loading conditions based on Reddy’s third-order shear deformation plate
theory incorporating von Karman geometrical nonlinearity. Daikh et al. [24] employed
a higher-order shear deformation theory and applied Hamilton’s variational principle to
investigate the free vibration characteristics of rectangular nanoplates with temperature-
dependent FGM layers. Nguyen et al. [25] investigated the nonlinear static behaviors of
sandwich plates on an elastic foundation, taking into account the temperature dependency
of the FGM material. The investigation of the dynamic behavior of multi-directional porous
sandwich plates consisting of two functionally graded face sheets and a homogeneous core
was studied by Kumar and Ghosh [26] using Navier’s solution technique.
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FGMs are microscopically inhomogeneous with the material properties varying contin-
uously from one surface to the other obeying certain functions. Over the past few decades,
a considerable number of studies [27–30] corresponding to the FGM circular plates as-
sumed the through-the-thickness FGM using either a power–law or exponential function.
However, due to the phenomenon of the uncoupled stretching–bending problem of the
through-the-radius FGM plate, the study of the radial FGM plate has been growing. Nie
and Zhong [31] assumed the material properties varying in the radial direction to study the
axisymmetric bending of functionally graded circular and annular plates. By considering
a radial variation of Young’s modulus employing a power–law relationship, Sburlati [32]
proposed an analytical solution to address the issue of the stress concentration factor of
an isotropic homogeneous plate with a circular hole, and Goyat et al. [33] suggested that
selecting an appropriate material gradation model and power-law index can significantly
mitigate stress concentration factors.

Although the radially FGM circular plates result in the uncoupled stretching–bending
behavior, the bending equilibrium equation of the through-the-radius FGM circular plate
is more complicated than that of the through-the-thickness FGM plate, and hence, only
a limited number of analytical solutions have been derived for radially graded circular
plates. To the best of the authors’ knowledge, no thermal-bending analytical solution of
the radially FGM-coated or FGM-undercoated circular plates has been reported. The point
is that analytical solutions play a crucial role as reference benchmarks for researchers to
validate the accuracy and reliability of their numerical methods. Therefore, the purpose of
this study is to establish the analytical solutions for deflection, stresses, and moments of
the radially FGM-coated or -undercoated circular plates under transversely and radially
thermal loading.

2. The Governing Equation and General Solution

Consider a circular FGM plate with a moderate thickness, characterized by its radius
R and thickness h, and subjected to an axisymmetric thermal load T(r, z). The coordinates
(r, θ, z) define the plane and the thickness directions of the circular FGM plate. The assump-
tion made in this study is that Poisson’s ratio of the circular plate remains constant, while
Young’s modulus varies radially based on a power function.

2.1. Governing Equations

While the through-the-radius FGM circular plates exhibit heterogeneity, their stretch-
ing and bending behaviors are decoupled due to mid-surface symmetry. Considering
small deformations about the plate’s thickness, the strains in the (r, θ, z) directions of the
FGM circular plate expressed as bending displacements w are {εr, εθ , γrθ} = z{κr, κθ , κrθ},
where κr, κθ , κrθ are curvatures of the FGM plate. For the non-homogeneous elastic FGM
plate with Young’s modulus E(r) and Poisson’s ratio ν, the stress–strain relation under
thermal loading T(r, z) based on the assumptions of small deformation can be described as
follows [2]: 

σr
σθ

τrθ

 =
E(r)

1− ν2

1 ν 0
ν 1 0
0 0 (1− ν)/2


εr
εθ

γrθ

− E(r)αT(r, z)
1− ν


1
1
0

 (1)

where α is the thermal expansion coefficient. The definitions of the bending moments
(Mr, Mθ , Mrθ) =

∫ h/2
−h/2 (zσr, zσθ , zτrθ)dz yield

Mr
Mθ

Mrθ

 =
E(r)h3

12(1− ν2)

1 ν 0
ν 1 0
0 0 (1− ν)/2


κr
κθ

κrθ

−


M∆T

M∆T

0

, (2)
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where the entry M∆T is of the following form:

M∆T =
αE(r)
1− ν

∫ h/2

−h/2
zT(r, z)dz. (3)

The equilibrium equations in the r-, θ-, and z-directions of the elastic solid subjected
to the transverse load qz are [34]

∂Nr

∂r
+

∂Nrθ

r∂θ
+

Nr − Nθ

r
= 0,

∂Nrθ

∂r
+

∂Nθ

r∂θ
+

2
r

Nrθ = 0,
∂Vr

∂r
+

Vr

r
+

1
r

∂Vθ

∂θ
= −qz (4)

where Vr and Vθ are the transverse shear forces acting on the radial and tangential surfaces,
respectively, and they are

Vr =
∂Mr

∂r
+

Mr −Mθ

r
+

1
r

∂Mrθ

∂θ
, Vθ =

∂Mrθ

∂r
+ 2

Mrθ

r
+

1
r

∂Mθ

∂θ
. (5)

Substituting Equation (5) into Equation (4) gives the equilibrium equation in the
z-direction in terms of the moments:

∂2Mr

∂r2 +
2
r

∂2Mrθ

∂r∂θ
+

1
r2

∂2Mθ

∂θ2 +
2
r

∂Mr

∂r
+

2
r2

∂Mrθ

∂θ
− 1

r
∂Mθ

∂r
= −qz. (6)

Further, assume that the FGM circular plate exhibits radial variations in its Young’s
modulus following the power function:

E(r) = E0(
r
R
)

n
. (7)

In the absence of a transverse load qz, the substitution of Equations (2)–(6), along
with the assistance of Equation (3), results in the bending equilibrium equation for FGM
circular plates with a through-the-radius variation of Young’s modulus E(r) = E0(r/R)n,
expressed in terms of displacement:

E0h3

12(1−ν2)

( r
R
)n
{
∇4w + 2n

r
∂3w
∂r3 + n(n+1+ν)

r2
∂2w
∂r2 + n(nν−ν−1)

r3
∂w
∂r

+ n(nν−ν−3)
r4

∂2w
∂θ2 + 2n

r3
∂3w

∂r∂θ2

}
= −∇2M∆T ,

(8)

where ∇2 = ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2 . Equation (8) reveals that the equilibrium equation for the
radially FGM circular plate is more complex compared to that of the FGM circular plate
with varying material properties in the thickness direction. In the case of axisymmetric
bending, the deflections of the radially FGM circular plate remain independent of the angle
θ, i.e., w = w(r) and ∂( )/∂θ = 0. The bending equilibrium equation, Equation (8), can be
simplified as:

h3E0

12(1− ν2)

( r
R

)n
{
∇4w +

2n
r

d3w
dr3 +

n(n + 1 + ν)

r2
d2w
dr2 +

n(nν− ν− 1)
r3

dw
dr

}
= −1

r
dM∆T

dr
− d2M∆T

dr2 . (9)

2.2. The General Solution

To assess the impact of temperature changes along the radial and thickness directions
on the thermal mechanics of the radial FGM, two factors related to temperature distributions
in these directions are taken into consideration. As a result, we assume a temperature
distribution of the form T(r, z) = T0(1 + rm)z2P+1, where r = (r/R) and z = (z/h), and
then the quantity M∆T in Equation (3) is

M∆T =
E0h3D

12(1− v2)
rn(1 + rm), where D =

12(1 + v)αT0

(22P+2)(2P + 3)h
(10)
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for the FGM circular plate with Young’s modulus E(r) = E0rn. It is evident that when
m = 0 or P = −0.5, the temperature distributions are solely along the transverse or radial
direction, respectively. Importantly, Equation (10) can be applied to a homogeneous plate
by setting n = 0. To solve Equation (9), the setting r = et enables us to reformulate it into
an ordinary differential equation with constant coefficients, as shown below:

d4w
dt4 + (2n− 4) d3w

dt3 +
[
n2 + (ν− 5)n + 4

] d2w
dt2 + n(νn− n− 2ν + 2) dw

dt

= −D
[
n2e2t + (m + n)2R−me(m+2)t

] . (11)

The homogeneous solution wh(t) of Equation (11) can be easily obtained by letting
wh(t) = eλt and then substituting it into Equation (11), resulting in four roots which are

λ1 = 0, λ2 = 2− n, λ3 =
1
2

(
2− n−

√
4 + n2 − 4nv

)
, λ4 =

1
2

(
2− n +

√
4 + n2 − 4nv

)
.

It is obvious that λi have repeated roots for n = 0 and n = 2. Thereby, the homogeneous
solution wh(r) is expressed as:

wh(r) =


C1 + C2r2 + C3 ln r + C4r2 ln r as n = 0
C1 + C2rλ2 ln r + C3rλ3 + C4rλ4 as n = 2
C1 + C2rλ2 + C3rλ3 + C4rλ4 as n 6= 0 or n 6= 2

. (12)

Please note that Equation (12) is valid for r 6= 0, such as annular FGM plates. The
first equation of Equation (12) can be applied to homogeneous circular plates. Whereas,
the function ln r is not defined at r = 0, which corresponds to the center of the circular
plate. To guarantee the existence of the bending solution of a circular plate, the coefficients
C3, C4 must be zero and consequently, the homogeneous solution wh(r) for a homogeneous
circular plate is

wh(r) = C1 + C2r2. (13)

The particular solution to the Equation (11) is in the form of wp(t) = C5e2t + C6e(m+2)t,
and it is easy to obtain the coefficients C5 and C6 as

C5 = 0, C6 =

0 m = 0
−D

(2+m)2Rm m 6= 0
. (14)

for homogeneous circular plates, and

C5 =
−D

2(1 + ν)
, C6 =

−(m + n)2D
Rmξ

(15)

With ξ = (m + 2)4 + (2n − 4)(m + 2)3 + [n2 + (ν − 5)n + 4](m + 2)2 + n(νn − n − 2ν +
2)(m + 2) for an FGM circular plate. Finally, the general solution of the radially FGM
circular plate is then the sum of the homogeneous solution wh(r) and the particular solution
wP(r).

3. Circular Plate Coated with Radially FGM

Here, a circular plate with radius R and height h coated with radially FGM subjected
to thermal load T(r, z) = T0(1 + rm)z2P+1 is considered, as shown in Figure 1a. The inner
region of the FGM-coated circular plate is characterized by homogeneity, with a constant
Poisson’s ratio ν and a uniform Young’s modulus E∗0 = E0Rn

1 where R1 = R1/R. On the
other hand, the outer region of the FGM-coated circular plate consists of an FGM ring, with
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a constant Poisson’s ratio ν and Young’s modulus that varies radially based on a power
function, i.e.,

E(r) =

{
E∗0 0 ≤ r ≤ R1

E0(r/R)n R1 ≤ r ≤ R
. (16)
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The general solution for each section of the FGM-coated circular plate can be obtained
separately by directly applying the results from Section 2. It is important to highlight that
while the Young’s modulus E∗0 = E0Rn

1 within the range 0 ≤ r < R1 varies based on the
material index n of the outer FGM-annular section, the inner portion of the FGM-coated
circular plate represents a homogeneous circular plate with a uniform Young’s modulus E∗0
for a specific value of n. Hence, Equation (13) can serve as the homogeneous solution for
the inner portion of the FGM-coated circular plate.

3.1. The Homogeneous Portion of the FGM-Coated Circular Plate: 0 ≤ r < R1

Equations (13) and (14) are used as the general solution in the range 0 ≤ r < R1, i.e.,

w(r) = A11 + A12r2 + A16rm+2 (17)

where A11 and A12 are unknowns; the quantity A16 is the coefficient C6, i.e., A16 = 0 for
m = 0 and A16 = −D/[(2 + m)2Rm] for m 6= 0. Consequently, the stresses and bending
moments defined in Equations (1)–(3) are expressed as follows:

σr = −
zE∗0

1−ν2 [2(1 + ν)A12 + mν1 A16rm]− E∗0 αT0
1−v (1 + rm)z2P+1,

σθ = − zE∗0
1−ν2 [2(1 + ν)A12 + mν2 A16rm]− E∗0 αT0

1−v (1 + rm)z2P+1,

Mr = −
E∗0 h3

12(1−ν2)
[2(1 + ν)A12 + mν1 A16rm]− E∗0 h3D

12(1−v2)
(1 + rm),

Mθ = − E∗0 h3

12(1−ν2)
[2(1 + ν)A12 + mν2 A16rm]− E∗0 h3D

12(1−v2)
(1 + rm),

(18)

where mν1 = (m + 2)(m + 1 + ν), mν2 = (m + 2)(mν + 1 + ν).
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3.2. The FGM Annular Portion of the FGM-Coated Circular Plate: R1 ≤ r ≤ R

The general solutions of the FGM annular portion can be directly established from
Equations (12) and (14), and they are

w(r) =


A21 + A22r2 + A23 ln r + A24r2 ln r + A26rm+2, for n = 0
A21 + A22rλ2 ln r + A23rλ3 + A24rλ4 + A25r2 + A26rm+2, for n = 2
A21 + A22rλ2 + A23rλ3 + A24rλ4 + A25r2 + A26rm+2, for n 6= 0 or n 6= 2

(19)

where A21, A22, A23, A24 are unknown constants; A25 and A26 are the coefficients of a
particular solution, related to Equation (15) as

A25 =
−D

2(1 + ν)
, A26 =

−(m + n)2D
Rmξ

. (20)

Consequently, the stresses and bending moments of the FGM annular portion evalu-
ated according to Equations (1)–(3) are

σj = σj1 − σT1, Mj =
h3

12z
σj1 −MT1, j = r, θ (21)

where

σr1 = − zE0
1−ν2

{
2(1 + ν)A22 + (ν− 1)A23r−2 + [2(1 + v) ln r + ν + 3]A24 +mν1 A26rm},

σθ1 = − zE0
1−ν2

{
2(1 + ν)A22 + (1− v)A23r−2 + [2(1 + v) ln r + 3v + 1]A24 +mν2 A26rm},

σT1 = E0αT0
1−v (1 + rm)z2P+1, MT1 = E0h3D

12(1−v2)
(1 + rm)

for n = 0,

σj = σj2 − σT2, Mj =
h3

12z
σj2 −MT2, j = r, θ (22)

where

σr2 = − zE0r2

1−ν2

{
−(1− v)A22r−2 + λ3ν A23rλ3−2 + λ4ν A24rλ4−2 + 2(1 + v)A25 +mν1 A26rm},

σθ2 = − zE0r2

1−ν2

{
(1− v)A22r−2 + λ3ν A23rλ3−2 + λ4ν A24rλ4−2 + 2(1 + v)A25 +mν2 A26rm},

σT2 = E0r2αT0
1−v (1 + rm)z2P+1, MT2 = E0r2h3D

12(1−v2)
(1 + rm)

with λ3 = −
√

2− 2ν, λ4 =
√

2− 2ν for n = 2, and

σj = σj3 − σT3, Mj =
h3

12z
σj3 −MT3, j = r, θ (23)

where

σr3 = − zE0rn

1−ν2

{
λ2ν A22rλ2−2 + λ3ν A23rλ3−2 + λ4ν A24rλ4−2 + 2(1 + v)A25 +mν1 A26rm},

σθ3 = − zE0rn

1−ν2

{
λ∗2ν A22rλ2−2 + λ∗3ν A23rλ3−2 + λ∗4ν A24rλ4−2 + 2(1 + v)A25 +mν2 A26rm},

σT3 = E0rnαT0
1−v (1 + rm)z2P+1, MT3 = E0rnh3D

12(1−v2)
(1 + rm)

with λ2ν = λ2(λ2 − 1 + v), λ3ν = λ3(λ3 − 1 + v), λ4ν = (λ4 − 1 + v), and λ∗2ν = λ2(νλ2 −
ν + 1), λ∗3ν = λ3(νλ3 − ν + 1), λ∗4ν = λ4(νλ4 − ν + 1) for n 6= 0 or n 6= 2.

Importantly, a notable observation is that in the special case of P = 0, which signifies
a linear temperature variation along the thickness direction, the relationships MTj =

h3σTj/(12z),j = 1, 2, 3 in Equations (21)–(23) are valid. Consequently, the thermal stresses
and moments exhibit the relationships Mj = h3σj/(12z), j = r, θ for this specific case of
P = 0.
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3.3. The Analytical Solution of the FGM-Coated Circular Plate

The six unknown constants including A11,A12 of the homogeneous circular portion,
and A21, A22, A23, A24 of the FGM-coated annular portion can be obtained by considering
the boundary conditions and continuity equations:

w(r = R) = 0, Mr(r = R) = 0, w(r = R−1 ) = w(r = R+
1 ),

dw
dr

∣∣∣
r=R−1

= dw
dr

∣∣∣
r=R+

1

,

Mr(r = R−1 ) = Mr(r = R+
1 ), Vr(r = R−1 ) = Vr(r = R+

1 ).
(24)

Equation (24) provides six simultaneous equations to solve six unknowns as follows:

(1) For n = 0

When n = 0, the FGM-coated circular plate degenerates to the homogeneous circular
plate with Young’s modulus E0. The six unknowns A11, A12, A21, A22, A23, A24 for the case
n = 0 are evaluated from Equation (24). Substituting the obtained coefficients into Equation
(17) or Equation (19), one can find the bending deflection of a homogeneous circular plate
under thermal load T(r, z) = T0(1 + rm)z2P+1 as:

w(r) =
DR2

2(1 + ν)

{
m + 3− v

m + 2

(
1− r2

)
+

2(1 + v)

(m + 2)2

(
1− rm+2

)}
. (25)

Notably, Equation (25) coincides with that presented by Hetnarski [34]. Subsequently,
the stresses and bending moments of the homogeneous circular plate under thermal loads
are

σr =
zE0D

(m+2)(1−v2)
[(m + 3− v) + (m + 1 + v)rm]− E0αT0

1−v (1 + rm)z2P+1,

σθ = zE0D
(m+2)(1−v2)

{(m + 3− v) + (mv + v + 1)rm}− E0αT0
1−v (1 + rm)z2P+1,

Mr =
E0h3D

12(m+2)(1+ν) (1− rm),

Mθ = E0h3D
12(m+2)(1+ν) [1− (m + 1)rm].

(26)

(2) For n = 2

The coefficients A11, A12, A21, A22, A23, A24 for n = 2 determined from the simul-
taneous equations of boundary and continuity conditions are expressed in the form as
follows:

{A11, A12, A21, A22, A23, A24}T = [K]−1{K1}

herein

[K] =



0 0 −1 − ln R −Rλ3 −Rλ4

0 0 0 (1− ν) −λ3νRλ3 −λ4νRλ4

1 R2
1 −1 − ln R1 −Rλ3

1 −Rλ4
1

0 2R2
1 0 −1 −λ3Rλ3

1 −λ4Rλ4
1

0 2(1 + v)R2
1 0 (1− ν) −λ3νRλ3

1 −λ4νRλ4
1

0 0 0 2(1− ν) 0 0


, (27)

{K1} =



A25R2 + A26Rm+2

2DR2 + 2(1 + v)A25R2 + mν1 A26Rm+2

A25R2
1 + (A26 − A16)Rm+2

1
2A25R2

1 + (m + 2)(A26 − A16)Rm+2
1

2(1 + v)A25R2
1 + mν1(A26 − A16)Rm+2

1
Y1


(28)

where Y1 = 2D(1 + Rm
1 )R2

1 + 4(1 + ν)A25R2
1 − m(m + 2)2 A16Rm+2

1 + mν3 A26Rm+2
1 with

mν3 = (m + 2)[m2 + 4m + 2(1 + ν)].

(3) For n 6= 0 or n 6= 2
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The matrices [K] and {K1} for n 6= 0 or n 6= 2 are found as:

[K] =



0 0 −1 −Rλ2 −Rλ3 −Rλ4

0 0 0 −λ2νRλ2 −λ3νRλ3 −λ4νRλ4

1 R2
1 −1 −Rλ2

1 −Rλ3
1 −Rλ4

1
0 2R2

1 0 −λ2Rλ2
1 −λ3Rλ3

1 −λ4Rλ4
1

0 2(1 + ν)R2
1 0 −λ2νRλ2

1 −λ3νRλ3
1 −λ4νRλ4

1
0 0 0 −λ2nRλ2

1 −λ3nRλ3
1 −λ4nRλ4

1


, (29)

{K1} =



A25R2 + A26Rm+2

2DR2 + 2(1 + v)A25R2 + mν1 A26Rm+2

A25R2
1 + (A26 − A16)Rm+2

1
2A25R2

1 + (m + 2)(A26 − A16)Rm+2
1

2(1 + v)A25R2
1 + mν1(A26 − A16)Rm+2

1
Y2


(30)

where λ2n = λ2[λ
2
2 + (n− 2)λ2 − n(1− ν)], λ3n = λ3[λ

2
3 + (n− 2)λ3 − n(1− ν)], λ4n =

λ4[λ
2
4 + (n− 2)λ4 − n(1− ν)], mν4 = (m + 2)[m(m + 2) + n(m + 1 + ν), and Y2 = nD(1 +

Rm
1 )R2

1 + 2n(1 + ν)A25R2
1 −m(m + 2)2 A16Rm+2

1 + mν4 A26Rm+2
1 .

3.4. Numerical Solution

For illustration, let us consider the values R = 1 m, R1 = (2/3)R, h = 0.05 m,
z = 0.02 m, ν = 0.3, E0 = 210 GPa, T0 = 50 ◦C, α = 1× 10−5/◦C. The analytical results
were evaluated and subsequently validated using the finite element method. In the finite
element analysis, due to the axisymmetric condition, a rectangular surface with dimensions
of thickness h = 0.05m and radius R = 1m is selected. The surface is then divided into
elements by creating 200 layers along the thickness direction and 60 layers in the radial
direction, resulting in a total of 12,000 elements. Eight-node elements are utilized in the
finite element mesh. The thermal load and Young’s modulus in the mesh are determined
based on prescribed functions and vary from layer to layer.

Firstly, let us focus on the variation of the thermal index P. Figure 2 and Table 1
showcase the theoretical and finite element results of the bending stresses for the parameters
n = 2, m = 2 and P takes values of 0, 1, and 2. The results indicate a decreasing trend
in stresses as the thermal index P increases. This can be attributed to the fact that with
an increase in the P index, the thermal load decreases, thereby leading to a reduction in
stresses.
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Figure 2. The distributions of stresses σr and σθ of the radially FGM-coated circular plate (n = 2)
subjected to radially (m = 2) and different transversely thermal loads (P = 0, 1, 2).
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Table 1. Theoretical and finite element results of the bending stresses σr/E0αT0 for P = 1, 2, 3.

r/R
Stress σr/E0αT0 (P = 0) Stress σr/E0αT0 (P = 1) Stress σr/E0αT0 (P = 2)

FEM Analytical Error (%) FEM Analytical Error (%) FEM Analytical Error (%)

0 0.0542001 0.056543 4.144 0.005665 0.005942 4.649 0.001792 0.001816 1.346

0.1 0.0561685 0.056099 0.125 0.005931 0.00585 1.366 0.001845 0.001807 2.093

0.2 0.0547974 0.054765 0.058 0.005651 0.005574 1.383 0.001819 0.00178 2.121

0.3 0.0525399 0.052543 0.006 0.005188 0.005113 1.464 0.001775 0.001736 2.211

0.4 0.0493821 0.049432 0.100 0.004541 0.004469 1.613 0.001714 0.001673 2.347

0.5 0.0453222 0.045432 0.242 0.003709 0.00364 1.884 0.001635 0.001593 2.538

0.6 0.0403602 0.040543 0.451 0.002691 0.002627 2.433 0.001538 0.001496 2.788

0.7 0.0345711 0.034722 0.434 0.001124 0.001036 8.500 0.001478 0.001425 3.610

0.8 0.0266747 0.026978 1.124 −0.00184 −0.00195 5.657 0.001507 0.001434 4.864

0.9 0.0152738 0.015857 3.679 −0.00587 −0.00600 2.081 0.001515 0.001418 6.377

1 0.000000 0.000000 0.000 −0.01256 −0.01143 9.891 0.001446 0.001355 6.289

Moving forward, let us investigate the influence of the material index n on mechanical
behavior. Figure 3 presents the stresses for P = 0, m = 2 and n = 0, 0.5, 1, 2, 3. It
is evident that as the value of n increases, indicating a decrease in the overall Young’s
modulus, the stresses decrease accordingly. These results showcased in Figure 3 highlight
the effectiveness of utilizing the FGM-coated layer in reducing the maximum stress in the
circular plate. Furthermore, Figure 4 depicts the mechanical behavior with fixed values of
P and n while varying the parameter m. The plots in Figure 4 demonstrate that the stresses
in the homogeneous portion of the FGM-coated circular plate follow a function of rm, by
Equation (18). Additionally, the stresses along the radial direction exhibit continuity with
noticeable inflection points at the interfaces, particularly for smaller values of m.
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different material index n = 0 [34], 0.5, 1, 2, 3 subjected to transversely and radially thermal loads
for P = 0, m = 2.
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subjected to different radially thermal loads (m = 0, 1, 2).

Furthermore, let us examine how the thickness of the coating influences mechanical
behavior. In this analysis, we consider the ratios R1/R = 0.1, 0.2, 0.5, 1. The varia-
tions of stresses and moments along the radial direction for these ratios are presented in
Figures 5 and 6. The results indicate the following observations: First, smaller values of
the ratio R1/R, corresponding to thicker FGM layers, result in lower stresses. Second, in
the case of a homogeneous circular plate (R1/R = 1), the maximum stress or moment is
located at the center of the circular plate. However, when the circular plate is coated with
a thicker FGM layer (smaller R1/R), the maximum stress or moment shifts towards the
inner part of the FGM-coated circular plate. Third, the stress and bending moment curves
exhibit similar patterns, indicating a proportional relationship for certain values of n, m,
and P. As mentioned in Section 3.2, the thermal stresses and moments exhibit the relations
Mj = h3σj/(12z), j = r, θ for the special case when P = 0. These findings shed light on
the impact of the coating thickness on the mechanical behavior of the circular plate and
provide valuable insights for practical applications.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 21 
 

similar patterns, indicating a proportional relationship for certain values of n, m, and P. 
As mentioned in Section 3.2, the thermal stresses and moments exhibit the relations 

3 / (12 ),j jM h zσ=  ,j r θ=  for the special case when 0P = . These findings shed light on 
the impact of the coating thickness on the mechanical behavior of the circular plate and 
provide valuable insights for practical applications. 

  

Figure 5. The distributions of stresses rσ  and θσ of the radially FGM-coated circular plate ( 2n =
) subjected to thermal load ( 0P =  , 2m =  ) while the coated thickness changes with 

1 / 0.1,  0.2,  0.5,  1R R = . 

Figure 6. The distributions of bending moments rM  and Mθ  of the radially FGM-coated circular 
plate ( 2n = ) subjected to thermal load ( 0P = , 2m = ) when the coated thickness changes with 

1 / 0.1,  0.2,  0.5,  1R R = . 

To further analyze the effect of radially applied thermal load on the mechanical be-
havior of the radially FGM-coated circular plate, let us consider the thermal parameters 

0.5P = −  and 0.5,  1,  2,  3m = . It is worth noting that 0.5P = −  signifies the absence of 
transverse thermal loads. Figures 7 and 8 present the stresses and bending moments of 
the FGM-coated circular plate under radially applied thermal load. Observations from 
Figures 7 and 8 are as follows: Firstly, the stresses of the homogeneous portion of the cir-
cular plate are functions of mr , contributed by the radially applied thermal load. On the 
other hand, the stresses of the FGM layer follow a polynomial m nr + , influenced by both 
the radially applied thermal load and material gradation. Consequently, the stresses rσ

D
im

en
si

on
le

ss
 b

en
di

ng
 m

om
en

t M
r/(

E0
T0

h2 )

Figure 5. The distributions of stresses σr and σθ of the radially FGM-coated circular plate
(n = 2) subjected to thermal load (P = 0, m = 2) while the coated thickness changes with
R1/R = 0.1, 0.2, 0.5, 1.
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Figure 6. The distributions of bending moments Mr and Mθ of the radially FGM-coated circular
plate (n = 2) subjected to thermal load (P = 0, m = 2) when the coated thickness changes with
R1/R = 0.1, 0.2, 0.5, 1.

To further analyze the effect of radially applied thermal load on the mechanical
behavior of the radially FGM-coated circular plate, let us consider the thermal parameters
P = −0.5 and m = 0.5, 1, 2, 3. It is worth noting that P = −0.5 signifies the absence of
transverse thermal loads. Figures 7 and 8 present the stresses and bending moments of
the FGM-coated circular plate under radially applied thermal load. Observations from
Figures 7 and 8 are as follows: Firstly, the stresses of the homogeneous portion of the
circular plate are functions of rm, contributed by the radially applied thermal load. On the
other hand, the stresses of the FGM layer follow a polynomial rm+n, influenced by both
the radially applied thermal load and material gradation. Consequently, the stresses σr
and σθ in Figure 7 of the radially FGM-coated circular plate subjected only to the radially
thermal load (P = −0.5) exhibit continuity with noticeable inflection points in slope at the
interfaces (R1 = 2R/3). Secondly, for P = −0.5, the thermal stresses and moments do not
exhibit a proportional relationship.
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fects of radial thermal loads are more pronounced compared to transverse thermal loads 
when the value of P is small. This suggests that radial thermal loads have a greater influ-
ence on the mechanical behavior of the radially FGM circular plate.  
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Figure 8. The distributions of bending moments Mr and Mθ of the radially FGM-coated circular plate
(n = 2) subjected to the radially thermal load only (P = −0.5, m = 0.5, 1, 2, 3).

Notably, the proposed analytical solution can be applied to a homogeneous circular
plate by setting the material index n = 0 in the FGM-coated circular plate. When the
FGM-coated circular plate degenerates into a homogeneous circular plate (n = 0), the
stress and moment behaviors under transverse thermal loads (P = 0, 2) and radial thermal
loads (m = 1, 2, 3) are depicted in Figure 9. These results exhibit a dependence on the
function rm for the homogeneous circular plate. Moreover, it is noteworthy that the effects
of radial thermal loads are more pronounced compared to transverse thermal loads when
the value of P is small. This suggests that radial thermal loads have a greater influence on
the mechanical behavior of the radially FGM circular plate.
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Figure 9. The distributions of stress σr and bending moment Mθ of the homogeneous circular plate
(n = 0) subjected to the transversely and radially thermal load (P = 0, 2, and m = 0, 1, 2).

4. Circular Plate Undercoated with Radially FGM

The concerned FGM-undercoated circular plate illustrated in Figure 1b is constructed
by attaching a homogeneous ring to the outer radius of the FGM-coated circular plate
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in Section 3. The Poisson’s ratio ν is assumed uniform, while Young’s modulus of the
FGM-undercoated circular plate is

E(r) =


E0(R1/R2)

n 0 ≤ r < R1

E0(r/R2)
n R1 ≤ r ≤ R2

E0 R2 < r ≤ R

. (31)

Further, assume that the FGM-undercoated circular plate is also subjected to the
thermal load T(r, z) = T0(1 + rm)z2P+1. The general solutions in Section 2 can be applied
to the three portions of the FGM-undercoated circular plate, including the homogeneous
circular portion in 0 ≤ r < R1, the FGM-undercoated annular portion in R1 ≤ r ≤ R2, and
the homogeneous annular portion in R2 ≤ r ≤ R.

4.1. The Homogeneous Circular Portion: 0 ≤ r < R1

The findings presented in Section 3.1 are applicable to the homogeneous circular region
within the range of 0 ≤ r < R1, with the exception that Young’s modulus E∗0 = E0(R1/R)n

is substituted with E∗0 = E0(R1/R2)
n.

4.2. The FGM-Undercoated Annular Portion: R1 ≤ r ≤ R2

The solution to the FGM-undercoated annular portion in R1 ≤ r ≤ R2 can be found
by employing the results in Section 3.2, replacing E∗0 = E0(r/R)n by E∗0 = E0(r/R2)

n.

4.3. The Homogeneous Annular Portion: R2 ≤ r ≤ R

The solution fields of the homogeneous annular portion of the FGM-undercoated
circular plate in the range R2 ≤ r ≤ R can be evaluated by replacing A2j (j = 1, 6) in
Equations (19) and (20) by A3j (j = 1, 6) and illustrated as follows:

w(r) = A31 + A32r2 + A33 ln r + A34r2 ln r + A36rm+2 for R2 < r ≤ R (32)

where A36 = −D/[(m + 2)2Rm] for m 6= 0; A36 = 0 for m = 0. The stresses and bending
moments found by the use of Equation (21) are

σr = − zE0
1−ν2

{
2(1 + ν)A32 − (1− v)A33r−2 + [2(1 + v) ln r + 3 + v]A34 +mν1 A36rm} − σT1,

σθ = − zE0
1−ν2

{
2(1 + ν)A32 + (1− v)A33r−2 + [2(1 + v) ln r + 3v + 1]A34 + mν2 A36rm} − σT1,

Mj =
h3

12z σj1 −MT1, j = r, θ.

(33)

4.4. The Analytical Solution of the FGM-Undercoated Circular Plate

To obtain the analytical solution for the FGM-undercoated circular plate, it is necessary
to ensure that the boundary and continuity conditions at the interfaces between the FGM
and the homogeneous layers are met. The boundary conditions are

w(r = R) = 0, Mr(r = R) = 0 (34)

and the continuity conditions are

w(r = R−1 ) = w(r = R+
1 ), w(r = R−2 ) = w(r = R+

2 ),
dw
dr

∣∣∣
r=R−1

= dw
dr

∣∣∣
r=R+

1

, dw
dr

∣∣∣
r=R−2

= dw
dr

∣∣∣
r=R+

2

,

Mr(r = R−1 ) = Mr(r = R+
1 ), Mr(r = R−2 ) = Mr(r = R+

2 ),
Vr(r = R−1 ) = Vr(r = R+

1 ), Vr(r = R−2 ) = Vr(r = R+
2 ).

(35)
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Setting up the simultaneous equations of the boundary and continuity conditions
gives the unknown constants Aij in the form of

{A11, A12, A21, A22, A23, A24, A31, A32, A33, A34}T = [K]−1{K1}. (36)

The superscript T in Equation (36) denotes the transform and the quantity [K]−1

represents the inverse of the matrix [K]. The unknown constants Aij will be determined
according to the different values of the quantity n as follows:

(1) For n = 0

By applying the boundary and continuity conditions for n = 0 in Equation (34), we
can easily solve for the unknown coefficients Aij. As a result, the bending deflection for the
entire circular plate can be determined as follows:

w(r) =
DR2

2(1 + ν)

{
m + 3− v

m + 2

(
1− r2

)
+

2(1 + v)

(m + 2)2

(
1− rm+2

)}
. (37)

when n = 0, the FGM-undercoated circular plate becomes a homogeneous circular plate.
Therefore, Equation (37) is equivalent to Equation (25) and aligns with the findings of
Hetnarski [34], as anticipated.

(2) For n = 2

The matrices [K] and {K1} in Equation (36) for n = 2 are established as:

[K] =



0 0 0 0 0 0 1 R2 ln R R2 ln R
0 0 0 0 0 0 0 2(1 + ν)R2 −(1− ν) X1R2

1 R2
1 −1 − ln R1 −Rλ3

1 −Rλ4
1 0 0 0 0

0 0 −1 − ln R2 −Rλ3
2 −Rλ4

2 1 R2
2 ln R2 R2

2 ln R2

0 2R2
1 0 −1 −λ3Rλ3

1 −λ4Rλ4
1 0 0 0 0

0 0 0 −1 −λ3Rλ3
2 −λ4Rλ4

2 0 2R2
2 1 X3R2

2
0 2(1 + ν)R2

1 0 (1− ν) −λ3νRλ3
1 −λ4νRλ4

1 0 0 0 0
0 0 0 (1− ν) −λ3νRλ3

2 −λ4νRλ4
2 0 2(1 + ν)R2

2 −(1− ν) X2R2
2

0 0 0 2(1− ν) 0 0 0 0 0 0
0 0 0 2(1− ν) 0 0 0 0 0 4R2

2


(38)

where X1 = 3 + ν + 2(1 + ν) ln R, X2 = 3 + ν + 2(1 + ν) ln R2, X3 = 1 + 2 ln R2, and

{K1} =



−A36Rm+2

−2DR2 −mν1 A36Rm+2

A25R2
1 + (A26 − A26)Rm+2

1
A25R2

2 − (A36 − A26)Rm+2
2

2A25R2
1 + (m + 2)(A26 − A16)Rm+2

1
2A25R2

2 − (m + 2)(A36 − A26)Rm+2
2

2(1 + v)A25R2
1 + mν1(A26 − A16)R1

m+2

2(1 + v)A25R2
2 −mν1(A36 − A26)R2

m+2

Y1
Y3



(39)

where Y3 = 2D(1 + Rm
2 )R2

2 + 4(1 + ν)A25R2
2 −m(m + 2)2 A36Rm+2

2 + mν3 A26Rm+2
2 . Subse-

quently, the unknown constants Aij for n = 2 can be evaluated from Equations (36), (38)
and (39).

(3) For n 6= 0 or n 6= 2

With the aid of Equation (36), the matrices [K] and {K1} in Equation (36) for n 6= 0 or
n 6= 2 are
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[K] =



0 0 0 0 0 0 1 R2 ln R R2 ln R
0 0 0 0 0 0 0 2(1 + v)R2 −(1− v) X1R2

1 R2
1 −1 −Rλ2

1 −Rλ3
1 −Rλ4

1 0 0 0 0
0 0 −1 −Rλ2

2 −Rλ3
2 −Rλ2

2 1 R2
2 ln R2 R2

2 ln R2

0 2R2
1 0 −λ2Rλ2

1 −λ3Rλ3
1 −λ4Rλ4

1 0 0 0 0
0 0 0 −λ2Rλ2

2 −λ3Rλ3
2 −λ4Rλ4

2 0 2R2
2 1 X3R2

2
0 2(1 + v)R2

1 0 −λ2νRλ2
1 −λ3νRλ3

1 −λ4νRλ4
1 0 0 0 0

0 0 0 −λ2νRλ2
2 −λ3νRλ3

2 −λ4νRλ4
2 0 2(1 + v)R2

2 −(1− v) X2R2
2

0 0 0 −λ2nRλ2
1 −λ3nRλ3

1 −λ4nRλ4
1 0 0 0 0

0 0 0 −λ2nRλ2
2 −λ3nRλ3

2 −λ4nRλ4
2 0 0 0 4R2

2



(40)

{K1} =



−A36Rm+2

−2DR2 −mν1 A36Rm+2

A25R2
1 − (A16 − A26)Rm+2

1
A25R2

2 − (A36 − A26)Rm+2
2

2A25R2
1 + (m + 2)(A26 − A16)Rm+2

1
2A25R2

2 − (m + 2)(A36 − A26)Rm+2
2

2(1 + v)A25R2
1 + mν1(A26 − A16)Rm+2

1
2(1 + v)A25R2

2 −mν1(A36 − A26)Rm+2
2

Y2
Y



(41)

where Y4 = nD(1 + Rm
2 )R2

2 + 2n(1 + ν)K25R2
2 −m(m + 2)2K36Rm+2

2 + mν4K26Rm+2
2 . There-

fore, the unknown constants Aij for n 6= 0 or n 6= 2 can be determined from Equations (36),
(40) and (41). Consequently, the deflection, stresses, and moments of the FGM-undercoated
circular plate can be evaluated according to the results in Sections 4.1–4.3, after the coeffi-
cients Aij are obtained.

4.5. Numerical Solution

By employing the values R = 1 m, R1 = 0.2R, R2 = 0.8R, h = 0.05 m, z = 0.02 m,
ν = 0.3, E0 = 210 GPa, T0 = 50 ◦C, α = 1× 10−5/◦C, the analytical results were assessed
and validated using numerical solutions obtained through the finite element method. The
stress variations of the FGM-undercoated circular plates are presented in Figure 10 for
different P values (P = 0, 1, 2), in Figure 11 for different n values (n = 0, 0.5, 1, 2, 3), and
in Figure 12 for different m values (m = 0, 1, 2).
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Figure 11. The distributions of stresses σr and σθ of the radially FGM-undercoated circular plate with
different material index n = 0 [34], 0.5, 1, 2, 3 subjected to transversely and radially thermal loads
for P = 0, m = 2.
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Figure 12. The distributions of stresses σr and σθ of the radially FGM-undercoated circular plate
(n = 2) subjected to transversely (P = 1) and different radially thermal loads (m = 0, 1, 2).

Upon comparing Figures 10–12 to Figures 2–4, respectively, it becomes evident that
the mechanical behavior of the FGM-coated circular plate differs from that of the FGM-
undercoated circular plate, which is formed by simply adding a homogeneous ring to the
outer radius of the former. This difference may be attributed to a squeezing effect caused by
the added ring, leading to an increase in stress in the FGM-undercoated layer, particularly
for larger values of n and m, as well as smaller values of P. These findings suggest that the
addition of a homogeneous layer to an FGM-coated circular plate significantly affects its
mechanical response.

Exploring the influence of the FGM-undercoated layer thickness provides an ad-
ditional intriguing aspect to consider. Figure 13 exhibits the stress distribution of the
FGM-undercoated circular plate for different undercoated thicknesses, represented by
R1/R = 0.1, 0.2, 0.3, 0.5 and R2 = 0.8R. Notably, a decrease in R1/R, indicating an
increase in FGM-undercoated thickness, corresponds to a decrease in the maximum stress
within the FGM-undercoated circular plate. It suggests that thicker FGM-undercoated lay-
ers lead to lower maximum stress levels. Furthermore, upon comparing Figures 5 and 13, it
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is evident that the stress behaviors of both the FGM-coated and FGM-undercoated circular
plates exhibit similar patterns.
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Figure 13. The distributions of stresses σr and σθ of the FGM-undercoated circular plate (n = 2)
subjected to thermal load (P = 0,m = 2) when the undercoated thickness changes with R1/R =
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5. Conclusions

This study has successfully obtained analytical thermal solutions for radially FGM-
coated or FGM-undercoated circular plates subjected to transversely and radially thermal
loads, utilizing classical plate theory. The findings lead to the following conclusions:

1. Incorporating FGM as a coated or undercoated layer can effectively reduce the maxi-
mum thermal stress experienced by the circular plate. Notably, the maximum thermal
stress in the FGM-coated or FGM-undercoated plate is located within the radius of
the circular plate (r 6= 0), which differs from the behavior observed in homogeneous
circular plates.

2. For the case where the index P = 0, the thermal stresses and moments of the FGM-
coated circular plate under the thermal load T(r, z) = T0(1 + rm)z2P+1 demonstrate
the proportional relations of Mj = h3σj/(12z), j = r, θ.

3. Under transversely thermal loads (m = 0), the stresses at the homogeneous portion
of the FGM-coated circular plate remain unaffected by the radius r. However, the
stresses at the FGM-ring portion vary depending on the radius, owing to the radially
varying material properties of the FGM layer.

4. When subjected to radially thermal loads only (P = −0.5), the stresses and moments
of the homogeneous portion depend on the product of rm influenced by the radially
thermal load. Conversely, the stresses and moments of the FGM layer are determined
by the function rm+n, which takes into account both the thermal load and material
gradation.

5. The stresses σr and σθ of the radially FGM-coated circular plate, whether subjected
to transversely thermal load only (m = 0) or radially thermal load only (P = −0.5),
exhibit continuity with noticeable inflection points in slope at the interfaces.

6. The numerical findings obtained from this study can serve as a benchmark for re-
searchers in validating their numerical methods and results when analyzing similar
problems involving FGM-coated and FGM-undercoated circular plates.

7. The developed analytical solutions can be applied to analyze the mechanical behavior
of various FGM-coated and FGM-undercoated circular plates subjected to different
thermal loading conditions. Further investigations can explore their application in
specific engineering problems.
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