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Abstract: With recent advancements in computational biology, high throughput Next-Generation
Sequencing (NGS) has become a de facto standard technology for gene expression studies, includ-
ing DNAs, RNAs, and proteins; however, it generates several millions of sequences in a single
run. Moreover, the raw sequencing datasets are increasing exponentially, doubling in size every
18 months, leading to a big data issue in computational biology. Moreover, inflammatory illnesses
and boosting immune function have recently attracted a lot of attention, yet accurate recognition of
Anti-Inflammatory Peptides (AIPs) through a biological process is time-consuming as therapeutic
agents for inflammatory-related diseases. Similarly, precise classification of these AIPs is challenging
for traditional technology and conventional machine learning algorithms. Parallel and distributed
computing models and deep neural networks have become major computing platforms for big data
analytics now required in computational biology. This study proposes an efficient high-throughput
anti-inflammatory peptide predictor based on a parallel deep neural network model. The model
performance is extensively evaluated regarding performance measurement parameters such as accu-
racy, efficiency, scalability, and speedup in sequential and distributed environments. The encoding
sequence data were balanced using the SMOTETomek approach, resulting in a high-accuracy perfor-
mance. The parallel deep neural network demonstrated high speed up and scalability compared to
other traditional classification algorithms study’s outcome could promote a parallel-based model for
predicting anti-Inflammatory Peptides.

Keywords: clustering computing; deep learning; optimum features; computational biology; anti-
inflammatory peptides

1. Introduction

Higher organisms use inflammation as a defensive mechanism to protect themselves
against harmful infections and agents. When tissues are damaged during normal condi-
tions by trauma, toxin, illness, or heat, inflammatory reactions occur [1]. Psoriasis, cancer,
asthma, neurodegenerative diseases, diabetes, rheumatoid arthritis, and multiple sclerosis
are chronic conditions and autoimmune disorders that occur when these reactions happen
without infection or injury [2,3]. Several inflammatory activities are required to maintain
the tolerance state [4]. Anti-inflammatory medications, like endogenous peptides identi-
fied by inflammatory reaction functions, have the potential to be utilized in innovative
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treatments for inflammatory and autoimmune illnesses. Immunity to AIPs two therapeutic
applications: inhibition of antigen-specific T (H) 1-driven reactions and regular T cell
production [5]. Furthermore, several synthetic AIPs are essential in treating autoimmune
illnesses and inflammatory disorders [6]. Alzheimer’s disease, for instance, is caused by hu-
man amyloid-peptide chronic adenoidal direction. The Mice model generates amyloid -β,
a pathological sign of microgliosis, neurological degeneration in the brain, Alzheimer’s
disease, and astrocytosis [7]. Immune suppressants and nonspecific anti-inflammatories
are utilized to recognize inflammatory and autoimmune illnesses. Unfortunately, they
are frequently associated with several side effects, such as inflammatory and pathogenic
infections, and an increased risk of ineffectiveness [8].

Several autoimmune disorders and inflammatory diseases use wet lab experiments.
However, recognizing the AIPs that use such experiments is costly and time-consuming.
Therefore, in terms of computational biology, fast prediction of potential AIPs demands the
creation of an effective sequential-based computer model. Various experimental approaches
using machine learning for analyzing and identifying peptides have been proposed in the
literature [9,10]. To classify AIPs peptides, a few computational models were proposed
in the literature. However, the existing method performance is insufficient that has to be
improved. Conventional machine learning methods are finding it difficult to analyse and
accurately classify massive numbers of AIPs. Traditional technologies are finding it difficult
to process them on time.

Similarly, many researchers have developed parallel and distributed deep learning
models to enhance processing time under challenging situations. For speech recognition
using deep learning algorithms, for example, Chen et al. and Mass et al. [11,12] employed
distributed Graphic Processing Units (GPUs) clusters.

In the same way, Strom et al. [13] developed a cloud computing-based platform for a
distributed Deep Neural Network (DNN) to tackle the communication bottleneck challenge,
which happens throughout data-parallel Stochastic Gradient Descent (SGD). The primary
methods considerably lower computation time: nevertheless, since they do not have the
fault tolerance feature, the complete training process would be disturbed if the GPU node
failed during execution.

Moreover, Sinthong et al. [14] introduced the parallelized DNN model for video data
analysis and provided fault tolerance using the MapReduce Hadoop framework [15,16].
The Hadoop framework, named MapReduce, famous for big data analytics, includes built-
in fault tolerance. However, the performance of the computational model based on Hadoop
is limited because of the Hadoop framework’s high I/O latency [17]. Furthermore, due to
the Hadoop framework I/O delays, its usability for the applications of iterative processing,
like machine learning methods, has been limited.

In this study, we used distributed computing models to classify AIPs sequences using
a proposed scalable, fault-tolerant, parallelized multilayer DNN model. Spark frame-
work [18] is used to develop the proposed model, a prominent data-related computing
method that employs cluster processing nodes. In contrast to Hadoop, Spark offers in-
memory computation, which allows data to be kept and processed in distributed memory
during the map and reduce phases. This functionality lowers the I/O latency Spark frame-
work, producing it a superior computational framework for machine learning approaches.
Furthermore, the proposed model used parallelizing data and implicit coding approaches,
considerably lowering DNN training time. In this context, the salient features of our work
are summarized below:

• We proposed a scalable distributed deep generative model to classify AIPs and non-
AIP sequences from large-scale peptide sequences.

• The proposed model considers the dataset’s non-linearity by utilizing multi-stack
processing layers and a non-linear activation function.

• The proposed model efficiently distributes data (i.e., model code) and computation
across several processing nodes utilizing Spark to obtain massive parallelism. Further-
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more, the proposed model incorporates fault-tolerance and scalability characteristics
to create a robust system.

• The proposed model performance is extensively measured employing various per-
formance measurement metrics, including scalability, speedup, accuracy, and execu-
tion time.

Spark cluster computing has been used to develop the proposed parallel model.
Furthermore, the proposed model employs several feature extraction approaches to obtain
the best features. Lastly, different computational and statistical-based metrics are utilized to
analyze the proposed scalable and parallel model. We used Sensitivity (SN), Specificity (SP),
Accuracy (ACC), and Matthew’s correlation coefficient (MCC) to analyze statistical-based
measurement metrics. In contrast, we used efficiency in terms of scalability, speedup, and
computational times to evaluate computational-based measurement metrics.

The following structure is this paper’s remainder. Section 2 describes the deep neural
network background. Section 3 describes the proposed model structure (i.e., architecture)
and implementation. Section 4 describes the performance assessment and experimental
outcomes. Section 5 includes a discussion.

2. Recent Work

In the literature, few models for predicting AIPs have been proposed until now [19–21].
For example, Gupta et al. [19] developed a Support Vector Machine (SVM) based method
in 2017 under the name of AntiInlflam predictor by using a hybrid with motif feature. In
2018 Manavalan et al. [20] used a Random Forest (RF) classifier with a primary sequence
encoding feature to develop AIPpred. In 2019 Khatun et al. [21] used integrated multiple
complementary features to establish a random forest-based classification method called
PreAIP (See, Table 1).

Table 1. Recent work’s feature extraction methods and classifiers.

Prediction Model Feature Extraction Method Classification

Gupta et al.,
2017 [19] TPC, motif-based features SVM

Manavalan et al.,
2018 [20] AAC, AAI, DPC, PCP RF, KNN, SVM

Khatun et al.,
2019 [21]

AAI, KSAAP, pKSAAP,
structural features SVM, RF, NB

Feature abbreviations: TPC (tripeptide composition), DPC (dipeptide composition),
AAindex (amino acid index), KSAAP (k-spaced amino acid pairs), pKSAAP (k-spaced
amino acid pairs from the position-specific scoring matrix), AAC (amino acid contact),
physicochemical descriptors (PCP).

Model abbreviations: SVM (support vector machine), RF (random forest), NB (Nave
Bayes), k-Nearest Neighbor (KNN).

3. Architecture of Deep Neural Network

Artificial Neural Networks (ANNs) are fast gaining traction as a powerful machine
learning method that enables it to solve complex bioinformatics problems with high effi-
ciency in terms of accuracy. The ANNs primary goal was to create a hierarchical network
capable of intellectual activity and perception like the human neural system. Previously,
linear models were used to train learning models such as Perceptron [22] and Adeline [23]
for data input. The linear approach has several drawbacks, including its inability to address
complex problems. Later, when AI and bio-inspired models improved, the term “ deep
neural network” provided in-depth training and handled nonlinear problems.

Deep learning methods allow learning non-linear and complex functions employing
computational models with multi-stack processing layers. In a variety of fields, deep
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learning approaches have proven they are the most efficient method, including bioinfor-
matics [24], image recognition [25], natural language processing [26], and speech recogni-
tion [27]. Furthermore, numerous publications have stated that deep learning approaches
outperform conventional machine learning approaches in several complex learning prob-
lems [28–32].

The DNN, which evolved from ANNs with extraordinary learning abilities, is inspired
by human brain activity and can represent big data in hierarchical representations. In recent
years, the model has had numerous levels (i.e., numerous hidden layers), with an input
layer and output layers connected by free learning parameters, including weights that
considerably increase the learning capabilities of the DNN model. Furthermore, numerous
researchers have found that as the dimension of the data and the variety of processing
layers increases, the DNN structure makes computation more complex [33–38]. As a result,
this research proposes a DNN model based on the Spark computing platform for parallel
processing to reduce computational complexity. The DNN model in this paper is set up
with five hidden layers, including an input and an output layer, as indicated in Figure 1.
Multiple neurons in each layer produce the output by processing the input feature vector
through Equation (1). The Xavier function is used to initialize the weight matrix on each
neuron [39], which can maintain the same variance across all layers. The back-propagation
procedure also updates the weight matrix to minimize errors between the target and output
classes. Equation (2) is used to apply a non-linear activation function, like Relu, to input
and hidden layers. In the dataset, the method learns the complex patterns and non-linearity
with the assistance of the activation function. Furthermore, depending on the output
produced by that neuron determines whether that neuron can be removed or ignored [40].
In addition, the sigmoid activation function generates some value between [0, 1] on the
output layer, indicating the probability of data points belonging to a specific class.

yi = g( b i +
m

∑
j− 1

x j
i w i

j ) (1)

where yi represents output on the layer i, b represents bias value, x is the input feature,
w i

j is the weight utilized by neuron j at layer i, and g is the non-linear sigmoid activation
function, which can be derived by using Equation (2).

g (Z) =
1

1 + e− z (2)
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Figure 1. Deep Neural Network Architecture.

With the increase in the input size, the DNN model complexity and computational cost
increased. Due to this, we calculated the algorithm’s computational complexity to evaluate
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the DNN model performance—the model input size (i.e., n) determines the computational
complexity. When computational complexity equals Θ(1), it reaches its lowest value.
The computational complexity of the model rises as the number of inputs increases. The
proposed DNN model computational complexity can be separated into two main categories:
forward and backward propagation [41]. We consider a fully connected DNN model of the
number of the same layers (i.e., n), and neurons have Θ

(
n 4) Time complexity to compute

the big O notation for forward propagation [41]. Moreover, because the proposed network
employed the gradient descent for back-propagation for n iterations and has each layer
(i.e., n) with neurons, the overall back-propagation run-time is given as Θ

(
n 5). As a result,

the overall DNN algorithm computational complexity can be defined as.

Θ( n 5 + n 4 ) ∼= ( n 5) (3)

Equation (3) indicates that deep neural networks have high computational complexity
compared to other learning methods. Therefore, distributed, and parallel computational
approaches can reduce the DNN model computational cost and training time.

4. Proposed Model Design

The proposed model design is introduced in this section. Figure 2 illustrates the
proposed model architecture that includes several mechanisms, which are discussed in
more detail.
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4.1. Benchmark Dataset

There were AIPs and non-AIP peptides in the Benchmark dataset. The IEDB database [42]
and a newly published paper [21] were utilized to develop this paper’s benchmark dataset.
The benchmark dataset is mathematically represented using Equation (4).

D = D+ ∪ D− (4)
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where AIPs are denoted with D+, while non-AIPs are denoted with D−. The D represents
the AIPs and non-AIPs sequences union. We got 3145 peptide sequences from the [21,42],
with 1258 AIPs sequences (i.e., D+) and 1887 non-AIPs sequences (i.e., D−).

4.2. Technique for Feature Formulation

Biological sequences are provided in FASTA format with various sequence lengths
in bioinformatics. Biological sequences cannot be processed naturally using statistical
machine-learning methods. These methods work with data that is either discrete or nu-
meric [31,43]. As a result, before using any machine learning method to learn biological
sequences, they must be converted into a numeric-valued feature vector. Conversely, the
sequence information order and pattern may significantly change during the formula-
tion process. Computational biology has implemented many methodologies to transform
peptide sequences of varying lengths into feature vectors while preserving the sequence
information order and pattern [44].

4.2.1. Amphiphilic Pseudo-Amino Acid Composition (APAAC)

The APAAC features set is distinctly similar to PAAC descriptors.

H1 (1) =

H0
1 (i) −

20
∑

i−1

H0
1 (i)
20√

20
∑

i−1
[H0

1 (i) −
20
∑

i−1

H0
1 (i)2

20 ]

20

(5)

H2 (2) =

H0
2 (i) −

20
∑

i−1

H0
2 (i)
20√

20
∑

i−1
[H0

2 (i) −
20
∑

i−1

H0
2 (i)2

20 ]

20

(6)

where,

• H0
1 (i) represents the hydrophobicity

• H0
2 (i) represents the hydrophilicity.

The hydrophobicity and hydrophilicity correlation functions are mathematically ex-
pressed as

H1
i,j = H1(i) H1 (j),

H2
i,j = H2(i) H2 (j)

where H1
i,j and H2

i,j stands for the correlation functions of hydrophobicity and hydrophilicity.
As a result, sequence order factors can be defined as follows:

τ1 = 1
N − 1

N−1
∑

I−1
H1

i , i + 1

τ2 = 1
N − 1

N−1
∑

I−1
H2

i , i + 1

τ3 = 1
N − 2

N−2
∑

I−1
H1

i , i + 2

τ4 = 1
N − 2

N−2
∑

I−1
H2

i , i + 2

· · ·

τ2λ−1 = 1
N − λ

N−λ

∑
I−1

H1
i , i + λ

τ2λ = 1
N − λ

N−λ

∑
I−1

H2
i , i + λ



(7)
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where λ an integer parameter and APAAC are defined as:

pu = fu
20
∑

i−1
fi + w

2λ
∑

j−1
τj

, where 1 ≤ u ≤ 20

pu = wτu
20
∑

i−1
fi + w

2λ
∑

j−1
τj

, where 20 + 1 ≤ u ≤ 20 + λ

 (8)

4.2.2. PseAAC of Distance-Pair and Reduced Alphabet

The descriptor combines information on amino acid distance pair coupling, and
the amino acid reduced alphabet profile in the generic pseudo amino acid composition
vector. There are three of them: Cp (13), Cp (14), and Cp (15), respectively, for the reduced
alphabet profile:

Cp (13) = {MF ; IL; V; A ; C; WYQHP ; G ; T; S; N ; RK ; D ; E}
Cp (14) = {EIMV ; L; F; WY ; G ; P ; C ; A ; S ; T ; N ; HRKQ ; E ; D}
Cp (15) = { P ; G ; E ; K ; R; Q ; D ; S; N; T; H ; C ; I ; V ; W ; YF ; A ; L ; M}

(9)

where,

• Cp represent the cluster profile.
• The numbers (13) (15) represent the dimension of the feature vector of these clus-

ter profiles.
• A semicolon (;) separates each letter, showing they are part of the same cluster.

Our research employed a hybrid distance Pair and APAAC technique that outperforms
all other feature extraction techniques.

4.3. Data-Balancing Techniques

One of machine learning’s most complex challenges is working with unbalanced
datasets. There is an imbalanced dataset when the dominant class membership vastly
outnumbers the minority class membership, which may considerably affect the machine
learning method performance (i.e., unreliable biased and results). Several resampling
methodologies, including under-sampling, over-sampling, and hybrid sampling techniques,
balance the original imbalance dataset [45]. Prior research has shown that dealing with the
problem of imbalanced data leads to better classification models [46–49]. The most basic
strategy is random under-sampling, where most data samples are randomly eliminated to
balance the dataset. But, in the majority class, random data point removal may outcome
in the loss of unwanted information. The synthetic minority oversampling technique,
Tomek link (SMOTETomek), is a hybrid technique for dealing with data imbalances [50].
SMOTETomek has been used in several studies with positive data balance and model
performance outcomes. Goel et al. [51] used eight datasets from the UCI Repository website
to examine five ways to fix imbalanced data. According to the results, SMOTETomek
enhances most of the dataset’s model accuracy. Chen et al. [52] employed resampling ways
to solve unbalanced challenges and an RF approach to estimate lane-changing risk levels
to create a line-changing behavior framework. The results indicate that SMOTETomek
significantly improves the model’s accuracy to 80.3%.

The synthetic samples are created by SMOTE as follows:

X new = X i + ( X i‘ − X i ) ∗ a (10)

where X new denotes synthetic data, X i denotes minority samples, X i‘ denotes the X i k
nearest neighbors, and a denotes a random value between 0 and 1.

The synthetic minority oversampling technique edit nearest neighbors (SmoteENN)
and combines under-sampling (i.e., ENN) [53] and oversampling (i.e., SMOTE). SMOTE
uses the KNN technique to find and choose the closest k neighbours, connect them, and
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produce new samples in the space. The ENN approach is utilized to clean up the oversam-
pled data.

Previous research has demonstrated that using SmoteENN to deal with unbalanced
data improves model accuracy. Furthermore, none of the earlier studies used the Smo-
teENN technique. Therefore, in this paper, we offer machine learning approaches and the
SmoteENN method to balance datasets to accurately predict AIPs and non-AIP sequences
(shown in Table 2).

Table 2. Comparison of different data balancing techniques.

Data-Balancing Techniques SN (%) SP (%) ACC (%) MCC

Simple data 46.617 67.403 59.24 14.234
Under-sampling 68.595 51.538 60.09 20.394

SmoteTomek 79.29 61.257 68.51 46.968
SmoteENN 89.011 82.352 83.40 71.066

4.4. Apache Spark

Spark is a distributed computational model and an open-source framework used
to analyze and process massive amounts of data on cluster computing platforms [54,55].
It supports in-memory computing that allows data to maintain and processes in shared
physical memory. When the entire memory is occupied, and the system cannot store
more data, the data is split by Spark into secondary storage. Because of this feature,
Spark provides a better computational environment for iterative methods like machine
learning methods. The Spark framework comprises a cluster manager, worker node,
SparkContext, and driver program. With the support of a cluster manager, a user job
can use SparkContext to allocate resources to it and access the recourses of the cluster.
The primary method that creates SparkContext is in the driver program, a Java process.
Cluster Manager is a resource management module that schedules, allocates, and shares
resources across multiple jobs. Various cluster managers, including Mesos, Hadoop Yarn
(yet another resource negotiator), and Standalone Cluster Manager, can be used to deploy
the Spark Framework. The master/slave architecture is used in the Spark framework. The
driver is the master node, which serves as the central coordinator, while the slave nodes
serve as the distributed workers (executives). Spark can access data from various sources,
including Cassandra, HBase, S3, and HDFS. In addition, the Spark framework comes with
various built-in libraries like MLib, Spark Streaming, GraphX, and Spark SQL to facilitate
application developers across multiple domains. MLib is a scalable library that supports
machine learning methods like random forests, K-nearest neighbors, SVM, etc.

Spark Streaming is an API that is language-integrated, which helps developers to
build quickly fault-tolerant, scalable, real-time, and streaming data processing systems.
GraphX is a built-in library that is built for graphic iterative parallel computations. Ap-
plication developers can use SparkSQL to query structured data employing the Spark
system. In Spark, a significant memory abstraction is provided in the form of an in-memory
Resilient Distributed Dataset (RDD) that enables fault tolerance and capabilities of high
scalability [56] in addition to the built-in libraries. RDD is the set of read-only objects
split over several cluster processing nodes to enable parallel processing. Furthermore, by
implementing RDD Lineage [57–59] service, the RDD acquires fault-tolerance capability.
If a node fails during execution, RDD automatically recalculates RDD distribution using
parent RDD.

4.5. Parallel Deep Neural Network

This section introduces using the Spark Framework to create parallel deep neural
networks. The proposed parallel model is illustrated in Figure 3, in which the Spark
framework splits massive training data in RDDs samples labeled D1, D2, D3, . . . , Dn
and shares them over a nodes cluster (i.e., utilizing data parallelization). Additionally, a
DNN model copy is distributed across several workers by the Spark framework (i.e., using
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parallelization of the model). The training begins with the DNN model being executed
across all worker nodes simultaneously (i.e., at the same time), and several models have
been given parallel training using the provided hyperparameters indicated in Table 2. After
the training process (shown in Figure 3 with an orange line), each worker node in the
trained models updates the master node after receiving a trained model (i.e., in globally
trained mode, every worker assigns a different test dataset as an RDD sample). Worker
nodes use a globally trained model to be applied to specific test datasets and produce local
output (i.e., classification metrics). Finally, the average parameter function combines n local
outcomes via the master node (i.e., parameter server) to produce the final result.
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To improve the proposed model, the back-propagation mechanism is used on every
model and is distributed over the worker nodes. The DNN model iterates to a lower loss
function in each iteration. Every single worker node calculates Stochastic Gradient Descent
(SGD) on a provided subset to reduce prediction error. Every worker node reports the
computed SGD to a centralized parameter server. The worker node and parameter server
communicate using a synchronous communication mechanism. The parameter server
gathers partial gradients of the worker nodes to calculate the new weights set. After this,
the parameter server distributes updated weights to the worker nodes that recalculate the
gradients (illustrated with the blue line in Figure 3). The server parameter in the proposed
model handles the distributed scaling model and functions as a coordinating agent among
the worker nodes and central server [60].

Compared to asynchronous SGD optimization, synchronous SGD optimization achieves
better scalability and efficiency [61,62]. However, because of the occasional slowdowns
of a worker node, the synchronous SGD process can decrease model performance. We
suppose that every worker nodes in the proposed model are homogeneous and there are
no slowdown worker nodes. The proposed model, at a higher level, trains and tests in the
following ways:

1. The Spark framework breaks down many sequences into smaller parts and divides
them among all worker nodes.

2. The DNN model is replicated on each worker node.
3. Each worker node runs a model on a particular partition for local model training.
4. The worker node communicates the local model parameters to the parameter server.

The parameter server uses the parameter average overall local models to integrate
all parameters.

5. The parameter server updates the weights and distributes them to the worker nodes.
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6. Steps 3, 4, and 5 are repeated several times in the proposed model to generate a
globally trained model with the best parameters.

7. The final average classification metrics are created by applying the globally trained
model to the testing dataset.

Using a parallel approach, the proposed method dramatically reduces computing
time while maintaining high scalability. The proposed model can scale up (i.e., extended)
by adding more nodes, which increases the model performance in terms of speedup and
computation times (Section 4 discussed it in detail). Furthermore, a proposed model
attained fault tolerance by distributing copies of data samples as RDDs among multiple
worker nodes, effectively overcoming node failure problems. If the node fails during the
execution of a job, the spark automatically detects it. It allocates the failed node workload
to an additional obtainable node to ensure that it does not affect job completion.

4.6. Performance Evaluation Metrics

Computational-based and Accuracy-based matrices were used to assess the proposed
model performance. We employed commonly used accuracy-based metrics, including
(I) ACCU, which represents the model’s overall accuracy, (II) SPEC, which represents the
precision of the model, (III) SENC, which represents the sensitivity of the model; and
(IV) MCC, indicates Mathew’s correlation coefficient [63]. Equations (11)–(14) can be used
to calculate these metrics.

ACCU = 1 −
N+
− + N−+

N+ + N−
, 0 ≤ Accu ≤ 1 (11)

SPEC = 1 −
N−+
N−

, 0 ≤ Spec ≤ 1 (12)

SENC = 1 −
N+
−

N+
, 0 ≤ Senc ≤ 1 (13)

MCC = 1 −
1 −

(
N+
− + N−+

N+ + N−

)
√(

1 +
N−+ + N+

−
N+

) (
1 +

N+
− − N−+

N−

) , − 1 ≤ Mcc ≤ 1 (14)

where,

• N+ denotes the AIPs sequences’ total number.
• N− denotes the of non-AIPs sequences total number.
• N+

− denotes the AIPs sequences’ total number that the proposed model incorrectly
predicts as non-AIPs sequences.

• N−+ denotes non-AIPs sequences’ total number that the proposed model incorrectly
predicted as AIPs sequences.

Computational metrics like scalability, computation time, and speedup are analytical
metrics that can be computed using simulation results.

5. Results and Discussion

The proposed model’s efficiency and performance are discussed and measured using
computational and accuracy-based metrics on the benchmark dataset.

5.1. Experimental Setup

We used four physical processing nodes to configure a Spark cluster with default
configurations. Table 3 describes the basic hardware and software specifications used in the
experiments. All processing nodes were set up utilizing the Ubuntu 18.04 LTS operating
system, Hadoop 2.7.3, and Spark 2.0. One of the processing nodes was designated as a
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master, while the other three were designated as worker nodes. Furthermore, the master
node served as both a worker and a master node.

Table 3. Apache Spark cluster configuration details.

Processor 3.20 GHz × 4

Specification of Single node

CPU Intel Core™
Connectivity 100 Mbps Ethernet LAN

Hard disk 480.4 GB
Memory 16 GB

Software

Operating system Ubuntu18.04LTS
Hadoop 2.7.3

Spark 2.0
OS Type 64-bit

JDK 1.8

5.2. DNN Parameters Optimization

The DNN model usually involves a large number of parameters that significantly
impact the performance of a model. The commonly used parameters that determine the
design of a DNN model are the number of hidden layers, activation functions, learning
rate, weight initialization, model optimization methods, etc. These parameters are re-
ferred to as hyper-parameters and are listed in Table 4. Table 4 shows the effects of only
two hyperparameters that substantially impact the learning rate and activation function.

Table 4. DNN model hyper-parameter list with optimum values.

Parameters Optimized Values

Learning rate 0.001
Iteration 128
Seed 1234 L
Number of hidden layers 12-10-2-1
Number of Neurons 5
Activation Function ReLu
Regularization.l2 0.001
Weight initialization XAVIER function
Optimizer 0.1
Dropout SGD Method
Updater ADAGRAD function

Different learning rates are utilized to produce the best accuracy, as shown in Table 5.
At a 0.001 learning rate and using the Relu activation function, the DNN model achieved
the maximum accuracy of 82.0% and 83.40%, respectively, using the Tanh activation func-
tion. As a result, Relu and 0.001 are the optimal activation function and learning rate
configuration parameters, respectively.

5.3. Learning Algorithms Performance Comparison

The proposed DNN model is compared to that of other famous ML algorithms such
as Probabilistic Neural Network (PNN) [64], k-Nearest Neighbor (KNN) [65], Random
Forest (RF) [66], Support Vector Machine (SVM) [67], MLP (Multilayer Perceptron) [68],
Nave Bayes (NB) [69], and logistic regression [70]. Table 6 shows the conventional machine
learning methods with optimized values of their parameters. Table 7 compares the perfor-
mance of the several learning methods. From Table 7, the DNN model beats other machine
learning techniques. The DNN model, for example, had the best accuracy of 83.40%, while
the RF model had the second-best accuracy of 82.21%. With an accuracy of 64.35%, the
Logistic regression model is the least accurate.
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Table 5. Impact of different learning rates and activation functions.

LR Tanh ACC (%) Relu ACC (%)

0.009 78.83% 80.24%
0.008 81.78% 81.85%
0.007 80.45% 81.22%
0.006 81.29% 81.36%
0.005 81.64% 81.44%
0.004 81.86% 81.36%
0.003 82.00% 82.41%
0.002 81.16% 82.56%
0.001 82.00% 83.40%
0.01 77.07% 81.63%
0.02 64.63% 73.21%

Table 6. Conventional Machine Learning Methods Parameters with Optimized Values.

Classifier Parameters Optimized Values

SVM

Cost 10
Kernel Type Linear
Kernel Degree 2
Coef0 9
Gamma 0.01
Shrinkage TRUE

RF
Mtry 8
No. of trees 350

KNN
Weighting 10
k-neighbors Distance

Logistic Regression solver 1 × 104

C Sag

MLP

Solver Adam
Hidden layer size 100
Learning rate Constant
Activation Relu
Shuffle True
Batch size auto

NB
Binarize 0.0
Class_prior None
alpha 1.0

Fit_prior True

Table 7. Performance Comparison of Machine Learning Method.

Method MCC SN (%) SP (%) ACC (%)

DNN 0.711 89.01 82.35 83.40
RF 0.626 74.65 87.24 82.21
SVM 0.522 61.44 88.17 77.50
MLP 0.607 88.75 70.79 81.37
KNN 0.621 96.61 58.67 81.44
Logistic
Regression 0.229 77.38 44.80 64.35

NB 0.438 78.10 63.39 72.23
PNN 0.293 13.55 100 65.47

The DNN model can effectively deal with a dataset of a complex nature with high
non-linearity because it utilizes hidden layers (multi-stack processing layers) with implied
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back-propagation (weight optimization). In contrast, other machine learning approaches
(conventional machine learning approach) use single-stack processing layers.

5.4. Comparison with Existing Models

In this section, we compare the performance of the proposed model with the existing
classification models recently published in [19–21] using the original benchmark dataset.
For this comparison, all the models were implemented using a single machine. Listed in
Table 8 are the results obtained by the proposed model and existing classification models.
The outcomes indicated that our proposed model outperformed three existing predictors.
Compared to the existing predictor (PreAIP), our proposed model exhibited the highest
accuracy, 83.40%.

Table 8. Comparison of proposed model performance to existing models.

Method SN (%) SP (%) MCC ACC (%)

AIPpred 75.80 71.10 0.460 73.00
PreAIP 63.20 90.30 0.566 79.50

Proposed Model 89.01 82.35 0.711 83.40

Furthermore, a meaningful comparison should consider other measurement metrics
such as sensitivity, specificity, and Mathews Correlation Coefficient (MCC) with the com-
bination of accuracy. A high value of these metrics for a model shows that the model is
more accurate and stable. From Table 8, we can observe that the proposed model achieved
high values for these metrics compared to the existing mentioned models. For example,
our proposed model had the most significant MCC values of 0.71, compared to 0.566 for
the PreAIP. These results indicate the significance and stability of the proposed model
compared to its counterpart prediction models.

5.5. Performance Evaluation Using Replicated Dataset

We used replicated sequences in this part to analyze the proposed model performance.
It’s worth noting that the proposed model feature formulation module (Section 4.2) converts
peptide sequences into a feature vector using a sequential technique. A considerable data
situation results from continually repeating the constructed sequences (i.e., feature vector)
to create a higher-dimensional feature vector. Accuracy-based measures cannot assess how
well the suggested model performs since the dataset contains redundant and identical
sequences. Therefore, we merely employ computational-based metrics to analyze the
performance of the proposed model in this evaluation.

Several experiments were performed to evaluate the performance of the proposed
model in terms of computation times on different numbers of sequences, and the results
are displayed in Figure 4. Figure 4 shows that the proposed model performed better than
the sequential implementation of a deep neural network in computation time using four
physical processing nodes. The execution times of the sequential deep neural networks are
highly increased with the increasing number of sequences. In contrast, the execution times
of the parallel proposed model are slightly increased, as shown in the figure. The proposed
model achieved better performance in computation efficiency due to parallel processing.

The proposed model scalability analysis is shown in Figure 5, which includes a variety
of processing nodes and sequences. The proposed model execution time is significantly
minimized as the number of processing nodes increases, as indicated in the figure. For
example, when the proposed model is run on a single processing node, it takes 1380 s
(i.e., execution time) to classify 12.32 million sequences, while when it is run on four
processing nodes, it takes 410 s to classify the equal number of sequences. According
to these findings, the execution time of the proposed model is lowered by 70.29% on a
large number compared to a single machine. The proposed model is then tested for speed
utilizing a range of processing nodes and sequences.
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Finally, Figure 6 depicts the proposed model speedup using a replicated benchmark
dataset. We assess the speed of the suggested model under various conditions. In the
first scenario, the presented model achieved the maximum speed of 2.71 when processing
3.43 million sequences on four processing nodes. The proposed model achieved a speedup
of 3.37 times while processing 12.32 million sequences on four processing nodes using
the replicated benchmark dataset. These findings show that the suggested strategy is
exceptionally scalable in terms of the number of processing nodes and the dataset size.
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Moreover, these results demonstrate that the proposed model outperforms others
while processing many sequences (most significant speedup). This evaluation shows that
the suggested strategy can handle many sequences. On the other hand, given a specific
number of processing nodes, the suggested model never achieved the speedup predicted by
Amdahl’s law [71]. Several factors bring this on, including task launch overhead, network
bandwidth, and cluster communication overhead. There has been a lot of discussion about
this phenomenon [72].

6. Conclusions and Future Work

This paper presents a parallel DNN model for classifying large-scale peptide sequences
as AIPs and Non-AIPs. The proposed model was built using the Spark programming model
to achieve a parallel computation by partitioning and distributing sequences amongst a
cluster of computer nodes. Furthermore, the proposed model formulated the sequence
using APAAC and distance pair approaches. The proposed model performance was care-
fully examined. Due to the parallelization of both the data and the model, the experimental
findings show that, compared to the sequential technique, the computation speed of the
proposed model is more substantial, with no loss of overall model accuracy. Furthermore,
the parallel DNN model is approvingly scalable due to the dataset size and the number of
processing nodes.

The proposed model was employed using default parameter settings. The Spark
framework has a lot of configurable parameters that have a substantial impact on its
performance. In the future, we want to provide an approach that automatically optimizes
framework configuration settings using the particle swarm optimization technique [73]
and gene expression programming [74], improving the proposed model’s computing
speedup performance.
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