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Abstract: This paper established a mathematical method for the spectral feature extraction of ratholes,
based on UAV hyperspectral imaging technology. The degradation of grasslands is a major challenge
to terrestrial ecosystems. Rodents not only promote soil erosion and accelerate the process of grassland
degradation, but also carry diseases that can easily cause epidemics. The calculation of the number of
rodent holes and grassland vegetation cover is an important indicator for monitoring and evaluating
grassland degradation. Manual surveys have drawbacks in efficiently monitoring large areas and are
human- and material-costly, hardly meeting the current needs of grassland degradation monitoring.
Therefore, there is an urgent need to conduct real-time dynamic monitoring of grassland rathole
distributions and grassland degradation processes. In this study, a low-altitude remote sensing
platform was constructed by integrating a hyperspectral imager with a UAV to collect spectral data of
the desert steppes in central Inner Mongolia Autonomous Region, China. Then, the spectral features
of ratholes were extracted via radiation correction, noise reduction, and principal component analysis
(PCA). Meanwhile, the spectral features of vegetation and bare soil were extracted based on the
normalized difference vegetation index (NDVI), which was inputted to calculate the vegetation cover.
The results showed that the single-band map extracted based on PCA could effectively determine the
location of ratholes, where the overall accuracy and kappa coefficient were 97% and 0.896, respectively.
Therefore, the method proposed in this study can accurately identify the location of desert steppe
rodent holes. It provides a high-precision technical means for scientific and effective control of
grassland rodent infestation and also provides a higher technical means for grassland degradation.

Keywords: hyperspectral image; monitoring of grassland degradation; rathole recognition; principal
component analysis

1. Introduction

Grassland ecosystems play a major role in regulating the process of climate change on
Earth and are an important production base for the development of grassland livestock
farming, as well as an important ecological barrier [1]. In recent years, grassland ecosystems
have been destroyed to different degrees due to both natural and human factors [2,3].
Among them, grassland rodent infestation is an important cause of grassland ecosystem
degradation. A large number of vermin occupy grassland resources, digging and making
holes, resulting in a large reduction in the grassland area and a decrease in the livestock
carrying capacity of grasslands, which has caused serious economic losses among herders.
Pest rats belong to the rodent group. According to a previous survey, there are more than
2000 species of rodents worldwide, carrying about 200 species of pathogens, accounting
for about 25% of the pathogens in humans [4]. Among dozens of rodent-borne diseases,
plague, hemorrhagic fever with renal syndrome (HFRS), and leptospirosis are infectious
diseases that are legally prevented in China, which pose a serious threat to human life and
health safety [5].

China has one of the largest grassland areas in the world, with a natural grassland
area of approximately 400 million hectares, accounting for 40% of its total land area and
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roughly 13% of the world’s total grassland area [6,7]. With a total grassland area of 88
million hectares, which accounts for 20.06% of the national grassland area, Inner Mongolia
is the second largest province in China in terms of grassland area, and the largest in terms
of pastoral area. A previous survey revealed that the grassland rodent pest area in the Inner
Mongolia Autonomous Region covers 6.54 million hectares, with a severely affected area of
2.83 million hectares. The expansion of grassland rodent pest areas, coupled with the sharp
increase in pest numbers, not only poses a significant threat to the ecological balance of
grasslands, causing severe degradation, but also increases the risk of a plague outbreak.

Rapid and accurate positioning of the geographical coordinates of rodent holes, com-
bined with real-time and dynamic monitoring of changes in their numbers and distribution,
is a crucial method to contain the occurrence of rodent pests. Grassland degradation mainly
consists of vegetation degradation as well as soil degradation. Vegetation degradation
refers to the reduction in high-quality forage production and the decline in vegetation
species. Soil degradation refers to the reduction in organic matter content and soil erosion.
Soil degradation is the precondition for vegetation degradation, and vegetation degradation
is the inevitable result of soil degradation. Pest rats destroy soil and gnaw pasture, which
are important causes of grassland degradation. Therefore, investigating the number of
grassland pest rodent holes is an important basic link to monitoring grassland degradation
and assessing the degradation level. The number of ratholes as well as the geographical
coordinates can be manually surveyed with high accuracy. Based on the sample scale
(0.25~1 hectare), the hole coefficient of pest rats can be calculated, and the density of rats
can be investigated by plugging holes and pinning lines. By observing whether there are
signs of activity around the holes, researchers can effectively differentiate between active
and abandoned holes [8]. However, manual surveys are not only time-consuming and
labor-intensive, but also, in the event of rodent infestation, hindered by the risk of potential
virus transmission, threatening the lives of investigators [9]. Satellite remote sensing is a
useful tool for large-scale spatial investigations. By obtaining satellite data, vegetation index
calculations can be performed to achieve the estimation of above-ground biomass [10,11].
However, satellite remote sensing is limited by the external environment and the accuracy
of its own sensors, meaning it cannot meet human expectations for small-feature surveys,
such as rathole surveys [12,13]. Manned aircraft, which are commonly used for low-altitude
remote sensing, have limited flight altitudes due to their fixed-wing design, making it diffi-
cult to achieve low-altitude flight and meet the precision requirements for data collection.
In summary, the data collection methods mentioned above that are based on the rapid
location of rodent holes may involve some risk of data loss or omission during the data
acquisition process. Nevertheless, they still offer some degree of feasibility for analysis in
the context of rodent hole investigation.

Field surveys based on low-altitude UAV remote sensing platforms are of great interest
and popularity. The main reasons are as follows: (1) they offer the ability to enter hazardous
areas for surveying; (2) they represent a new cost-effective way to detect small-scale spaces;
and (3) they have the advantages of speed, efficiency, and simplicity of operation. UAVs
depend on their unique advantageous conditions to fill the gap in using low-altitude
remote sensing platforms in the field of small-scale investigation. Hyperspectral images
have multiple continuous bands, which can be used to obtain both high temporal and
spatial resolutions of the spectral data. Each pixel and band in the image contains rich
spectral feature information and spatial information, helping to truly achieve “spectrum
integration” and effectively express the real information of the measured object. At present,
low-altitude UAV remote sensing platforms with hyperspectral imagers are widely used
in the dynamic monitoring of large-area data in, for example, agriculture and forestry, as
well as in the recovery monitoring of mining areas, but few studies have been reported on
feature identification monitoring based on deserted steppes [14].

Desert steppes have harsh climatic conditions and extensive degradation areas, and
the area of grassland rodent holes is narrow, with a relatively hidden location. In this
study, in order to achieve the accurate identification of grassland ratholes in large areas,
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based on the advantages of UAVs, a hyperspectral imager was integrated with a UAV to
collect the surface spectral information of a desert steppe. With desert steppe ratholes as
the research object, relying on the unique spectral characteristics of ratholes, a method
of rathole identification based on principal component analysis is proposed, which can
quickly and accurately identify desert steppe ratholes with high accuracy. The proposed
scientific method provides a technical means for the dynamic monitoring of grassland
rodent activity areas and a sound grassland rodent monitoring system. It also contributes
to curbing grassland rodent outbreaks at the source and controlling the threat of plague
and other infectious diseases to human health.

2. Materials and Methods
2.1. Overview of the Study Area

The experimental area is located in the Gegen Tara grassland (41.78◦ N, 111.88◦ E,
1440 m above sea level) in Shiziwangqi, Ulanqab City, Inner Mongolia Autonomous Region
(Figure 1). The area is a typical desert steppe environment, with a mid-temperate conti-
nental monsoon climate, annual average temperature of 1–6 ◦C, minimum temperature
reaching −39 ◦C, maximum temperature around 36 ◦C, annual rainfall around 300 mm, and
soil water content of 10.99–13.78%. The soil type is predominantly light chestnut calcium
soil with a low vegetation cover and an overall sparse, low performance, mainly dominated
by short-flowered needlegrass, cold artemisia, awnless cryptomeria, and camelina [15,16].
The area is a natural source of highland gerbil plague, and common pests include Meriones
unguiculatus, Rhombomys opimus, Spermophilus dauricus, Meriones meridianus pallas,
Ochotona curzoniae, Myospalax psilurus, Myospalax aspalax, Lasiopodomys brandtii, and
16 other species [17]. Affected by climatic conditions, rathole openings are relatively small
and hidden. Their typical shape is shown in Figure 2. Grassland pest rats start to breed in
spring and reach their peak numbers in the summer and autumn; then, the temperature
drops, and the mortality rate of pest rats increases until their number reaches the minimum
in the following year, with the cycle starting over again. According to surveys, the number
of long-clawed gerbils, which are the main host of the plague, has been increasing year by
year, and the risk factor for grassland destruction has increased.
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Figure 2. Overview of a rathole.

2.2. Brief Description of the Experimental Equipment

The data collection system used in this study consisted of a DJI Matrice 600 Pro
hexacopter drone and a GaiaSky-mini hyperspectral imager (Figure 3). The UAV has its
own landing gear, weighs 9.5 kg, has a symmetric motor axis distance of 1133 mm and a
maximum takeoff mass of 15.5 kg, and can withstand a maximum wind speed of 5 m/s.
The aircraft was equipped with an A3 Pro flight control system and a Lightbridge 2 HD
digital image transmission module. The selected hyperspectral imager was a GaiaSky-
mini imaging system from Sichuan Shuangli Hopspectrum, with a spectral band range
of 400–1000 nm and a spectral resolution of 3.5 nm. The imaging lenses were OL and
OLE series lenses (standard configuration: Hsia-OL23), and the photo mode was hovering
built-in scanning shooting. The hyperspectral imager and UAV were connected using a
DJI RONIN-MX gimbal to ensure smoothness during the data acquisition, thus further
guaranteeing the availability of data. The gimbal, spectral imager, and UAV were integrated
to remotely control the data acquisition for real-time data visualization.
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2.3. Data Acquisition

The data acquisition period was July–August 2019, and the acquisition time was set to
11:00–13:00. To ensure that external environmental interference was minimized during the
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data acquisition process, the data were collected under breezy, clear (less cloudy) weather,
with a preset UAV flight height of 30 m, a spatial resolution of 2.3 cm, and a data collection
area of 2.5 hm2. In order to facilitate the subsequent data processing, and to ensure the
validity of the data, each party needed to collect data three times.

3. Data Processing
3.1. Data Pre-Processing

The collected raw data were first screened via manual visual inspection, and the over-
exposed or underexposed data were removed. The remaining spectral images with good
shooting results were corrected for reflectance using SpecVIEW (version number 2.9.1.8),
which transformed the DN value of the original spectral data into spectral reflectance.

Noise is an unavoidable interference factor in the process of spectral data acquisition.
Due to the limitations of the equipment itself, the hyperspectral data acquisition process
is affected by the equipment sensor accuracy, dark currents, and the data transmission
process, which leads to the contamination of hyperspectral data with various types of noise,
including Gaussian noise, streak noise, and impulse noise [18]. The presence of noise will
affect the real validity of the spectral data. Therefore, data smoothing and noise reduction
are important steps in hyperspectral data processing. In this study, the Savitzky–Golay
smoothing filter was selected to smooth and reduce the noise of the spectral data, and the
effect of smoothing and noise reduction was achieved without changing the trend of the
spectral variation.

3.2. Extraction of Feature Image Elements and Spectral Curve Analysis

After pre-processing, the hyperspectral data need to be extracted from the region
of interest. Since the vegetation of desert steppes is interspersed, there is a problem of
misclassification of feature image elements due to the fusion of mixed image elements
when analyzing the spectral data based on pixels. Therefore, in this study, the pure image
elements between different features were extracted from the region of interest, and the pure
image elements in the region of interest were selected for spectral averaging. Based on this,
the average spectral curve was drawn (Figure 4).
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It can be seen in Figure 4 that in the visible range, vegetation was affected by chloro-
phyll and showed a “green peak and red valley” when illuminated by natural light, i.e., the
reflectance of the green light band was stronger, and the absorption rate of the red light
band was higher, with the highest reflectance reaching 0.35; the spectral reflectance of bare
soil showed a positive correlation with the increase in wavelength, and the reflectance of
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vegetation was higher than that of bare soil. The spectral reflectance of bare soil increased
with the wavelength and was overtaken by that of vegetation after the intersection. The
reflectance of vegetation and bare soil in the near-infrared wavelength range increased
smoothly with the increase in wavelength. When the low-altitude remote sensing data
were collected under the premise of direct sunlight, the background of the rathole showed
a black color, and the absorption rate of all wavelengths of natural light was high; thus, the
spectral reflectance of the rathole was low.

3.3. Principal Component Analysis

Hyperspectral data have many continuous bands and are high-dimensional data, and
the spectral information contains a large amount of useless information. In the process of
data analysis, redundant data information will increase the difficulty and time cost of data
processing, and reduce its efficiency; therefore, it is necessary to reduce the dimensionality
of the spectral data to extract the main spectral characteristic information. Principal com-
ponent analysis can reduce the dimensionality of the data and minimize the redundant
information among different variables by diagonalizing the covariance matrix, so as to
compress the multi-band image information to a preset number of bands and achieve the
effect of feature extraction. In this study, principal component analysis was performed on
50 spectral samples of each of the three types of features in the 400–700 nm and 400–1000 nm
bands.

The corresponding contribution rates and cumulative contribution rates of the first
six principal components are presented in Table 1. For the 400~1000 nm band range, the
contribution of the first principal component was 77.35%, the cumulative contribution of
the first three principal components was 95.81%, and the cumulative contribution of the
first six principal components reached 98.16%. For the 400–700 nm band, the contribution
of the first principal component was 76.02%, the cumulative contribution of the first three
principal components reached 99.07%, and the cumulative contribution of the first six
principal components reached 99.59%. From the data in the table, it can be seen that, under
the premise of a certain number of principal components, the contribution rate of the
spectral data in the range of 400~1000 nm was higher compared with that in the range of
400~700 nm when the spectral data were selected for analysis. Meanwhile, the cumulative
contribution rate of the first three principal components reached more than 95%, indicating
that the first three principal components could be used to describe most of the features.

Table 1. Corresponding contribution rates and cumulative contribution rates of the first six principal
components.

PC Band

400~700 nm 400~1000 nm

Contribution
Rate

Cumulative
Contribution Rate (%)

Contribution
Rate

Cumulative
Contribution Rate (%)

1 0.7602 76.02 0.7735 77.35
2 0.2211 98.13 0.1581 93.16
3 0.0094 99.07 0.0265 95.81
4 0.0026 99.33 0.0119 97.00
5 0.0014 99.47 0.0066 97.66
6 0.0012 99.59 0.0050 98.16

4. Result
4.1. Rathole Feature Extraction

Hyperspectral images were loaded with RGB images via band reorganization after
principal component analysis, and it was found that the image features were more obvious
using the combination of the first three principal components, while the spectral images
were found to be blurred when the last three principal components were selected for
combination, which was not conducive to the subsequent image delineation. To address
this problem, in this study, a single principal component was selected for data analysis,
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and the single-band hyperspectral data of each of the seven principal components were
raster-density-divided based on the DN values of the pixel points (Figure 5). According
to the color band variation, the feature extraction results of each principal component in
the figure were analyzed, and it was found that the best feature extraction of ratholes was
achieved when PC Band1 was selected. The extracted mask image is shown in Figure 6.
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4.2. Non-Rathole Area Characterization

Remote sensing vegetation indices are effective, real-time, empirical measures of
surface vegetation conditions, which can indicate the force of vegetation growth and have
better sensitivity than single bands used to detect biomass, while the combination of visible
and near-infrared bands can effectively obtain various vegetation indices [19]. With the
development of technology, there is an extremely strong demand for vegetation indices
for applications in agriculture, vegetation, and ecology. Examples include monitoring of
vegetation distribution and growth, yield estimation, and extraction of various biological
parameters [20]. Common vegetation indices are shown in Table 2.

Table 2. Several common types of vegetation indices.

Vegetation Index Calculation Formula References

Normalized difference
vegetation index NDVI = (NIR−R)

(NIR+R)
[21,22]

Enhanced vegetation index EVI = 2.5 (NIR−R)
(NIR+6×R−7.5×B+1)

[23]

Ratio vegetation index RVI = NIR
R [24]

Difference vegetation index DVI = (NIR − R) [25]

Soil-adjusted vegetation index SAVI = (1 + L) (NIR−R)
(NIR+R+L)

[26]

NIR stands for near-infrared band; R stands for red band; B stands for blue band; L is the soil conditioning factor,
and the value range is 0~1.

The normalized difference vegetation index (NDVI) has the advantages of a wide
spatial coverage, high monitoring sensitivity, simple calculation, and effective elimination
of radiation interference, which can truly and effectively reflect the vegetation growth state.
Moreover, it can be used to calculate the vegetation cover, and is also the most widely
used vegetation index for ecological monitoring [27,28]. The normalized vegetation index
is more applicable to desert steppes than the other vegetation indices mentioned above
because of the sparse vegetation and low vegetation cover. The NDVI was calculated
for the non-rathole area, and the results are shown in Figure 7. The results show that
the minimum CV value (cursor value) of each type of sample was −0.019260, and the
maximum value was 2.195495. To avoid errors, [−0.05, 2.2] was used as the threshold
range. According to the statistics for the number of image elements and the threshold
range after the operation (Table 3), the threshold range of ratholes was [1.126505, 2.195495],
the threshold range of bare soil was [−0.019260, 0.306244], and the threshold range of
vegetation was [0.306244, 0.631748].
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4.3. Classification Accuracy Validation

The kappa coefficient is a mathematical calculation based on a confusion matrix
to measure the classification accuracy in remote sensing images [29]. In this study, the
remaining rathole samples were extracted based on the above method for rathole and non-
rathole (vegetation, bare soil) features, and the confusion matrix table based on ratholes and
non-ratholes was obtained by creating a mask file and calculating the number of different
image elements and threshold statistics, as shown in Table 4. Based on the low-altitude UAV
remote sensing platform for rathole data collection, the number of rathole image elements
in the sample box was small due to its height, and 347 non-rathole image elements were
extracted to improve the accuracy of the precision verification. The overall classification
accuracy for the rathole and non-rathole areas reached 97%, and the kappa coefficient
reached 0.896. Based on the normalized vegetation index for vegetation, the results of the
classification of bare soil and vegetation are shown in Table 3.

Table 3. Color and number of image elements for each type of feature.

Color Name Number of Pixels Max Value Min Value
Rathole 655 2.195495 1.126505
Bare soil 148,916 0.306244 −0.019260

Vegetation 100,429 0.631748 0.306244
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Classification Result

Rathole Non-Rathole Sum

Rathole 143 10 153
Non-rathole 12 335 347

Sum 155 345 500

5. Discussion

Classification methods for hyperspectral images have been proposed by many scholars
in their respective research fields, but most of them focus on the feature extraction of single
features, such as farmland, buildings, and forests, over large areas. Applying such models
to the survey and investigation of small features such as those in desert grasslands will
reduce the robustness of the models. This study proposes a new rathole identification
model based on a low-altitude UAV hyperspectral remote sensing platform to collect desert
steppe rathole spectral data, representing a successful exploration of the application of
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low-altitude remote sensing platforms to identify and classify desert steppes and establish
early warning mechanisms for grassland rodent damage. Moreover, this study introduces
basic research for the subsequent application of this method in large-scale spatial grassland
degradation research and grassland rodent damage prevention and control. In the next step,
we will apply deep learning technology to spectral data of desert steppe rodent holes and
conduct in-depth research on single image elements, soil types, and other factors scattered
in the spectral data of desert steppe rodent holes to achieve a more accurate identification
and classification. We still need to carry out a lot of experiments and model optimization to
conduct in-depth research on grassland degradation and grade evaluation.

6. Conclusions

Grassland ecosystems are an important component of Earth’s terrestrial ecosystem,
which are tasked with the significant mission of regulating global climate change and
precipitation. The need to dynamically monitor grassland degradation and rodent damage
is urgent. Currently, the existing vegetation index methods cannot meet the monitoring
requirements for desert steppe rodent information and are not effective in extracting rodent
hole characteristics in desert steppes. This study collected spectral data of rodent holes in
desert steppes using a low-altitude unmanned aerial vehicle hyperspectral remote sensing
platform. Based on PCA, the rodent burrow images were extracted, and the threshold
interval for the holes was calculated as [1.126505, 2.195495], while the threshold interval
for non-burrow areas was [−0.019260, 0.631748]. After validation, the overall classification
accuracy reached 97%, and the kappa coefficient reached 0.896. The successful application of
this method effectively overcomes the difficulty in identifying rodent holes in desert steppes
and improves the identification accuracy. In field surveys of grassland rodent infestation,
this method can save labor costs, solve accuracy problems in the identification of fine
features based on satellite remote sensing, and, at the same time, enrich the technical means
of geospatial data surveys based on low-altitude remote sensing platform application. This
method provides a technical means for future research on rodent holes in desert steppes and
can provide assistance in monitoring desert steppe degradation, preventing and controlling
grassland rodent pests, and preventing plague.
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