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Abstract: With the increasing utilization of intelligent mobile devices for online inspection of electrical
equipment in smart grids, the limited computing power and storage capacity of these devices pose
challenges for deploying large algorithm models, and it is also difficult to obtain a substantial number
of images of electrical equipment in public. In this paper, we propose a novel distillation method
that compresses the knowledge of teacher networks into a compact few-shot classification network,
employing a global and local knowledge distillation strategy. Central to our method is exploiting the
global and local relationships between the features exacted by the backbone of the teacher network
and the student network. We compared our method with recent state-of-the-art (SOTA) methods on
three public datasets, and we achieved superior performance. Additionally, we contribute a new
dataset, namely, EEI-100, which is specifically designed for electrical equipment image classification.
We validated our method on this dataset and demonstrated its exceptional prediction accuracy of
94.12% when utilizing only 5-shot images.

Keywords: few-shot classification; electrical equipment images; knowledge distillation

1. Introduction

As an essential component of the power system, daily inspection of electrical equip-
ment is imperative to ensure the secure and stable operation of the power system [1].
Image classification is a crucial prerequisite for monitoring the condition of electrical equip-
ment based on image information. In recent years, machine learning has made significant
progress in the field of image classification for electrical equipment. Bogdann presented a
machine learning method for determining the state of each switch by analyzing images
of the switches in power distribution substations [2]. Zhang implemented FINet based
on improved YOLOv5 to inspect the insulators and their defects in order to ensure the
safety and stability of the power system [3]. To address the few fault cases and deficient
monitoring information in transformer diagnostic tasks, Xu provides an improved few-shot
learning method based on approximation space and belief functions [4]. Yi proposed a label
distribution CNNs classifier to estimate the aging time of the conductor morphology of the
high-voltage transmission line [5]. It is noteworthy that the majority of these investigations
have concentrated on a restricted range of electrical apparatus. These models necessitate
a substantial quantity of training data to guarantee optimal performance. Nevertheless,
acquiring adequate electrical equipment images in a practical setting may prove challeng-
ing, and the proportion of labeled samples is minimal. To a certain extent, the classification
of electrical equipment images is not really a big data problem; rather, it belongs to the
few-shot learning (FSL) domains.

Few-shot classification (FSC) is the task of classifying samples with a limited number
of instances while showcasing rapid generalization capabilities. Recently, a large num-
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ber of few-shot image classification algorithms have been proposed. Depending on the
learning paradigm used, these methods can be broadly divided into two categories: (1)
meta-learning-based methods and (2) transfer-based learning methods. Meta-learning is a
promising approach that leverages episodic training to simulate the real test environment
by randomly selecting several subtasks. Optimization-based meta-learning methods em-
ploy a two-tier optimization process to learn the optimizer for quickly processing new tasks.
Model-Agnostic Meta-Learning (MAML) [6] obtains the optimal initialization parameters
of the model through meta-training, enabling the model to adapt to new tasks after a few
gradient updates. In addition, the learning rate and gradient direction are also important
factors for the optimizer [7,8]. However, these methods require the storage and computa-
tion of higher-order derivatives, resulting in high memory and computational costs. On
the other hand, metric-based methods use nonparametric classifiers as the basic learners,
avoiding the aforementioned issues. The key factors of these methods are feature extraction
and similarity measurement, which offer ample room for improvement. PARN [9] proposed
a feature extractor that learned an offset for each cell in the convolution kernel in order
to extract more efficient features, building deformable convolutional layers. CC+rot [10]
improved the transfer ability of feature extractors by adopting auxiliary self-supervised
tasks. Zhang et al. [11] used the pre-trained visual saliency detection model to segment the
foreground and background of the image and then extract the foreground and background
features, respectively. With the proven effectiveness of attention mechanisms in extract-
ing discriminating features, several few-shot classification (FSC) tasks have adopted this
method, including CAN [12], AWGIM [13], and CTM [14]. Additionally, in metric-based
meta-learning methods, the measurement of similarity is also crucial. SEN [15] combines
Euclidean distance and norm distance to improve the effectiveness of Euclidean distance
measurement in high-dimensional spaces. FPN [16] calculated the reconstruction error
between the support sample and the query sample as the similarity score. DN4 [17] and
Deep EMD [18] obtain rich similarity measures directly from local features.

Recent studies have indicated that the FSC of the transfer-learning method can attain
comparable performance to that of the meta-learning method with complex episodic
training. Such methods typically combine pre-trained feature extractors on all base-class
datasets with arbitrary traditional classifiers to make classification decisions for query
samples of unknown classes. It has been shown that pre-training the entire base class
dataset using the cross-entropy loss function followed by fine-tuning the pre-trained model
using support samples of the visible class can provide a powerful baseline for FSC tasks [19].
Since then, several efforts have been proposed to improve the representation performance
of feature extractors. For example, Neg-Cosin [20] proposed the use of the non-negative
interval Cosine loss function to optimize the model, thereby increasing the distance between
the training sample and its corresponding parametric prototype, which can effectively
improve the generalization performance of the model. S2M2 [21] used manifold mixing as
an effective regularization method to improve the generalization performance of the model.
Refs. [22,23] used rotation prediction and mirror prediction as self-supervised tasks to add
to the pre-training process, and experimental results showed that self-supervised tasks are
effective methods to improve feature representation performance.

In the pursuit of high-accuracy classification performance, many studies tend to
employ highly complex networks to enhance the representation of features. As a result,
deploying these methods in real-world applications often requires significant computing
resources (such as storage space and computing power) and leads to significant time
delays. However, power inspection heavily relies on intelligent mobile devices, including
inspection robots and UAVs. Considering the limited storage capacity of these devices, it is
essential to ensure that the classification model’s size is not excessively large. Therefore,
in this study, we utilize a knowledge distillation-based model compression algorithm to
achieve few-shot image classification, aiming to reduce the number of model parameters.

Knowledge distillation [24,25] is one of the most effective model compression methods
and has garnered significant research interest in both industry and academia due to its
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simple training strategy and effective performance. It leverages the knowledge acquired by
a teacher network to guide the training of a small-scale student network, enabling the latter
to achieve comparable performance despite having fewer parameters. In order to make
better use of the knowledge information contained in the teacher network, AT [26] proposed
to take the spatial attention of the hidden layer features of the teacher network as knowledge
and instruct the student network to imitate its attention feature map. RKD [27] proposed a
relational knowledge distillation method, which used distance and angle to measure the
relationship between sample features, as a valid type of knowledge during distillation.
Peng et al. [28] used the kernel function to obtain higher-order relationships between the
features of samples as effective distillation knowledge. Although the model compression
methods based on feature relation knowledge mentioned above can effectively improve the
performance of small-capacity student networks, the current work only focuses on the local
relationship between individual sample features, ignoring the global relationship between
the features of samples. Therefore, this paper proposes a method based on global and local
knowledge distillation and applies it to the task of FSC for electrical equipment images.

In this paper, we propose three main contributions:

1. We present a novel distillation approach that compresses the knowledge of teacher
networks into a compact student network, enabling efficient few-shot classification.
The incorporation of global and local relationship strategies during the distillation
process effectively directs the student network towards achieving performance levels
akin to those of the teacher network.

2. We contribute a new dataset that contains 100 classes of electrical equipment with
4000 images. The dataset contains a wide range of various pieces of electrical equip-
ment, including power generation equipment, distribution equipment, industrial
electrical equipment, and household electrical equipment.

3. We demonstrate the effectiveness of our proposed method by validating it on three
public datasets and comparing it with the SOTA methods on the electrical image
dataset we introduced. Our proposed method outperforms all other methods and
achieves the best performance.

2. Methodology
2.1. Problem Definition

In few-shot image classification tasks, given a certain size of image dataset I, it is
randomly divided into three subsets: Itrain, Ival, and Itest. Itrain is used as the base dataset for
pre-training the classification model. Assuming that the pre-training set has Cb categories,
the m-th image sample is denoted as xm, and its corresponding label is represented as ym.
Ival is used for validation, while Itest is used as the new class dataset for testing the trained
model. For Ival and Itest, multiple N-way-K-shot subtasks are randomly sampled, with each
task consisting of a support sample set (IS) and a query sample set (IQ). IS is constructed by
randomly selecting N categories from Ival or Itest, and then randomly selecting K samples
from each category. The set of the n-th category is denoted as In = {(Ik, yk)}K

k=1, and the
k-th image in the n-th category is denoted as Ik. IQ is composed of Q samples randomly

selected from each residual sample category, denoted as IQ =
{

Iq
}Q

q=1, where Iq represents
the q-th query sample. Therefore, the problem of few-shot image classification can be
described as using the model trained on the base class dataset and the support sample set
to make classification decisions for query samples.

2.2. FSC Network Based on Global and Local Knowledge Distillation

We propose a novel few-shot electrical image classification algorithm based on knowl-
edge distillation. Figure 1 shows the overall architecture of our network. We first trained a
high-performance teacher network through self-supervised learning, and we then guided
the training of the student network by the teacher network. To fully utilize the prior
knowledge of the teacher network, we designed a knowledge distillation method based
on global and local relationships. This method can transfer the global and local features
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of the images extracted by the teacher network to the student network, enabling the com-
pact student network to learn more effective features about the images and achieve better
image classification.
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Figure 1. Network architecture of our proposed method. The input pairs that produce activations in
the pre-trained teacher network produce similar activations in the student network. Global and local
distillation bridges the gap between the feature representation of the student and teacher.

2.2.1. Pre-Train of Teacher Network

The teacher model consists of a backbone convolutional neural network and two
linear classifiers. The backbone network fθ(•) is used for feature extraction of images, one
classifier Lw(•) is used for predicting the base class of image samples, and the other classifier
Lr(•) is used for predicting the rotation category in self-supervised tasks. Additionally,
each classifier is followed by a Softmax layer. M image samples are randomly selected
from the base class dataset, and each image is rotated at 0◦, 90◦, 180◦, and 270◦, with its
corresponding rotation label as ŷm = [0, 1, 2, 3].

When image xm is fed into the teacher network, the d-dimensional feature representa-
tion fθ(xm) is extracted by the backbone network. The classification scores of the base class
prediction classifier and the rotation prediction classifier for the features are expressed as
Sb and Sr, as shown in Equation (1):{

Sb = Lw( fθ(xm))
Sr = Lr( fθ(xm)).

(1)

Furthermore, the aforementioned classification scores are transformed into base class
and rotation class prediction probabilities through a Softmax layer, as shown in Equation (2):

p(ym = c|xm ) = eSbc
Cb
∑

c=1
eSbc

p(ŷm = r|xm ) = eSrr
4
∑

r=1
eSrr

,
(2)

where Sbc denotes the c-th element of the score vector Sb, Srr denotes the r-th element of
the score vector Sr, Cb denotes the number of base class labels, and p(ym = c|xm ) and
p(ŷm = r|xm ) are the probability output values of the base classifier and the rotation
classifier, respectively. The cross-entropy loss function and the self-supervised loss function
are calculated to obtain the training loss function, as shown in Equation (3):

L(θ, w, r) = −
M

∑
m=1

Cb

∑
c=1

ymc log p(ym = c|xm )−
M

∑
m=1

4

∑
r=1

ŷmr log p(ŷm = r|xm ), (3)
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where ymc denotes the c-th element of the one-hot encoded vector of ym, and ŷmr denotes the
c-th element of the one-hot encoded vector of ŷm. Based on the loss function in Equation (3),
the parameters of the teacher network are optimized to complete the pre-training process.

2.2.2. Global and Local Knowledge Distillation

Firstly, a student network is constructed, which consists of a backbone neural network
BΦ(•) composed of a small number of convolutional layers and a linear classifier CH(•).
Next, a batch of M images randomly selected from the base dataset Itrain is inputted into
both the teacher network and the student network. The m-th image is represented by
feature maps zt

m= f θ(Im) and zs
m = Bφ(Im) obtained from the backbone of the teacher

network and the student network, respectively. Finally, the features are fed into the linear
classifier to obtain the output value of the student network, as shown in Equation (4):

Sm = CH(zs
m). (4)

Furthermore, the above output classification scores are transformed into classification
prediction probabilities through the Softmax layer, as shown in Equation (5):

ps(ym = c|xm ) =
eSmc

Cb
∑

c=1
eSmc

, (5)

where Smc denotes the c-th element of the score vector Sm.
The equation for calculating the cross-entropy loss function between the output values

of a student network and the true labels is shown in Equation (6):

l1(φ, H) = −
M

∑
m=1

Cb

∑
c=1

ymc log ps(ym = c|xm ). (6)

In order to enable students to learn the representation of global features of images by
the teacher network through online learning, we adopt the maximum mean discrepancy
between the feature spaces of the two networks as the global loss function, which is
calculated by Equation (7):

l2(φ, H) =
1

M2

M

∑
m=1

M

∑
m′=1

zt
mzt

m′
T +

1
M2

M

∑
m=1

M

∑
m′=1

zs
mzs

m′
T − 1

M2

M

∑
m=1

M

∑
m′=1

zt
mzs

m′
T . (7)

In addition, we calculate the Euclidean distance between each sample feature in the
two networks as the local loss function, and its calculation formula is shown in Equation (8):

l3(φ, H) =
1
M

M

∑
m=1
‖zt

m − zs
m‖

2. (8)

In summary, the total loss function for the student network is shown in Equation (9).
Based on Equation (9), the student network is trained, and the parameters in the network
are updated until optimal, thereby completing the knowledge distillation process from the
teacher network to the student network.

L(φ, H) = l1(φ, H) + α1l2(φ, H) + α2l3(φ, H). (9)

2.2.3. Few-Shot Evaluation

After completing the knowledge distillation task in Section 2.2.2, the base classifiers
in the student network are first removed. Furthermore, the parameters of the backbone
neural network BΦ(•) are fixed, and features are extracted from both the support and query
samples. Finally, based on the N-way-K-shot method, the query samples are classified using
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Equation (10), where the features of the k-th support sample and the q-th query sample are
denoted as BΦ(Ik) and BΦ(Iq), respectively, and gϕ{•} is a classifier with parameters ϕ. Any
traditional classifier can be used to complete the classification prediction task.

ŷq = gϕ

{
Bφ(Iq)

∣∣∣∣∣NK

∑
k=1

Bφ(Ik)

}
. (10)

3. Experiments
3.1. EEI-100 Dataset

We invested a substantial amount of time in constructing a dataset for electrical
equipment image classification, EEI-100. It contains 100 classes of electrical equipment with
4000 images. The majority of the images were obtained through on-site collection, with a
small number of images sourced from online platforms. To the best of our knowledge, this
is one of the first datasets specifically designed for the classification of electrical equipment.
This dataset is an extension of our previous EEI-40 [29]. It includes substation equipment,
distribution station equipment, and common electrical equipment, ranging from large-
scale equipment such as heavy-duty transformers to small-scale equipment such as circuit
breakers. A few images from the proposed dataset are illustrated in Figure 2 (more images
are illustrated in Appendix A).
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Figure 2. Some images of EEI-100 dataset. They represent different electrical equipment. (a) wind power
tower; (b) heavy-duty transformer; (c) heavy-duty distribution cabinet; (d) energy storage battery pack;
(e) electrical insulator; (f) split-core current transformer; (g) three-phase moto; (h) heavy-duty circuit
breaker; (i) contactor; (j) cooling fan; (k) electric energy meter; (l) dragline board.

3.2. Experiments on Public Datasets
3.2.1. Experiment Setup

We evaluate our knowledge distillation method on three widely used public datasets,
namely MiniImageNet, CIFAR-FS, and CUB. The experiments were conducted on a work-
station equipped with an NVIDIA 3090Ti GPU and implemented using Pytorch software.
To ensure a fair comparison with current few-shot image classification methods, a com-
monly used 4-layer convolutional neural network (CNN) and ResNet12 were adopted as
the student network and teacher network, respectively. During the training phase, we
used the SGD optimizer to optimize our models in all experiments, where momentum
was set to 0.9 and weight decay was set to 5 × 10−4. We trained for 100 epochs with an
initial learning rate of 0.025, which was reduced by half after 60 epochs. In the testing
phase, we conducted 5-way-1-shot and 5-way-5-shot tests. Specifically, we randomly per-
formed 2000 classification subtasks on the testing dataset. In each subtask, 15 images were
randomly selected from each class as query images for testing. The evaluation criterion
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for the algorithm’s classification performance was the average accuracy of all subtasks,
and the standard deviation of the accuracy under a 95% confidence interval should also
be provided.

Please note that we also conducted a similar experiment on the 1080Ti GPU and
achieved comparable performance. This significantly alleviates the economic burden
associated with model training. Leveraging a 4-layer CNN architecture, the student model
occupies a mere 2 MB in size, which is approximately 50 times smaller than the teacher
model. This lightweight model can be deployed on diverse edge processors, substantially
lowering the hardware requirements for its implementation.

3.2.2. Parametric Analysis Experiment

It can be seen from Equation (9) that α1 and α2 are important hyperparameters in the
process of distilling the student network. Initially, we conducted experiments in which we
temporarily ignored the influence of global knowledge by setting α1 to 0. Through this
analysis, we observed that α2 near 1 yielded the best model’s performance. Building upon
this observation, we proceeded to fix α2 at 1, and the value of parameter α1 was varied
with a step size of 0.1 within the range of [0, 1]. The test accuracy of the student network
under different values of α1 is shown in Figure 3a,b. The results indicate that the model
performance is optimal when the value of α1 is 0.5. Therefore, the value of α1 was set to
0.5, and then α2 was varied with a step size of 0.01 within the range of [0, 0.1]. The test
accuracy of the student network under different values of α2 is shown in Figure 3c,d. The
results reveal that the optimal value for α2 is 0.1.
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Additionally, after completing the search for α1 and α2 within their respective ranges,
we extended our exploration beyond the boundaries of [0, 1] and [0, 0.1]. However, we
found that no values outside of these ranges yielded superior results.

3.2.3. Ablation Studies

The innovation of this work lies in proposing a knowledge distillation algorithm for
global and local relationships. In order to verify the effectiveness of the proposed method,
detailed ablation experiments were conducted on three public datasets. The knowledge
distillation algorithms using only global and local relationships are denoted as Global and
Local, respectively, and their fusion is denoted as Global-Local. The classification accuracies
of these methods on 5-way-1-shot and 5-way-5-shot tasks are shown in Table 1.

Table 1. Results (%) of ablation experiment.

Method Backbone
MiniImageNet CIFAR-FS CUB

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

Global Conv4 57.32 ± 0.84 72.90 ± 0.64 66.40 ± 0.93 80.44 ± 0.67 70.20 ± 0.93 83.88 ± 0.57
Local Conv4 57.65 ± 0.83 73.06 ± 0.64 66.63 ± 0.93 80.64 ± 0.67 70.12 ± 0.93 83.66 ± 0.57

Global-Local Conv4 57.86 ± 0.83 73.38 ± 0.62 67.04 ± 0.91 80.84 ± 0.68 70.44 ± 0.92 84.19 ± 0.56

The results in Table 1 indicate that for both 5-way 1-shot and 5-way 5-shot tasks on
all datasets, the classification accuracy of Global-Local is consistently higher than that of
Global and Local. The experiments demonstrate that global and local relationships are
complementary, and their fusion can extract richer image features. Therefore, the knowl-
edge distillation algorithm based on global and local relationships can further improve the
performance of knowledge distillation.

3.2.4. Comparison Experiment Compared with Existing Methods

This paper compares our method with the SOTA methods in recent years, which are
mainly divided into two categories: meta-learning-based methods and transfer learning-
based methods. The comparison results with these methods are shown in Table 2.

Table 2. Comparison results (%) of the experiment on three public datasets.

Method Backbone
MiniImageNet CIFAR-FS CUB

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

Meta-learning

Relational Conv4 50.44 ± 0.82 65.32 ± 0.70 55.00 ± 1.00 69.30 ± 0.80 62.45± 0.98 76.11± 0.69
MetaOpt

SVM Conv4 52.87 ± 0.57 68.76 ± 0.48 - - - -

PN+rot Conv4 53.63 ± 0.43 71.70 ± 0.36 - - - -
CovaMNet Conv4 51.19 ± 0.76 67.65± 0.63 - - 52.42 ± 0.76 63.76 ± 0.64

DN4 Conv4 51.24 ± 0.74 71.02 ± 0.64 - - 46.84 ± 0.81 74.92 ± 0.64
MeTAL Conv4 52.63 ± 0.37 70.52 ± 0.29 - -
HGNN Conv4 55.63 ± 0.20 72.48 ± 0.16 - - 69.02 ± 0.22 83.20 ± 0.15
DSFN Conv4 50.21 ± 0.64 72.20 ± 0.51 - - - -
PSST Conv4 - - 64.37 ± 0.33 80.42± 0.32 - -

Transfer-learning

Baseline++ Conv4 48.24 ± 0.75 66.43 ± 0.63 - - 60.53 ± 0.83 79.34 ± 0.61
Neg-Cosine Conv4 52.84 ± 0.76 70.41 ± 0.66 - - - -

SKD Conv4 48.14 66.36 - - - -
CGCS Conv4 55.53 ± 0.20 72.12 ± 0.16 - - - -

Our method Conv4 57.86 ± 0.83 73.38 ± 0.62 67.04 ± 0.91 80.84 ± 0.68 70.44 ± 0.92 84.19 ± 0.56

- indicates that the method described in the literature was not evaluated on certain datasets.
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According to the results in Table 2, the following observations can be made:

1. On the MiniImageNet dataset, our proposed method achieves the best classification
performance. Compared with the best-performing method in the meta-learning-based
category, HGNN, our method outperforms it by 2.23% and 0.9% on 1-shot and 5-shot
classification tasks, respectively. In the transfer learning-based category, compared
with the best performing method, CGCS, our method outperforms it by 2.33% and
1.26% on 1-shot and 5-shot classification tasks, respectively.

2. On the CIFAR-FS dataset, our proposed method also achieves top performance. Our
method outperforms the best-performing method, PSST, by 2.67% and 0.42% on 1-shot
and 5-shot classification tasks, respectively.

3. On the CUB-200-2011 dataset, our proposed method achieves the highest classification
performance. Our method outperforms the best-performing method, HGNN, by 1.42%
and 0.99% on 1-shot and 5-shot classification tasks, respectively.

3.3. Experiments on EEI-100 Dataset

Furthermore, we compare the performance of our proposed method with the SOTA
methods on the EEI-100 dataset. The experimental process employs the same parameter
selection strategy as before.

3.3.1. Parametric Analysis Experiment

By following the approach outlined in Section 3.2.2, the values of parameters α1 and
α2 are determined to optimize the performance of the model on EEI-100. Experimental
results show that α1 has the optimal value of 0.6 within the range of [0.1, 1], as illustrated
in Figure 4a. Similarly, α2 has the optimal value of 0.1 within the range of [0.01, 0.1], as
illustrated in Figure 4b.
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3.3.2. Comparison Experiment with Existing Methods

To demonstrate the superiority of our proposed method in the classification of electrical
equipment images, this section presents a comparative experiment with three existing
methods, namely, CGCS, Neg-Cosine, and HGNN, on the EEI-100 dataset. These three
methods have recently achieved good performance on public datasets. The classification
accuracy of the test set is presented in Table 3. Specifically, our method achieves the highest
classification accuracy (up to 94.12%) compared with the other methods.
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Table 3. Comparison result (%) of the experiment on EEI-100 dataset.

Method 1-Shot 5-Shot

CGCS 72.85 ± 0.68 89.68 ± 0.27
Neg-Cosine 74.57 ± 0.63 90.54 ± 0.25

HGNN 75.61 ± 0.62 93.54 ± 0.24
Our method 75.80 ± 0.67 94.12 ± 0.20

4. Conclusions and Future Work

In conclusion, this paper proposes a novel few-shot electrical image classification
algorithm based on knowledge distillation. By leveraging the few-shot learning method
and employing global and local knowledge distillation, our algorithm achieves high classi-
fication accuracy with only a limited number of image samples. The results obtained on the
newly introduced EEI-100 dataset demonstrate that our method achieves a remarkable pre-
diction accuracy of 94.12% using just 5-shot images. The lightweight and high-performance
nature of our model enables its practical application in the online inspection of electrical
equipment in smart grids, effectively enhancing the efficiency of detection and mainte-
nance in the power system. Furthermore, the training and deployment of our model
do not impose significant hardware requirements, making it accessible to a wide range
of researchers.

Regarding future work, we plan to explore a pre-training method to separate the
foreground and background, as different backgrounds may negatively affect distillation.
Additionally, we plan to use a multi-stage fusion of global and local features during the
distillation process. This can provide a better understanding of the underlying structure of
the complex model and the relationship between different stages of the model.
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Abbreviations

SOTA State-of-the-art
UAV Unmanned aerial vehicle
CNN convolutional neural network
FSL Few-shot learning
FSC Few-shot classification

Appendix A

In this appendix, more images of the EEI-100 dataset proposed by us are presented.
However, we regret to inform that due to the fact that some image data were collected in
specific scenarios, the device information in the pictures cannot be disclosed. Therefore, we
are unable to fully release the entire dataset here.



Appl. Sci. 2023, 13, 7016 11 of 13

Appl. Sci. 2023, 13, 7016 12 of 14 
 

Appendix A 
In this appendix, more images of the EEI-100 dataset proposed by us are presented. 

However, we regret to inform that due to the fact that some image data were collected in 
specific scenarios, the device information in the pictures cannot be disclosed. Therefore, 
we are unable to fully release the entire dataset here. 

      
1 2 3 4 5 6 

      
7 8 9 10 11 12 

      
13 14 15 16 17 18 

  
  

19 20 21 22 23 24 

      
25 26 27 28 29 30 

    
 

31 32 33 34 35 36 

      
37 38 39 40 41 42 

  
    

43 44 45 46 47 48 

Figure A1. Few images of EEI-100 dataset. 

  

Figure A1. Few images of EEI-100 dataset.

References
1. Peng, J.; Sun, L.; Wang, K.; Song, L. ED-YOLO power inspection UAV obstacle avoidance target detection algorithm based on

model compression. Chin. J. Sci. Instrum. 2021, 10, 161–170.
2. Bogdan, T.N.; Bruno, M.; Rafael, W.; Victor, B.G.; Vanderlei, Z.; Lourival, L. A Computer Vision System for Monitoring Disconnect

Switches in Distribution Substations. IEEE Trans. Power Deliv. 2022, 37, 833–841.



Appl. Sci. 2023, 13, 7016 12 of 13

3. Zhang, Z.D.; Zhang, B.; Lan, Z.C.; Lu, H.C.; Li, D.Y.; Pei, L.; Yu, W.X. FINet: An Insulator Dataset and Detection Benchmark
Based on Synthetic Fog and Improved YOLOv5. IEEE Trans. Instrum. Meas. 2022, 71, 6006508. [CrossRef]

4. Xu, Y.; Li, Y.; Wang, Y.; Zhong, D.; Zhang, G. Improved few-shot learning method for transformer fault diagnosis based on
approximation space and belief functions. Expert Syst. Appl. 2021, 167, 114105. [CrossRef]

5. Yi, Y.; Chen, Z.; Wang, L. Intelligent Aging Diagnosis of Conductor in Smart Grid Using Label-Distribution Deep Convolutional
Neural Networks. IEEE Trans. Instrum. Meas. 2022, 71, 3501308. [CrossRef]

6. Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Network. In Proceedings of the 34th
International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017.

7. Li, Z.; Zhou, F.; Chen, F.; Li, H. Meta-SGD: Learning to Learn Quickly for Few-Shot Learning. arXiv 2017, arXiv:1707.09835.
8. Ravi, S.; Larochelle, H. Optimization as a model for few-shot learning. In Proceedings of the 5th International Conference on

Learning Representations (ICLR), Toulon, France, 24–26 April 2017.
9. Wu, Z.; Li, Y.; Guo, L.; Jia, K. PARN: Position-Aware Relation Networks for few-shot learning. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.
10. Gidaris, S.; Bursuc, A.; Komodakis, N.; Perez, P.; Cord, M.; Ecole, L. Boosting few-shot visual learning with self-supervision. In

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2
November 2019.

11. Zhang, H.; Zhang, J.; Koniusz, P. Few-shot learning via saliency-guided hallucination of samples. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

12. Hou, R.; Chang, H.; Ma, B.; Shan, S.; Chen, X. Cross attention network for few-shot classification. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 8–14 December 2019.

13. Guo, Y.; Cheung, N. Attentive weights generation for few shot learning via information maximization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

14. Li, H.; Eigen, D.; Dodge, S.; Zeiler, M.; Wang, X. Finding task-relevant features for few-shot learning by category traversal. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20
June 2019.

15. Nguyen, V.N.; Løkse, S.; Wickstrøm, K.; Kampffmeyer, M.; Roverso, D.; Jenssen, R. SEN: A novel feature normalization
dissimilarity measure for prototypical few-Shot learning networks. In Proceedings of the 16th European Conference on Computer
Vision (ECCV), Glasgow, Scotland, 23–28 August 2020.

16. Wertheime, D.; Tang, L.; Hariharan, B. Few-shot classification with feature map reconstruction networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual Conference, 19–25 June 2021.

17. Li, W.; Wang, L.; Xu, J.; Huo, J.; Gao, Y.; Luo, J. Revisiting local descriptor based image-to-class measure for few-shot learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20
June 2019.

18. Zhang, C.; Cai, Y.; Lin, G.; Shen, C. DeepEMD: Few-shot image classification with differentiable Earth Mover’s distance and
structured classifiers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,
WA, USA, 13–19 June 2020.

19. Chen, Y.; Liu, Y.; Kira, Z.; Wang, Y.F.; Huang, J. A closer look at few-shot classification. In Proceedings of the 7th International
Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

20. Liu, B.; Cao, Y.; Lin, Y.; Zhang, Z.; Long, M.; Hu, H. Negative margin matters: Understanding margin in few-shot classification. In
Proceedings of the 16th European conference on computer vision (ECCV), Glasgow, Scotland, 23–23 August 2020.

21. Mangla, P.; Singh, M.; Sinha, A.; Kumari, N.; Balasubramanian, V.; Krishnamurthy, B. Charting the right manifold: Manifold
mixup for few-shot learning. In Proceedings of the the IEEE Winter Conference on Applications of Computer Vision (WACV),
Waikoloa, HI, USA, 3–7 January 2020.

22. Su, J.; Maji, S.; Hariharan, B. When does self-supervision improve few-shot learning. In Proceedings of the 16th European
conference on computer vision (ECCV), Glasgow, Scotland, 23–23 August 2020.

23. Shao, S.; Xing, L.; Wang, Y.; Xu, R.; Zhao, C.; Wang, Y.J.; Liu, B. MHFC: Multi-head feature collaboration for few-shot learning. In
Proceedings of the 29th ACM International Conference on Multimedia (MM), Virtual Conference, 20–24 October 2021.

24. Geoffrey, H.; Oriol, V.; Jeff, D. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
25. Adriana, R.; Nicolas, B.; Samira, E.K.; Antoine, C.; Carlo, G.; Yoshua, B. FitNets: Hints for Thin Deep Nets. arXiv 2014,

arXiv:1412.6550.
26. Zagoruyko, S.; Komodakis, N. Paying more attention to attention: Improving the performance of convolutional neural networks

via attention transfer. In Proceedings of the 5th International Conference on Learning Representations (ICLR), Toulon, France,
24–26 April 2017.

27. Park, W.; Kim, D.; Lu, Y.; Cho, M. Relational knowledge distillation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

https://doi.org/10.1109/TIM.2022.3194909
https://doi.org/10.1016/j.eswa.2020.114105
https://doi.org/10.1109/TIM.2022.3141160


Appl. Sci. 2023, 13, 7016 13 of 13

28. Peng, B.; Jin, X.; Liu, J.; Zhou, S.; Wu, Y.; Liu, Y.; Li, D.; Zhang, Z. Correlation congruence for knowledge distillation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2
November 2019.

29. Zhou, B.; Zhang, X.; Zhao, J.; Zhao, F.; Yan, C.; Xu, Y.; Gu, J. Few-shot electric equipment classification via mutual learning of
transfer-learning model. In Proceedings of the IEEE 5th International Electrical and Energy Conference (CIEEC), Nanjing, China,
27–29 May 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Methodology 
	Problem Definition 
	FSC Network Based on Global and Local Knowledge Distillation 
	Pre-Train of Teacher Network 
	Global and Local Knowledge Distillation 
	Few-Shot Evaluation 


	Experiments 
	EEI-100 Dataset 
	Experiments on Public Datasets 
	Experiment Setup 
	Parametric Analysis Experiment 
	Ablation Studies 
	Comparison Experiment Compared with Existing Methods 

	Experiments on EEI-100 Dataset 
	Parametric Analysis Experiment 
	Comparison Experiment with Existing Methods 


	Conclusions and Future Work 
	Appendix A
	References

