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Abstract: Shrimp farming has traditionally served as a crucial source of seafood and revenue for
coastal countries. However, with the rapid development of society, conventional small-scale manual
shrimp farming can no longer meet the increasing demand for rapid growth. As a result, it is impera-
tive to continuously develop automation technology for efficient large-scale shrimp farming. Smart
shrimp farming represents an innovative application of advanced technologies and management
practices in shrimp aquaculture to expand the scale of production. Nonetheless, the use of these
new technologies is not without difficulties, including the scarcity of public datasets and the high
cost of labeling. In this paper, we focus on the application of advanced computer vision techniques
to shrimp farming. To achieve this objective, we first establish a high-quality shrimp dataset for
training various deep learning models. Subsequently, we propose a method that combines unsuper-
vised learning with downstream instance segmentation tasks to mitigate reliance on large training
datasets. Our experiments demonstrate that the method involving contrastive learning outperforms
the direct fine-tuning of an instance segmentation model for shrimp in instance segmentation tasks.
Furthermore, the concepts presented in this paper can extend to other fields that utilize computer
vision technologies.

Keywords: shrimp farming; unsupervised learning; instance segmentation; computer vision;
AI applications

1. Introduction

Shrimp farming is an aquaculture practice that involves cultivating shrimp in con-
trolled aquatic environments, such as ponds, raceways, and tanks. In recent years, shrimp
farming has become a significant source of seafood and income for many coastal coun-
tries worldwide. With the rapid development of technology and the rise of labor costs,
traditional small-scale manual shrimp farming practices can no longer meet the increas-
ing demand. The latest developments in shrimp farming are focused on sustainability,
productivity, and efficiency. Smart shrimp farming is an innovative application of ad-
vanced technologies and innovative management practices in shrimp aquaculture aimed
at enhancing these three aspects [1]. It uses the latest artificial intelligence techniques to
assist farmers in managing the entire shrimp aquaculture process [2–5]. These advanced
techniques allow for the real-time monitoring of shrimp growth and water quality, feeding
schedule management, and disease outbreak detection. Computer vision techniques can
automate various aspects of shrimp farming using cameras and image processing or deep
learning methods [6]. For instance, instance segmentation methods can accurately count
the number of shrimp and estimate size information [3,4], which helps optimize feeding
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schedules and improve harvest yields. Shrimp tracking can be used to monitor shrimp
health by detecting their movement and behavior, enabling early intervention to prevent
disease outbreaks.

However, the performance of these techniques heavily relies on the quality of the data
used to train the deep learning models. At present, there is no high-quality public shrimp
dataset available in the research community, to the best of our knowledge. This is one of
the major challenges in applying computer vision technology to enhance shrimp farming.
Moreover, even if a large number of shrimp images are collected, image annotation is
another time-consuming and labor-intensive task. The existing public datasets in computer
vision communities do not include shrimp categories, making it necessary to train deep
learning models for shrimp from scratch.

This paper proposes an innovative approach to bridge the gap between computer
vision technology and shrimp farming by using unsupervised learning to train deep
learning models for shrimp. Specifically, this paper suggests using a contrastive learning
(CL) mechanism [7] to train the feature extractor and obtain visual representations of
shrimp. These visual representations can benefit downstream computer vision tasks such
as shrimp object detection, tracking, and instance segmentation. This paper fine-tunes five
state-of-the-art contrastive learning models, namely MoCov1 [8], MoCov2 [9], MoCov3 [10],
SimCLR [11], and Byol [12], using a shrimp dataset collected by our team. All five of
these models take ResNet-50 [13] as an encoder architecture in their original papers and
differ in the methods of data augmentation and training methods. This paper focuses on
fine-tuning the ResNet-50 for shrimp without label information and then transferring the
visual representations to the instance segmentation task. Therefore, we use the optimal
setting to train our models, according to the original papers, and do not delve into the ideas
behind the five contrastive learning models. For the instance segmentation task, we replace
the original ResNet-50 in the Mask R-CNN [14] architecture with the pre-trained one,
trained using the contrastive learning mechanism, and fine-tune the rest of the modules by
supervised learning. Since the pre-trained ResNet-50 model has a good ability to extract
feature representations of shrimp, the customized Mask R-CNN needs fewer samples
with label information to fine-tune, but has a better performance compared to common
fine-tuning methods.

We collected approximately 10k shrimp images to train the five contrastive learning
models used in this study. A sample of these images is presented in Figure 1. There are five
video sequences recording the movements of the shrimp. We recorded five video sequences
of shrimp movements, each of which varied in illumination, individual shrimp, shrimp
density, and moving speed, providing a diverse set of data for training deep learning
models. In particular, as shown in Figure 1, the first sequence has brighter lighting than the
others. The second sequence has a few more shrimp than the first sequence and has a larger
shrimp size than the third and fourth sequences. The fifth sequence has the fastest moving
speed, while the fourth sequence has the largest shrimp density of all sequences. Therefore,
each sequence has its own features, providing much diversity to adapt to real-world
application scenarios. To fine-tune the instance segmentation task, we labeled 1000 shrimp
images in COCO dataset [15] formats. We split the labeled dataset into training, validation,
and test datasets to assess the performance of the pre-trained contrastive learning models.

The experiments were conducted using the two datasets mentioned above. Firstly,
approximately 10 k shrimp images were used to train each encoder (ResNet-50 [13]) with
varying crop sizes. These encoders were then transferred to Mask R-CNN [14], and the
modules, except the backbone, were retrained with the 1k labeled shrimp dataset. Addition-
ally, the common fine-tuning methods were used to retrain Mask R-CNN using the same
1 k labeled shrimp dataset. To compare the performance of the encoders of contrastive
learning models, we fine-tuned Mask R-CNN and our customized version using 20%, 40%,
60%, 80%, and 100% of the training dataset. The experimental results show that using the
pre-training models from contrastive learning outperforms fine-tuning the original Mask R-
CNN models directly. More importantly, the pre-training models from contrastive learning
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exhibit superior performance compared to the original backbone of Mask R-CNN, even
when trained with small-scale datasets. The experimental results prove the effectiveness of
unsupervised learning on the specific computer vision task, which can significantly reduce
the labeling work in real applications while providing superior performance.

The contributions of this paper are summarized as follows:

• This paper contributes a high-quality, publicly available dataset of shrimp images,
addressing the lack of such resources for computer vision applications in smart shrimp
farming. In addition, this paper presents a labeled-instance segmentation shrimp
dataset to support the development of deep learning methods in this domain. These
contributions are expected to facilitate the advancement of computer vision technolo-
gies and their integration with smart shrimp farming practices.

• This paper provides a novel approach for combining unsupervised learning methods
with shrimp instance segmentation. By utilizing unsupervised learning for completing
instance segmentation tasks, the reliance on labeled data is significantly reduced,
leading to reduced labeled costs for smart shrimp farming applications. Moreover,
the methods presented in this paper have the potential to be extended and applied to
other domains and applications beyond shrimp farming.

• This paper sets a new benchmark for shrimp instance segmentation in both super-
vised and unsupervised learning approaches. Additionally, we will make the shrimp
datasets and pre-trained models for contrastive learning and Mask R-CNN publicly
available for researchers and practitioners to use and further advance the field. Code
is released at https://github.com/heng94/ShrimpInstanceSegmentation.git (accessed
on 6 June 2023).

Figure 1. Some examples of the shrimp images. There are five video sequences with different illumi-
nation, individual shrimp, shrimp density, and moving speed. This kind of setting provides much
diversity to adapt to real-world application scenarios. The first five images come from the unlabeled
dataset, from sequences one to five, respectively, and the last image is from the labeled dataset.

The remainder of this paper is structured as follows.
In Section 1, we provide background information on smart shrimp farming and discuss

the benefits of combining unsupervised learning with this application. Section 2 gives an
overview of the relevant literature on the use of computer vision techniques in shrimp
farming and the progress made in contrastive learning. Next, in Section 3, we describe in
detail the process of data collection and labeling, as well as the strategies used for training
contrastive learning encoders and fine-tuning Mask R-CNN models. Section 4 contains the
experimental results and analyses. Finally, Section 5 concludes the whole paper.

2. Related Works
2.1. Applications of Computer Vision in Shrimp Farming

Shrimp counting is a widely applied computer vision technology in the field of shrimp
farming. The authors in [6] proposed an automatic shrimp counting method using the

https://github.com/heng94/ShrimpInstanceSegmentation.git
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YOLO algorithm [16]. Their experiments were conducted on shrimp larvae with a low
shrimp density and achieved a mean average precision (mAP) value of 96.83% and an
average accuracy value of 76.48%. Similarly, in [17], the authors proposed the use of
Mask R-CNN [14] for shrimp larvae counting. In contrast, ref. [6] proposed the use of
the YOLOv4 [18] network with MobileNetv3 [19] for counting shrimp during the entire
growth process. Despite the small and transparent body of the shrimp, their method
achieved a precision of 92.12%, recall of 94.21%, F1 value of 93.15%, and mean average
precision of 93.16%. Additionally, in [5], the authors proposed a hybrid recognition method
that combined image enhancement strategies with the YOLOv4 deep learning method
for detecting peeled shrimp in peeling processing. Through various image augmentation
strategies, they concluded that YOLOv4 had the best detection performance. Several
researchers have focused on shrimp recognition, and various deep learning models have
been proposed for this purpose. Hu et al. [20] proposed ShrimpNet, a convolutional neural
network (CNN) model that includes two CNN layers and two fully connected layers for
shrimp recognition. However, the authors did not release their dataset containing six
different categories of shrimp for further research. To address the problem of relying on
handcrafted features, Liu et al. [21] proposed an improved version of ShrimpNet, which
achieved an accuracy of 96.84%. Moreover, Liu et al. [22] proposed Deep-ShrimpNet,
a model that classifies shrimp and performs quality evaluation. Thai et al. [4] proposed
a deep learning network based on U-Net [23] to perform shrimp counting and evaluate
shrimp density and size.

The aforementioned applications have the potential to significantly improve the ef-
ficiency of shrimp farming. However, they all rely on training deep learning networks
with their own proprietary datasets. Furthermore, image labeling is a time-consuming and
costly task for each application. Consequently, there is a lack of a standard and publicly
available shrimp dataset for training these networks. This paper aims to address this gap
by providing a comprehensive and public shrimp dataset that can be used for fundamental
computer vision tasks such as recognition, object detection, and instance segmentation.
Additionally, this paper proposes the integration of unsupervised learning methods to
mitigate the reliance on labeled data during the training process.

2.2. Feature Representation Based on Contrastive Learning

Recently, computer vision communities have paid much more attention to unsuper-
vised learning. Ref. [8] proposed a new unsupervised learning approach called momentum
contrast (MoCo) for learning visual representations from unlabeled images. MoCo uses a
momentum-based update rule to improve the efficiency and effectiveness of contrastive
learning and achieved state-of-the-art performance on several downstream tasks, such as
image recognition, object detection, and instance segmentation. Ref. [9] built upon the
MoCo framework and proposed several improvements to the baseline MoCo method,
including the use of larger batch sizes and stronger data augmentation. The authors show
that these improvements lead to significant performance gains on several benchmark
datasets. Ref. [11] proposed a simple framework called SimCLR for contrastive learning
that combines several existing techniques, including data augmentation, negative sampling,
and temperature scaling. Ref. [10] investigated the effectiveness of self-supervised learn-
ing for vision transformers, which are deep neural networks used for image recognition
tasks. The authors compared several different self-supervised learning approaches and
found that certain variants of contrastive learning perform well. Ref. [12] proposed a new
self-supervised learning approach called Byol, which uses a two-network architecture to
learn representations from unlabeled data. Ref. [24] proposed a new mutual contrastive
learning approach that leverages both positive and negative examples during training.
Ref. [25] proposed a new contrastive learning approach based on hyperbolic geometry,
which is better suited for representing hierarchical data structures. The authors show that
their method achieves state-of-the-art performance on several benchmark datasets that
require the capture of hierarchical relationships, such as fine-grained classification and
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action recognition. Ref. [26] proposed a decentralized approach to unsupervised learn-
ing called DeepCluster-v2, which distributes the learning across multiple devices. This
method achieved state-of-the-art performance on several benchmark datasets while also
reducing the computational cost of training. Ref. [27] investigated the conditions under
which contrastive learning is effective for visual representation learning. The authors found
that contrastive learning works well in low-data regimes and when the dataset is diverse,
but that it did not always outperform supervised learning methods.

Based on the progress of contrastive learning, Yu et al. [28] proposed a multi-view
trajectory contrastive learning strategy to fully exploit the information contained in a whole
trajectory and devise trajectory-level contrastive loss to explore the inter-frame information
across whole trajectories. In a long-tailed image classification task, Wang et al. [29] investi-
gated and adapted efficient supervised contrastive learning strategies, aiming to optimize
image representations and address the challenge of class imbalance, to enhance classifi-
cation accuracy for imbalanced data. Hou et al. [30] proposed a hyperspectral imagery
classification algorithm based on contrast learning to solve the problem of limited label
information in hyperspectral images. Taking inspiration from the successful applications of
contrastive learning in various domains, this paper proposes to apply contrastive learning
to the field of smart shrimp farming.

3. Methods

The architecture of this paper is illustrated in Figure 2, which comprises three main
components: data collection, the training of contrastive learning models, and the fine-
tuning of the downstream task. Firstly, we use the shrimp dataset which has no supervised
information to retrain five contrastive learning models, obtaining the pre-trained models
of shrimp. These pre-trained models serve as the backbones, and the rest of the modules
of the Mask R-CNN model [14] are fine-tuned using these pre-trained models. Finally,
the customized Mask R-CNN model produces bounding boxes and masks of shrimp. The
following subsections provide detailed information on the three components.

Contrastive Learning Models

MoCov1

Simclr

MoCov3

MoCov2

Byol

Pre-trained
Models

Dataset Downstream Task

Shrimp 
Data

Feature
Representation

ROI Align
& CNNs

Bboxes

Masks

Figure 2. The primary architecture proposed in this paper involves two main steps in training a
network for the instance segmentation task. In the first step, a backbone for the Mask R-CNN is
trained. We employ five contrastive learning strategies to train the backbones without labels and use
them as pre-trained models. In the second step, the pre-trained models are fine-tuned with the Mask
R-CNN. During fine-tuning, the parameters of the backbone are frozen, and only the parameters of
the other part of the Mask R-CNN are updated.

3.1. Data Collection and Labeling

To collect shrimp images for this study, our team collaborated with a shrimp farm
on Sinan Island, Republic of Korea. Due to the dirty water in the shrimp pool, it was
not possible to take pictures of the shrimp directly. Instead, we removed the shrimp
from the pool and placed them in a pot with clean water. We used the ZED 2 camera
from STEREOLABS, a stereo camera that can produce video sequences with two different
viewpoints. To ensure diversity in the dataset, we varied the settings when taking pictures,
including illumination, shrimp density, shrimp size, and shrimp movement speed. After
obtaining the video files, we used a script provided by the company to extract shrimp
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images. To build the training dataset for contrastive learning models, we adopted a strategy
of keeping one image for every twenty images to remove similar images. Each image
was then scaled to a width of 640 and a height of 480 to reduce the computational load
of the deep learning models. The dataset contained approximately 10,000 images and
was organized in the format of the ImageNet [31] dataset for ease of training. Since there
was only one class (shrimp) in the dataset and the aim of training the contrastive learning
models was to extract feature representations of shrimp, there was no validation or test
dataset for these models. Hence, it is less meaningful to compare the performance of each
contrastive learning model using a validation or test dataset. The performance comparison
of the five models is reflected in downstream tasks.

For data labeling, we utilized the open-source annotation tool CVAT to facilitate the
annotation of shrimp masks. The dataset contained a total of 1k images, which were ex-
tracted from other video sequences. This dataset was then divided into training, validation,
and test sets with a ratio of 8:1:1. Since these two sets of data are completely separated, our
experimental results are more compelling and impartial.

3.2. Contrastive Learning on Shrimp Feature Representations

Benefiting from the progress of contrastive learning [8–12,24–27], it is possible to train
custom backbones for downstream tasks without relying on supervised information. In
this paper, we train five state-of-the-art contrastive learning models—MoCov1, MoCov2,
MoCov3, SimCLR, and Boyl—as backbones for shrimp instance segmentation. Since the
main focus of this paper is on training pre-trained models for shrimp, this subsection only
provides a brief introduction to these five models. For more information, readers can refer
to the original papers.

MoCo series contrastive learning models are proposed in [8–10]. The main idea of
MoCov1 [8] is to build a dynamic dictionary with a queue and a moving-averaged encoder
and utilize contrastive loss to update the network. There are two encoders in MoCo
architecture, where one encoder named q is used to extract features of the current query
image, while another encoder named k is employed to obtain the features of the images
in the dictionary constructed by the rest of the images in one mini-batch. For one image
I in a mini-batch, this image is randomly transformed by two different kinds of image
augmentations, generating two images: Iq and Ik+ . Iq is the query image. Ik+ is the positive
sample of Iq while the rest of the images in this mini-batch are the negative samples of Iq.
Therefore, there are many negative pairs but only one positive pair in this mini-batch. Iq
and Ik+ together with other images are sent to the encoders q and k to obtain feature maps,
respectively. The parameter update of encoder q is achieved by gradient back-propagation,
while the parameter update way of encoder k is momentum update, which is expressed in
the following:

θk ←− mθk + (1−m)θq. (1)

where θk and θq are the parameters of encoder k and encoder q, respectively. m ∈ [0, 1) is a
momentum coefficient. In back-propagation, the loss function is the contrastive loss, called
NCELoss, which is

Lq = −log
exp(Fq · Fk+/τ)

∑K
i=0 exp(Fq · Fki

/τ)
. (2)

where Fq is the output of encoder q, while Fk+ and Fki
are the output of encoder k. τ is a

temperature hyper-parameter. The value of this loss function becomes small when Iq is
similar to its positive sample Ik+ and dissimilar to all other negative samples. MoCov2 [9]
uses the same architecture as MoCov1 but differs in the methods of image augmentation.
MoCov3 [10] primarily utilizes a vision transformer network (ViT) [32] as the encoder
for contrastive learning while exploring the performances of different settings in the ViT
network. However, since we aim to transfer the visual representations generated by
contrastive learning models to shrimp instance segmentation, we replace ViT in MoCov3
with ResNet-50 while keeping the other settings consistent with MoCov3.
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SimCLR [11] simplifies the contrastive learning architectures by removing the require-
ment for specialized networks or a memory bank. The differences between SimCLR and
MoCo lie in the fact that SimCLR adds a learnable nonlinear transformation between the
representation and the contrastive loss to improve the quality of the learned representa-
tions. Additionally, SimCLR shows that the composition of multiple data augmentation
operations is crucial for contrastive learning, and it thus employs many other kinds of data
augmentation. Byol [12] combines the benefits of both MoCo and SimCLR models and
achieves a new state-of-the-art performance on many public datasets. Unlike MoCo, Byol
trains an online network to predict the target network representation of the same image by
using different augmentation methods. Furthermore, it updates the target network with a
slow-moving average of the online network.

3.3. Shrimp Instance Segmentation Based on Contrastive Learning

In this subsection, we describe the method of combining the aforementioned con-
trastive learning models with the Mask R-CNN model [14] for shrimp instance segmenta-
tion. From a compositional perspective, the Mask R-CNN model consists of four modules:
backbone, neck, RPN-head and RoI-head. Among these modules, the backbone plays
a crucial role in determining the quality of feature representations. The conventional
fine-tuning approach for a custom dataset involves training all four modules of the Mask
R-CNN model based on a pre-trained model from public datasets. However, this approach
often fails to achieve satisfactory performance, as the backbone may not be able to extract
discriminative feature representations with the limited dataset.

Therefore, this paper proposes to train only the backbone, using unsupervised learning
to minimize the labeling cost. Specifically, we train five different kinds of backbones using
the five contrastive learning models described earlier, where the backbone network is the
ResNet-50 [13]. Once we finish training the backbone, we fix its parameters and fine-tune
the other three modules of the Mask R-CNN model. This fine-tuning approach offers
several advantages. It can achieve better performance than the conventional fine-tuning
method, and it is feasible even when the dataset size is limited.

4. Experimental Results
4.1. Implementation Details

Our implementation is based on the open-source toolbox MMSelfSup [33]. We con-
ducted all experiments on the five state-of-the-art contrastive learning models using this
toolbox. We followed the default settings in each configuration file except for the input size
of the image. The default input size in the toolbox is 224, while we tested two different
sizes, 244 and 480, because our shrimp image size was 640× 480. Data augmentation and
batch size are the two most important settings in training contrastive learning models. A
larger batch size theoretically produces better experimental results. However, due to com-
putational resource limitations, we set the batch size as 32 for all five contrastive learning
models. Table 1 lists the data augmentations used for each model. We chose the ResNet-
50 network as the encoder in all five contrastive learning models for the convenience of
transferring it to Mask R-CNN as the backbone.

For instance, for the segmentation experiments, we kept all settings consistent for each
contrastive learning model and supervised model, except the backbone. The input size
was set as 640× 480, and the batch size was 8. The initial learning rate was 0.01 and the
training epoch was 96. The stochastic gradient descent (SGD) optimizer was employed in
the network, and the common metrics from instance segmentation tasks, such as AP, AP50,
and AP75 were used to evaluate the performance. Average precision (AP) was calculated
by computing the precision and recall values at different intersections over union (IoU)
thresholds, typically ranging from 0.5 to 0.95 with a step size of 0.05. AP50, which is
Average Precision at IoU 0.50, measures the average precision at an IoU threshold of 0.50.
AP75, which is Average Precision at IoU 0.75, calculates the average precision at an IoU
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threshold of 0.75. Both AP50 and AP75 are complementary metrics to AP, providing a more
detailed evaluation of the model’s performance at specific IoU thresholds.

Table 1. The data augmentations used by each contrastive learning model.

Models Data Augmentations

MoCov1 [8] RandomResizedCrop RandomGrayscale RandomFlip

MoCov2 [9] RandomResizedCrop RandomGrayscale RandomFlip
RandomApply RandomGaussianBlur

MoCov3 [10] RandomResizedCrop RandomGrayscale RandomFlip
RandomApply RandomGaussianBlur RandomSolarize

SimCLR [11] RandomResizedCrop RandomGrayscale RandomFlip
RandomApply RandomGaussianBlur

Byol [12] RandomResizedCrop RandomGrayscale RandomFlip
RandomApply RandomGaussianBlur RandomSolarize

4.2. Contrastive Learning Results

The training of contrastive learning models is typically referred to as a pre-text task,
which is a self-supervised learning task aimed at learning visual representations. Its
performance cannot be directly evaluated and must be assessed by testing the performance
of downstream tasks. Evaluations of image classification tasks are a common and efficient
way to achieve this goal. However, in our case, as the whole dataset only has one class, this
approach is not feasible. Therefore, in the next subsection, we provide comparisons of the
five contrastive learning models. Here, we present the visualization of the training process,
as shown in the last sub-figure of Figure 3. It is evident that MoCov3, SimCLR, and Byol can
converge quickly to a stable value, whereas MoCov1 and MoCov2 take a much longer time
to converge, and even the loss of MoCov1 slightly increases in the later stages of training.
This phenomenon may be attributed to different data augmentation methods and optimizer
settings, which can be further explored by referring to the original paper. We adopted
the optimal settings provided by the MMSelfSup toolbox during training. Although the
convergence values of the five models in the figure differ greatly due to different ways of
computing the loss, all models eventually converged after 200 epochs of training. The best
epoch was decided by the lowest loss value.

4.3. Instance Segmentation Results

As previously mentioned, our approach employs the Mask R-CNN [14] architecture,
but with different backbones. The experimental results of instance segmentation are
summarized in Table 2. We use “Super. random” and “Super. pre-trained” to indicate the
use of random initialization and the pre-trained model on the COCO dataset to initialize
the backbone module at the beginning of fine-tuning. The other entries represent the use
of the five contrastive learning models as backbones, with the parameters frozen and the
rest of the Mask R-CNN model fine-tuned. In particular, MoCov2∗ is a contrastive learning
model trained on the ImageNet [31] dataset, not on our shrimp dataset.

The results in Table 2 demonstrate that all the instance segmentation performances of
the contrastive learning models exceed those of the supervised learning model. Specifically,
MoCov2 and MoCov2∗ models outperform the other models in all metrics, with the second-
best model, MoCov3, achieving approximately 6.5% higher APbb and SimCLR about 4.5%
higher APmk. Here, we found surprising results. Even though the MoCov2∗ model is
trained on ImageNet, where this dataset does not have any shrimp images, it still has the
best performance in terms of bounding box regression. We think this can be attributed to
its powerful ability of feature extraction. The training batch size has harmful effects on
performance when trained on our shrimp dataset, where in the original paper the training
batch size is 4096 and ours is 64. For the semantic segmentation task, MoCov2∗ is only
slightly worse than MoCov2. We think this is because the semantic segmentation task is
harder than bounding box regression and MoCov2 has seen many shrimp images.
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Figure 3. The visualization of the training loss from five contrastive learning models. The first five
sub-figures are the loss comparison of two different input sizes of each model. The last sub-figure is
the loss comparison of five models.

Table 2. Instance segmentation results of using five contrastive learning models as the backbone
for Mask R-CNN. bb and mk indicate the bounding box and mask, respectively. Random means the
supervised fine-tuning method with the random initialization, and pre-trained denotes the supervised
fine-tuning method using the weight file trained on a public dataset, such as the COCO dataset [15],
as the initialization. MoCov2∗ is the contrastive learning model trained on the ImageNet [31] dataset.

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Super (random) 0.228 0.657 0.08 0.08 0.393 0.002
Super (pre-trained) 0.377 0.743 0.352 0.209 0.645 0.045

MoCov1 [8] 0.564 0.916 0.579 0.285 0.761 0.107
MoCov2 [9] 0.662 0.945 0.739 0.376 0.84 0.24
MoCov2∗ [9] 0.684 0.955 0.786 0.363 0.837 0.226
MoCov3 [10] 0.619 0.941 0.684 0.308 0.798 0.12
SimCLR [11] 0.613 0.94 0.67 0.331 0.823 0.145

Byol [12] 0.615 0.941 0.672 0.312 0.804 0.128

On the other hand, MoCov3, SimCLR, and Byol exhibit similar performances in
detection and segmentation, but their performance is significantly better than that of
the supervised method. The MoCov1 model has the worst performance among the five
contrastive learning models, but it still outperforms the supervised method, with an 18.7%
increase in APbb and 7.6% increase in APmk.

These experimental results strongly support our argument that combining the un-
supervised learning method of contrastive learning for fine-tuning can achieve better
experimental results than directly fine-tuning, even though the contrastive learning model
is not pre-trained on the specific dataset. When training the contrastive learning model, it
can learn potential feature representations in the dataset through contrastive loss, which can
better segment the target. Several instance segmentation results are visualized in Figure 4,
which clearly demonstrate that MoCov2 exhibits relatively better segmentation quality
compared to the other methods.
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Figure 4. Some visualizations of instance segmentation. Each column represents one example. In each
column, from top to bottom, we have the ground truth, the result of the supervised method, MoCov1,
MoCov2, MoCov3, SimCLR, and Byol, respectively. (Image is better viewed when zoomed in).
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4.4. Ablation Studies
4.4.1. Input Size Comparisons

The selection of data augmentations has a significant impact on the performance of
contrastive learning models during training. Among the commonly used data augmenta-
tion methods, the random resized crop is one that is often employed. However, this data
augmentation method can be affected by different input sizes. In the original papers on
the five contrastive learning models, the dataset used was ImageNet [31], which has image
sizes of 224× 224. However, this image size is too small for our shrimp dataset, which has
a resolution of 640× 480. Using such a small image size would result in the loss of many
important image details. Therefore, we trained the five contrastive learning models with
both the ImageNet size and our shrimp dataset size. The first five sub-figures of Figure 3
show the visualization of the training loss for the two different input sizes. We observe that
both input sizes result in the convergence of the models during training. The convergent
values of the models are very similar under the two different input sizes, especially for Byol,
SimCLR, and MoCov3, where the convergence values are almost the same. Therefore, we
can assume that the different input sizes have little effect on the training of the contrastive
learning model and can be ignored.

4.4.2. Data Scale Comparisons

The use of a network trained with contrastive learning as the backbone of an instance
segmentation network offers several advantages, including the ability to achieve a relatively
high accuracy with a small labeled dataset. This is because the backbone trained with
contrastive learning can efficiently extract features containing semantic information from
images, allowing the subsequent modules in the instance segmentation network to obtain
more precise features, which in turn ensures the accuracy of the pixel-wise classification
and bounding box regression. Table 3 presents the instance segmentation results under
different data scales, where the number of images in the training dataset is 800 and the
number of images in the test dataset is 100 for all data scales. Figure 5 shows the visual-
ized curves of the table. The results indicate that fine-tuning using contrastive learning
models performs better than the common supervised learning method in terms of the
bounding box regression task under all training data scales. MoCov2 achieves the best
performance among all other methods when the training dataset is larger than 20%. When
the training dataset is less than 60%, the supervised learning method can outperform the
contrastive learning models in the mask segmentation task, except for MoCov2, and the
difference is relatively small. When the amount of training data increases, the contrastive
learning models perform better than the direct fine-tuning method, and the difference
becomes more significant. These results effectively demonstrate the effectiveness of our
idea that fine-tuning using contrastive learning models can outperform the commonly used
fine-tuning method.

Figure 5. Average precision curves of the bounding box (left) and mask (right) under different data
scales. bb and mk indicate the bounding box and mask, respectively.
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Table 3. Instance segmentation results of different training data scales. The numbers in the first row
indicate the percentage of the whole training dataset, and the number of test images for all scales is
the same, at 100 images.

20% 40% 60% 80% 100%

Super.(pre-trained)
APbb 0.019 0.237 0.333 0.308 0.377

APmk 0.008 0.131 0.213 0.188 0.209

MoCov1 [8]
APbb 0.067 0.255 0.415 0.453 0.564

APmk 0.025 0.099 0.183 0.234 0.285

MoCov2 [9]
APbb 0.054 0.379 0.514 0.576 0.662

APmk 0.027 0.144 0.252 0.302 0.376

MoCov3 [10]
APbb 0.051 0.299 0.459 0.535 0.619

APmk 0.015 0.08 0.191 0.243 0.308

SimCLR [11]
APbb 0.068 0.31 0.46 0.532 0.613

APmk 0.018 0.095 0.191 0.251 0.331

Byol [12]
APbb 0.018 0.289 0.45 0.529 0.615

APmk 0.023 0.087 0.178 0.256 0.312

5. Conclusions

In this paper, we propose a novel approach to integrate state-of-the-art unsupervised
learning with shrimp farming to reduce the reliance on labeled data in the instance segmen-
tation of shrimp. We first build a shrimp dataset to facilitate the application of computer
vision techniques in shrimp farming. This dataset contains two sub-datasets, where the
first sub-dataset has about 10 k shrimp images without any label information, and can be
used for training unsupervised learning models. The other one has 1 k shrimp images
with high-quality label information. We then train five state-of-the-art contrastive learning
models, including MoCov1, MoCov2, MoCov3, SimCLR, and Byol, and take them as a
pre-trained backbone for fine-tuning the Mask R-CNN model. The experimental results
show that compared with directly fine-tuning the full Mask R-CNN model, using a con-
trastive learning model as the backbone and then fine-tuning the rest of the modules in the
Mask R-CNN model results in better performance, even though the contrastive learning
model is not pre-trained on the shrimp dataset in advance. Furthermore, with the increase
in data scale, the performance in terms of fine-tuning the Mask R-CNN model with a
contrastive learning model as the backbone surpasses the common fine-tuning method
with an increasing margin. In the comparisons of five contrastive learning models, MoCov2
outperforms other models in the instance segmentation task. These experimental results
show the effectiveness of incorporating unsupervised learning with instance segmentation,
which can lead to significant cost savings in shrimp farming. The approach proposed in
this paper can also be extended to other fields of application with minimal modifications.
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Abbreviations

The following abbreviations are used in this manuscript:
CL Contrastive Learning
MoCo Momentum Contrast
MAP Mean Average Precision
ViT Vision Transformer
SGD Stochastic Gradient Descent
AP Average Precision
IoU Intersection over Union
AP50 Average Precision at IoU 0.50
AP75 Average Precision at IoU 0.75
bb Bounding Box
mk Mask
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