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Abstract: Computer vision systems are often used in industrial quality control to offer fast, objective,
non-destructive, and contactless evaluation of fruit. The senescence of fresh-cut apples is strongly
related to the browning of the pulp rather than to the properties of the peel. This work addresses the
identification and selection of pulp inside images of fresh-cut apples, both packaged and unpackaged;
this is a critical step towards a computer vision system that is able to evaluate their quality and
internal properties. A DeepLabV3+-based convolutional neural network model (CNN) has been
developed for this semantic segmentation task. It has proved to be robust with respect to the similarity
of colours between the peel and pulp. Its ability to separate the pulp from the peel and background
has been verified on four varieties of apples: Granny Smith (greenish peel), Golden (yellowish peel),
Fuji, and Pink Lady (reddish peel). The semantic segmentation achieved an accuracy greater than 99%
on all these varieties. The developed approach was able to isolate regions significantly affected by
the browning process on both packaged and unpackaged pieces: on these areas, the colour analysis
will be studied to evaluate internal quality and senescence of packaged and unpackaged products.

Keywords: fresh-cut apples; quality control; computer vision system; semantic segmentation;
deep learning

1. Introduction

Apples are versatile and widely used fruits. They play an essential role in the daily
diet of many people. They are rich in essential nutrients, minerals, fibres, and vitamins
that provide a significant contribution to maintaining good health [1]. Additionally, apples
provide a boost of energy, help to regulate blood sugar [2], and reduce the risk of certain
cancers [3,4]. Quality control is very important to select high quality and non-defective
apples and monitor their state in a pervasive way along the whole supply chain.

Traditionally, human experts are responsible for quality control of fruit. They grade
apples according to various parameters such as size, shape, colour, defects, etc. Visual and
internal quality of apples are related to browning of the pulp, total soluble solids (TSS) [5],
acidity (pH) [6], and other physicochemical properties [7]. Estimation of these properties
has always been a challenging and time-consuming task for human experts.

The market of fresh-cut apples, ready to be eaten, is increasing [8–11]. The cutting
process accelerates the senescence of these fruits which is strongly related to the browning
of pulp. A continuous monitoring of this part of apples along the path from harvest to
final users, even after they have been packaged, is critical to extend their shelf-life as much
as possible.

Computer vision systems (CVS) are replacing human experts in quality control of
fruit and in several other applications in the agriculture and food industry. CVSs are being
used to recognize and classify different types of fruit based on their size, shape, colour,
and texture. CVSs can determine ripeness, firmness, and colour properties. CVS can also
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be used for defect detection and grading. The integration of machine learning algorithms
into a CVS can improve the accuracy and flexibility of the fruit quality control process and
can provide greater, more robust, and consistent performances than human operators. To
achieve the best results, vision techniques need to work on the more significant regions
of the images avoiding noise sources that can be introduced by less relevant parts of the
scene. In quality control of fresh-cut apples, the identification and selection of visible pulp
is critical to apply colour analysis to the parts that are more affected by browning induced
by senescence. This paper will deal only with the problem of selecting the visible parts of
the pulp in the images to restrict further meaningful colour analysis oriented to quality and
internal parameters’ estimation to the most relevant parts of fruit; colour analysis on pulp
regions is out of the scope of this paper.

Image segmentation is an important step in many computer vision applications [12,13].
Robust image segmentation techniques strongly empower the extraction of relevant in-
formation from images. Depending on the kind of analysis used to achieve image seg-
mentation, results at different resolutions can be reached up to the pixel-by-pixel seg-
mentation provided by approaches such as colour analysis [14]. Several applications of
image segmentation methods exploit colour and texture features to separate fruits from the
background [15,16]. To identify the best features for each specific kind of images is often a
difficult process that involves a cumbersome trial-and-error process. In cases similar to the
Golden apples, where colour and texture features are quite similar between the pulp and
peel, the results achieved by traditional image processing and computer vision techniques
have been unsatisfactory in terms of completeness and robustness [17].

Payman Moallem et al. proposed a CVS algorithm for the segmentation and grading
of Golden Delicious apples [17]. They managed to segment apple samples from the
background and were able to detect stem end and calyx regions. They achieved defect
segmentation using a multi-layer perceptron (MLP) neural network. Their algorithm
achieved an accuracy higher than 94% for calyx detection and 100% accuracy for stem ends
outside the apples. However, their accuracy for the stem ends inside the apples was only
81%. They justified this lower accuracy by pointing out the similarity between colour and
position of the stem end inside the apple and shadow or defects.

David Ireri et al. came up with a machine vision system based on RGB images for
tomato grading [18]. Their system segmented calyx and stalk scars in both defected and
healthy tomatoes with an average accuracy of 0.9515 using histogram thresholding based on
the mean g-r value of the regions of interest. Since defected calyx and stalk scars appeared
to have similar colour intensities at different levels of ambient light, they achieved a lower
accuracy on defected tomatoes.

Gabriel A. Leiva-Valenzuela et al. automatically distinguished stem and calyx ends
and detected damaged berries using a pattern recognition method [19]. They implemented
image segmentation in two steps [19]. In the first one, the original images were cropped to a
pre-defined dimension to isolate single berries. The second step involved a threshold-based
segmentation of the colour images refined by morphological operations. The resulting
binary mask separated the fruit from the background.

Dian Rong et al. developed a sliding window local segmentation algorithm for the
detection of surface defects on oranges [20]. This method was able to detect various types
of surface defects and to separate them without any additional image lightness correction
process. They achieved an accuracy of 93.8% for the classification of stem ends from
defective and sound orange peels. They obtained an accuracy of 91.9% in the segmentation
of individual defects and a 97% performance rate for defective orange detection.

Sajad Sabzi et al. introduced an automatic non-intrusive computer vision system for
the estimation of the pH value of oranges [21]. They performed experiments on three
varieties of oranges: Bam, Blood, and Thomson. They used a 2-step segmentation process
for the extraction of features to estimate the pH value. A threshold based on the first
component of RGB colour space was applied in the first stage to remove the background
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before converting the image into a binary representation. A closing filter was used in the
second segmentation stage to refine the mask.

S. Poorani et al. proposed a method to identify pomegranate fruits inside colour
images taken by digital camera under natural light conditions [22]. The segmentation was
based on colour and spatial features using a k-means clustering algorithm. Image retrieval
was possible after merging the clustered blocks to a specific number of regions.

Recently, deep learning techniques have proved to be a powerful tool to improve
the accuracy of semantic image segmentation. The convolutional neural networks have
expressed a significant impact in these tasks [14,23].

R. Marani et al. investigated a deep learning network for the segmentation of grape
bunches in colour images [24]. Their comparative study used two segmentation metrics,
(1) segmentation accuracy and (2) Intersection over Union (IoU), to evaluate the perfor-
mance of four different pre-trained network architectures, specifically AlexNet, GoogLeNet,
VGG16, and VGG19. They also proposed an optimal threshold selection of bunch prob-
ability maps to improve the segmentation of pixels. Their strategy improved the mean
segmentation accuracy of the aforementioned four deep neural networks in a range from
2.10% to 8.04%. They reported the VGG19 to achieve the best performance with an accuracy
of 80.58% and an IoU of 45.64% on the bunch class. The GoogLeNet produced the worst
performance with a mean segmentation accuracy of 74.41% and IoU of 37.13%.

Suchet Bargoti and James P. Underwood introduced an image processing framework
for fruit detection and counting using apple orchard image data [25]. General-purpose
feature learning algorithms were utilized for image segmentation. The image segmentation
was done using multiscale multi-layered perceptron (ms-MLP) and convolutional neural
networks (CNN). Watershed segmentation (WS) and circular Hough transform (CHT) algo-
rithms were used for pixel-wise fruit segmentation and to detect and count the individual
fruits. CNN provided the best segmentation with a F1-score of 0.791. CNN also achieved
best detection with a F1-score of 0.861 using WS detection.

Isaac Perez-Borrero et al. proposed a methodology to perform instance segmentation
of strawberries using a fully convolutional neural network [26]. Their methodology pro-
duced an improvement in precision and processing time as compared with the previously
used Mask R-CNN models and put forward their use in real-time automatic strawberry
harvesting systems.

Most CVSs, for fruit grading or defect detection or separation of fruits from back-
ground, process images by working on the peel. Looking only at the peel would not provide
all the information about physicochemical properties. Colour could be more informative
about maturity and internal properties especially if evaluated on internal parts of fruits [7].
The browning of the pulp plays an important role in the evaluation of the internal quality
of fruits especially in fresh-cut products, where the cutting handlings cause the rapid
browning of the cut surfaces. The intensity of the browning on the pulp in fresh-cut apples
is an objective parameter of the shelf-life loss. Higher browning of the pulp indicates a
lower visual quality of apple slices (higher shelf-life loss). So, the possibility of identifying
the browning only on the pulp of apple slices could be an accurate and consistent way to
monitor the shelf-life of this kind of product.

Furthermore, the ripening and evaluation of TSS cannot be estimated accurately by
relying only on the peel. However, a high-quality precision can be attained by considering
the pulp as well since it provides additional useful hints about internal defects and other
physicochemical properties. Therefore, it becomes critical to operate a robust and effective
separation of the peel and pulp since the visual similarity between the pulp and peel can
make this segmentation task difficult for approaches that rely only on colour.

There is only one research work conducted on the browning of fresh-cut apples that
is also by a traditional image analysis. Subhashree et al. performed an image analysis to
detect browning in fresh-cut apples using colour and texture features [27]. They developed
a CVS for image acquisition of three varieties of apple and measured the colour distance
over the time by transforming the colour space from RGB to L*a*b* values. They manually
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extracted the parts of interest in each image and rely on the scene to be static while the
browning process goes on. A more realistic application context must rely on an automatic
selection of the regions of interest in each image. Our approach focuses its attention to the
pulp that is significantly affected by the browning process. We expect a colour analysis
based only on it to provide more robust and effective results.

Thus, a robust and powerful segmentation technique to separate the peel and pulp of
fresh-cut apples is a promising area and very much useful for the continuous monitoring
of the browning process of apples from harvest to consumers.

The possibility of applying the same methodology also on packaged products with
similar performances is a powerful improvement in CVS applications. In case of packaging
products, a high level of quality in terms of appearance, sensorial, and nutritional charac-
teristics is required. Additionally, the increasing consumers’ need to assess the real quality
level inside the packaging is another important aspect to consider. A relevant challenge
to face in ensuring a correct quality assessment through the packaging material by CVS
is the separation of opaque and affected regions of bags from the transparent area where
the product is visible with acceptable fidelity of visual appearance. This separation step
requires robust and powerful segmentation approaches. Few researchers have reported
interesting results about the use of CVS through packaging [28,29].

In this work, we aim to segment images of fresh-cut apples by separating the pulp
from peel. This step is preliminary to classification and regression tasks that will be based
on colour analysis, and they are beyond the scope of this paper. In particular, we will be
interested in measuring the browning occurring on the internal part on the fruit (pulp) due
to senescence. The experiments of semantic segmentation described in this paper were
accomplished by acquiring images of fresh-cut apples belonging to four different varieties:
Granny Smith, Golden, Fuji, and Pink Lady. One of them (Granny Smith) has a greenish
peel, another has a yellowish peel (Golden), while the other two have a mostly reddish peel.
The segmentation must be able to separate pulp regions in all these varieties even through
the packaging. On packaged products, it needs to recognize peel and pulp pixels belonging
to regions of the images whose colors are meaningfully visible in spite of the photometric
deformations introduced by the interaction between the light and the plastic bag. While
acceptable results can be obtained by traditional methods on greenish and reddish peels,
a yellowish peel strongly degrades the performance of pulp identification. We needed a
flexible and powerful technique to isolate the pulp even on these critical images in a robust
way. To increase the robustness of the evaluation of apple quality and of internal properties,
it is important to minimize errors introduced by pixels that are misclassified as pulp, whose
number must be kept as low as possible.

A deep learning CNN model for semantic segmentation of fresh-cut apples has been
designed, implemented, and tested in the MATLAB environment. Four classes have been
defined: peel, pulp, background, and glittering. The first three are used for both packaged
and unpackaged apples while the last one is used only when the apples are observed
through the bag. The proposed solution is based on the DeepLabV3+ architecture that has
been chosen owing to its accuracy in segmentation problems [30]. The developed semantic
segmentation achieved an accuracy greater than 99% on images of both packaged and
unpackaged products. The approach has been purposely made conservative to satisfy the
requirements of the subsequent analysis. Proper choices have been made while training the
network and choosing the evaluation metrics to be coherent with the decision of preferring
to lose some pixels of the pulp instead of wrongly including them in color analysis parts of
the image that belong to other classes (peel, background, glittering). The approach proved
to be useful to isolate the parts that are affected by the browning process and that are better
suited to evaluate the internal maturity and the properties of interest.
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2. Materials and Methods
2.1. Acquisition of Calibrated Colour Images

To acquire calibrated colour images, it is necessary to evaluate and reduce the colour
changes due to environment conditions (lighting, geometry, sensor instability). The setup
and the process used for acquisition is described in [29,31–33]. The M9GE 3CCD digital
camera (Jai Ltd., Yokohama, Japan), which has a dedicated Charged Coupled Device matrix
sensor for each colour channel, was used: its resolution was 1024 × 768 pixels. The imaged
area was about 32 × 24 cm. The use of three sensors avoids the artefacts introduced by
demosaicing methods that are required when recording colour information using a single
CCD. The optical axis of the Linos MeVis 12 mm lens system (Linos Photonics Ltd., Edin-
burgh, UK) was perpendicular to the black background. Two DC power suppliers delivered
continuous current to eight halogen lamps, placed along two rows at the two sides of the
imaged area and oriented at a 45◦ angle with respect to the optical axis. The images were
saved as uncompressed TIFF to avoid the artifacts introduced by compression algorithms.

2.2. Experimental Samples

The apples used in our experiments belonged to four different varieties: Granny Smith,
Golden, Fuji, and Pink Lady. The last two have a mostly reddish skin, while the skin of
Golden apples is yellowish and the one of Granny Smith apples is greenish. Therefore,
three main peel colours are present in the data set: red, yellow, and green. Each piece of
fresh-cut apple can present to the camera the skin, the pulp, or a combination of them. The
visual evaluation of digital images has made evident that the separation of skin from pulp
could be attempted using the simple colour information only for the reddish and greenish
varieties. To achieve a satisfactory separation of these two parts in yellowish apples is
challenging, if not impossible, on the basis of the simple colour information: skin and pulp
are almost equal visually, especially when the product is fresh.

The data set of RGB images for the experiment contained, for all the considered
varieties, three different kinds of arrangement of apple pieces:

1. Randomly disposed unpackaged pieces (each making visible both peel and pulp in
variable proportions) (Figure 1).

2. Unpackaged pieces orderly disposed with the pulp oriented upward (making the peel
invisible) (Figure 2).

3. Randomly disposed pieces inside a plastic bag (each making visible both skin and
pulp in variable proportions) (Figure 3).
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2.3. Network Architecture

The DeepLabV3+ architecture (Figure 4) has been chosen for the semantic segmenta-
tion of fresh-cut apples. It can be considered as composed by two main parts: an encoding
section (backbone) and a following decoding section. The former part (encoder) uses a
convolutional neural network (CNN) to extract a set of features by each image of the data
set. The latter part uses a decoding module to achieve segmentation according to the
classes of interest. The architecture can flexibly integrate several backbones such as ResNet,
Xception, PNASNet, MobileNetv2, etc. In our experiments, the 18-layer-deep Resnet 18
network has been chosen as the backbone: it is pretrained on more than a million images
from the ImageNet database [14] and can classify thousands of object categories. Resnet 18
is the simplest version with respect to Resnet versions with 34 layers, 50 layers, 101 layers,
and 152 layers.

The input for the segmentation module is a color image composed by the three classi-
cal RGB components. This image is fed into a deep-learning neural architecture based on
convolutions (what is commonly referred to as a convolutional neural network or CNN).
This kind of multi-layered architecture convolve the input image with few layers of kernels
that are automatically identified by the learning algorithm during the training phase. A key
advantage of CNN is that the kernels set by the learning process (that determine the set of
features) are identified without any intervention of designers. At the end, the neural archi-
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tecture operates as a kind of black box. It is normally difficult to explain, in detail, which
kind of measures are made. Nonetheless, the convolutional nature of the computation
suggests that the resulting multiresolution features are a combination of colors and of their
spatial distribution (commonly referred to as texture in the computer vision community).
The relative relevance of color and texture information is not explicitly available.
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2.4. Images and Data Set Preparation

Each set of samples has 544 RGB images available for training, testing, and validation.
Altogether, 47% of images (252 images) from randomly disposed unpackaged cut apples
and 48% of images (259 images) from randomly disposed packaged cut apples (including
all the three colours) were chosen for training. These 252 images from randomly disposed
unpackaged cut apples and 259 images from randomly disposed packaged cut apples were
manually labelled pixelwise using the Image labeller App in MATLAB.

Three classes were initially considered in the labelling process of randomly disposed
unpackaged apples, namely pulp, peel, and background. Each class was associated to a
different label ID, a number that was set in the label image to identify the class of each pixel.

Since glittering regions appear in the images of packaged fresh-cut apples due to the
reflection on the plastic bags, one more class was needed to represent these undesired pixels
whose colour is not informative about the state of the fruit. Therefore, the labelling process
of the images of packaged apples was accomplished using four classes, namely pulp, peel,
background, and glitter. For the first three classes, the same ID used for unpackaged
products was maintained.

The pixel labels from the Image labeller App were exported to the MATLAB workspace
and saved as files of type PNG. An object of the type groundTruth was created in the
MATLAB environment to contain all these data. An object of type imageDatastore was
created with the images of all the three sets of samples to efficiently manage these data in
the training procedure.

2.5. Data Augmentation

The number and variety of available images were not sufficient to allow a satisfactory
training. A data augmentation approach was applied to each image to increase the accuracy
of the network through a larger set of samples. The data augmentation scheme was
based on the change of brightness of the available labelled images without applying any
geometrical transformation (Equation (1)). This scheme allows the same image of labels to
be used for all the transformations of photometric values. The following formula was used:

Vout= Vγ
in (1)
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where Vin is the brightness component of the original input image, γ is the gamma value
used to change the brightness, and Vout is the transformed image with a new brightness.
Gamma values higher than 1 make the image darker while values lower than 1 make the
image brighter.

For each image, four transformed versions were generated: three of them by progres-
sively decreasing the brightness and one by increasing the brightness (Figures 5 and 6).
The application of a gamma transformation does not affect maximum and minimum values
of the photometric range. Data augmentation increased the number of training data of
the randomly disposed unpackaged cut apples from the 252 original labelled images to
1008 labelled images and the number of training data of the randomly disposed packaged
cut apples from the 259 original labelled images to 1036 labelled images.
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2.6. Training of the Network

The DeepLabV3+-based neural network model was created in MATLAB using the
ResNet-18 as backbone. The image size was set to 1544 × 2064 × 3.

The same network underwent two separate trainings: one for unpackaged pieces
(randomly disposed and orderly disposed with the pulp oriented upward) and another
for randomly disposed pieces packaged in the plastic bag. A different number of classes
was used in the two cases because packaged apples need a further class for glitters. Each
training set was composed by augmented image data, each with the corresponding label
data. The two training sets were independent and separated.

The trainings of the networks were done using the following options identified by the
Adam optimizer [35]: the maximum number of epochs was 10 and the mini batch size was
8 at each iteration. A piecewise schedule was used for the learning rate. The learning rate
drop period was 5 and the drop factor was 0.2. Thus, after every 5 epochs, the learning rate
was reduced by a factor of 0.2.

3. Results and Discussion

The test sets for the networks contained all the three different arrangements of the
apples (Figures 7–15) and images that were not used during training. The results of the
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networks were compared with the manual segmentation done by the operator using the
Image Labeller MATLAB tool. The testing data sets were composed of 292 unpackaged
images, that is 53% of the total available 544 images, and 285 packaged images, that is 52%
from the total 544 images. Global accuracy, mean accuracy, mean IoU, weighted IoU, and
mean BF were the metrics used to quantify the performance of the network.
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For each image of the test set, the confusion matrix was evaluated and collected. It
provided full information about the correspondence between the results of the network
and the ground truth provided by manual visual segmentation. Four different confusion
matrices were evaluated from the collection of confusion matrices: the confusion matrix
minima (having in each cell, the minimum of all the values of that cell in the whole
collection), the confusion matrix maxima (having in each cell, the maximum of all the
values of that cell in the whole collection), the confusion matrix mean (having in each cell,
the mean of all the values of that cell in the whole collection), and the confusion matrix
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standard deviation (having in each cell, the standard deviation of all the values of that
cell in the whole collection). These four matrices synthetize the information about the
performance of the segmentation over the complete test set.
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The total time taken to complete the training of the network on the PC system (Intel
Core i7-1165G7 Processor (2.80 GHz)) was found to be 4976 min (about 3.5 days): it is
important to note that this machine is a standard laptop without any special hardware
acceleration for this kind of tasks and that the software was written in Matlab without any
specific optimization. The same machine required about 4.5 s to segment a single image
using the trained network.
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3.1. Semantic Segmentation Results of the Randomly Disposed Unpackaged Fresh-Cut Apples

To evaluate the trained network, 1008 images were processed (Table 1). The network
of the randomly disposed unpackaged apples showed a very good performance of segmen-
tation. The network achieved a mean accuracy, global accuracy, and mean IoU all greater
than 99%. Moreover, the network attained a 0.99411 mean BF score.
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Table 1. Quantitative evaluation metrics of the network trained for randomly disposed unpackaged
fresh-cut apples.

Global
Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF Score

0.99977 0.9966 0.99394 0.99954 0.99411

Full information about the performance on each of the three classes in the randomly
disposed unpackaged fresh-cut apples was measured by the confusion matrix (Table 2) and
the class metrics (Table 3).

Table 2. Confusion matrix mean of the randomly disposed unpackaged fresh-cut apples. Each cell
represents the mean of the values in the corresponding position over all the samples of the test set.

Pulp Peel Background

Pulp 150,120,894 139,866 0
Peel 437,773 47,031,839 420

Background 586 104,694 2.7574 × 109

Table 3. Class metrics on the randomly disposed unpackaged fresh-cut apples.

Accuracy IoU Mean BF Score

Pulp 0.9991 0.9962 0.9953
Peel 0.9908 0.9857 0.9868

Background 1.0000 1.0000 0.9999

The confusion matrix minima (Table 4) and confusion matrix maxima (Table 5) were
evaluated over the complete test set: they provide useful hints about the performance of
the method in the best (minima) and the worst (maxima) cases.

Table 4. Confusion matrix minima over the testing dataset.

Pulp Peel Background

Pulp 62,080 0 0
Peel 0 0 0

Background 0 0 2,584,232

Table 5. Confusion matrix maxima over the testing dataset. The first column is especially relevant: it
shows the number of pixels misclassified as pulp while belonging to peel or background.

Pulp Peel Background

Pulp 283,229 33,431 131
Peel 3485 155,323 1604

Background 0 184 2,849,891

The confusion matrix maxima (Table 5) shows that a maximum of 33,431 and 131 pulp
pixels were incorrectly assigned to the classes peel and background. They will be ignored
by the subsequent colour analysis of the computer vision system under development.
Moreover, 3485 is the maximum number of peel pixels incorrectly assigned to the class
pulp. No background pixels were incorrectly assigned to the pulp class. These two
numbers are the most relevant ones; these pixels would bias the colour analysis, bringing
into colour analysis contributions from parts of the images that do not exhibit relevant
signs of senescence. Nonetheless, the low number of these pixels, with respect to the
correctly classified ones, suggest that their statistical contribution to determining the results
of classification and regression will be negligible.
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Moreover, Tables 4 and 5 show that most of the pixels of each image have been
correctly labelled by the network: the number on the diagonal is much larger than that of
off-diagonal ones, corresponding to a different type of misclassification.

3.2. Segmentation Results of the Unpackaged Cut Apples orderly Disposed with the Pulp
Oriented Upward

Figures 10–12 show visually the semantic segmentation results on orderly disposed
apple pieces with pulp oriented upward. Accuracy measures and evaluation matrices
were not included in the paper because the presence of peel in these images is too small.
We preferred to concentrate the discussion on numerical data associated to unpackaged
and packaged randomly disposed pieces that provide a more significant evaluation of
the approach.

3.3. Segmentation Results of Randomly Disposed Packaged Fresh-Cut Apples

To evaluate the trained network on packaged apples, 1036 images were processed
(Table 6). Furthermore, in this case, the trained network achieved a high performance for
segmentation: mean accuracy and global accuracy greater than 99% and mean IoU of more
than 98%. The mean BF score of the network was 0.99237.

Table 6. Quantitative evaluation metrics of the randomly disposed packaged fresh-cut apples.

Global
Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF Score

0.99987 0.99398 0.98991 0.99974 0.99237

The randomly disposed packaged apples have one more class to account for the
presence of glitter regions due to the reflection of light on the plastic bag. The accuracy of
each of the four classes was calculated using the confusion matrix (Table 7) and the class
metrics (Table 8) by comparing the ground truth with the results of the network.

Table 7. Mean confusion matrix of the randomly disposed packaged-cut apples. Each cell represents
the mean of the values in the same position over all the samples of the test set.

Pulp Peel Background Glitter

Pulp 93,356,354 160,988 52 29,482
Peel 83,060 40,050,676 1548 8996

Background 6551 3544 2.8764 × 109 10,841
Glitter 79,186 12,685 1369 4,639,512

Table 8. Class metrics of the randomly disposed packaged fresh-cut apples.

Accuracy IoU Mean BF Score

Pulp 0.9980 0.9962 0.9945
Peel 0.9977 0.9933 0.9928

Background 1.0000 1.0000 0.9999
Glitter 0.9803 0.9702 0.9803

The performance of the network on each class was measured also by the confusion
matrix minima (Table 9) and confusion matrix maxima (Table 10).

The confusion matrix maxima table (Table 10) displays the maximum number of correct
classifications and errors made by the network. In total, 4661 peel pixels, 33 background
pixels, and 1104 glitter pixels were incorrectly classified as pulp. Additionally, in this case,
errors are much less than correct classifications: the misclassified pixels are expected to be
statistically not relevant for determining the results of the subsequent colour analysis.
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Table 9. Confusion matrix minima over the test dataset.

Pulp Peel Background Glitter

Pulp 27,413 0 0 0
Peel 0 0 0 0

Background 0 0 2,646,664 0
Glitter 0 0 0 0

Table 10. Confusion matrix maxima over the test dataset. The first column is especially relevant
because it shows the number of pixels misclassified as pulp while belonging to peel, background,
or glitter.

Pulp Peel Background Glitter

Pulp 160,014 989 440 1664
Peel 4661 108,229 137 742

Background 33 157 2,869,687 76
Glitter 1104 699 2546 22,425

A correct and accurate segmentation step, able to serve as the foreground for only the
pulp of apple slices where the browning occurs, allows to monitor the shelf-life loss of the
fresh-cut apples along the postharvest storage and could be great help for further analysis.
The subsequent steps of features’ extraction performed on a well-defined region of the
image will be more efficient and consistent to predict internal quality parameters strictly re-
lated to the shelf-life (or visual quality) of the product. The principal benefits of an objective,
consistent and pervasive food control along the entire supply chain, from the producers to
the final consumers, are the standardization of quality levels and the timely detection of
senescence enabling waste reduction, sales optimization, and customer satisfaction.

As described earlier, the misclassified pulp pixels are very low in numbers as compared
with the correctly labelled pulp pixels. Therefore, the segmentation results on both unpack-
aged and packaged apples would be significant to assist the quality control assessment on
fresh-cut apples in the whole supply chain.

4. Conclusions

Computer vision systems are increasingly being used in industrial quality control
to offer fast, objective, non-destructive, and contactless evaluation of fruit. This paper
addresses the problem of semantically segmenting images of packaged and unpackaged
fresh-cut apples as a preliminary step to develop a computer vision system that will analyze
the quality and internal properties of this product. The identification and selection of the
pulp is necessary to restrict the analysis to this part as it is more significantly affected by
progressive browning caused by senescence. Since apples are widely consumed fruits and
an essential component of a healthy diet and are increasingly being offered as fresh-cut
pieces in proper packaging, images of packaged and unpackaged products belonging to four
different varieties have been acquired and used in the experiments: Granny smith (greenish
peel), Golden (yellowish peel), Fuji, and Pink Lady (reddish peel). The visual similarity
between the pulp and peel has made unsatisfactory in several cases the application of
segmentation approaches relying on traditional colour analysis.

A convolutional neural network model (CNN), based on the DeepLabV3+ architecture,
has been designed, implemented, tested, and validated for achieving a robust semantic
segmentation in spite of colour similarity between the peel and pulp. The achieved accuracy
was greater than 99% on all four considered varieties despite the orientation of the apples,
even in the presence of packaging. The testing was done by running the network to
segment the test images semantically, which are not used during training. A qualitative
visual verification of the performance of trained networks was conducted by overlaying
the segmentation results on the colour images. A quantitative evaluation of accuracy was
performed by semantically segmenting the entire testing data set (composed of images



Appl. Sci. 2023, 13, 6969 15 of 17

manually labelled but not used during training) and by evaluating metrics such as global
accuracy, mean accuracy, mean IoU, weighted IoU, and mean BF score. On randomly
disposed unpackaged apples, the network achieved mean accuracy, global accuracy, and
mean IoU greater than 99%. In the case of randomly disposed packaged apples, the network
attained mean accuracy and global accuracy higher than 99%, and mean IoU greater than
98%. Moreover, the confusion matrix was calculated for each image in the testing data
set. Four different global confusion matrices (confusion matrix minima, confusion matrix
maxima, confusion matrix mean, and confusion matrix standard deviation) were evaluated.
They possessed the minimum, maximum, mean, and standard deviation of each position
over the complete testing data set.

The analysis of the confusion matrices, especially of the confusion matrix maxima
that catch the performance on the worst cases, was conducted to quantify the type of
error that is more relevant for our application. In fact, the number of misclassified pixels
erroneously classified as pulp can reduce the performance of the following colour analysis
by introducing information which are related to parts of the fruit that are not significant for
the tasks at hand. The analysis has shown that the number of pixels misclassified as pulp is
small with respect to the correctly classified ones. Therefore, the effect of these errors is
expected to be statistically negligible in the colour analysis that extract information about
the state of fruits.

Two separate networks, based on the same approach and neural architecture, were
trained to address images of packaged and unpackaged pieces, respectively. They achieved
comparable results proving that the pulp can be identified even through the plastic bag.
Therefore, the computer vision system that will integrate this segmentation step will be
applicable in a pervasive way along the whole supply chain from harvest to consumers
even after packaging.

As mentioned above in our experiment, we trained, tested, and validated the network
considering only four varieties of apples consisting of three different peel colours. Even
though the network provided satisfactory results in segmentation of tested samples and
the variety of colours make us confident about similar results on other cultivars, more
tests are needed on other varieties of apples available in the market and on a mixture of
different varieties of apples to assess this segmentation method as a robust and persistent
technique. Therefore, subsequent future studies are needed on more varieties of apples in
different ways.

The manual labelling used in our experiment is a time-consuming process and thus,
a self-supervised learning approach for labelling of the images should be investigated to
overcome this drawback. This is a consideration of our future work, in order to make the
training phase easier without compromising the accuracy of the network.
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