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Abstract: Well-performing control loops have an integral role in efficient and sustainable industrial
production. Control performance monitoring (CPM) tools are necessary to establish further process
optimization and preventive maintenance. Data-driven, model-free control performance monitoring
approaches are studied in this research by comparing the performance of nine CPM methods in
an industrially relevant process simulation. The robustness of some of the methods is considered
with varying fault intensities. The methods are demonstrated on a simulator which represents a
validated state-space model of a supercritical carbon dioxide fluid extraction process. The simulator is
constructed with a single-input single-output unit controller for part of the process and a combination
of relevant faults in the industry are introduced into the simulation. Of the demonstrated methods,
Kullback–Leibler divergence, Euclidean distance, histogram intersection, and Overall Controller
Efficiency performed the best in the first simulation case and could identify all the simulated fault
scenarios. In the second case, integral-based methods Integral Squared Error and Integral of Time-
weighted Absolute Error had the most robust performance with different fault intensities. The
results highlight the applicability and robustness of some model-free methods and construct a solid
foundation in the application of CPM in industrial processes.

Keywords: performance; control loop; monitoring; overall controller efficiency; single-input
single-output

1. Introduction

In industrial applications, processes are automatically controlled for the purposes of in-
creasing production efficiency and reducing wasted resources. Many processes also require
continuous control to stay within the operational limits. Well-performing control loops
have an integral role in these tasks. However, the control loops require regular maintenance
for keeping up with disturbances and decay present in industrial applications. Thus, the
effectiveness of each control loop should be monitored to identify the maintenance needs.

The primary objective of control loop monitoring is to identify the control loops with
inadequate performance. For this aim, a plethora of performance estimation methods is
available in the current literature [1–3]. A well-performing control loop creates a solid
foundation for further process optimization and preventive maintenance.

Poorly performing control loops may be caused by normal process deterioration over
time or by disturbances and failures in sensors, controllers, actuators, and the process itself.
In a performed analysis [4], some of the most common issues for control, process, and signal
processing include manually overridden loops, control element out of range, and step out
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or quantization. In [5], the most common faults according to control engineers in the
industry comprised controller saturation, oscillations, manual control, sluggish behavior,
and quantization.

The most applied automatic control strategy is the proportional, integral, and deriva-
tive controller (PID controller). PID control loops are usually tuned at the time of installation
but could receive less attention in the continuous maintenance work. This could result in
poor control and consequently declining process performance over time.

Control loop performance monitoring tools are widely used in industry. In a survey [5],
it was found that approximately two-thirds of control engineers use control performance
monitoring (CPM) tools or packages. The use of CPM tools has been on the rise and
automation companies provide solutions for use in industrial plants. Some companies may
develop their own internal solutions for control performance monitoring. For example, ABB
developed a control loop performance monitoring application, ServicePort, which allows
for the monitoring of plant-wide control loop performance and provides an automated
procedure for disturbance analysis [4].

Control performance measurement methods can be categorized based on the method’s
required a priori knowledge [1]; model-based methods require modeling of the monitored
process and utilize the model as a reference to assess the current control loop performance.
Model-free methods require no initial knowledge of the process but are instead based on
the data collected during process operation.

In this paper, data-driven, model-free approaches are prioritized for the purpose of
obtaining easily adaptable methodologies. Generally, the methods should be applicable
to an industrial plant, where the modeling of countless numbers of sub-processes would
require immense effort. Some commercial products are founded on similar aims. Non-
invasiveness, utilization of existing sensors, minimal process knowledge, and simple
algorithms are demanded from control loop performance monitoring tools [6]. Many of
the demonstrated methods have been widely used in control loop tuning applications, and
this work further utilizes these methods in a dynamic performance monitoring application.
Machine learning and deep learning methods may also be used for control performance
monitoring purposes [7,8]; however, the training and validation of these methods may
prove impractical in industrial applications with countless numbers of control loops. Thus,
this work focuses on easily applicable model-free methods.

This work evaluates the applicability of several conventional and machine learning,
model-free CPM methods on a simulated dynamic process. In addition, a method for con-
trol performance monitoring is presented, namely, adopting the ideas from the framework
of Overall Equipment Efficiency (OEE) to this new context, the OCE (Overall Controller Ef-
ficiency) method. OEE is one well-known utilization-based metric to measure productivity
and efficiency. Other acknowledged metrics include total preventive maintenance, lean, 5S,
and the virtual factory [9]. In monitoring, OEE can be efficiently used to identify the under-
lying production losses to systemically establish process performance improvements [10].
It has also been applied as one possible indicator for measuring the impact of maintenance
practices on sustainability performance (overall sustainability score) in [11].

The comparative study in this paper is conducted with a validated simulator represent-
ing a sub-process in a supercritical fluid extraction system. A single control loop is isolated
and single-input single-output control performance is evaluated dynamically with the
demonstrated methods. Several simulation scenarios are created to deteriorate the system
behavior from the nominal control performance and thus illustrate the performance of the
CPM methods. With the simulated process data, a comparison of the ability to identify
faults and the robustness of the CPM methods is performed.

The structure of this article is as follows: Section 2 describes the considered CPM
methods, the simulated process, and the simulation scenarios of the faulty control. Section 3
presents the obtained results from the CPM methods’ application on the simulated dataset.
In Section 4, the results are further discussed. Finally, Section 5 concludes this study.
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2. Materials and Methods

Control performance monitoring is performed utilizing data from processes to estimate
the state of control. Several methods have been adapted for these purposes, with different
requirements and restrictions. Some methods utilize modeling of the process to obtain
accurate estimation. Unlike these model-based methods, model-free methods require no
process model.

Model-free control performance measurement methods can be further divided into
sub-categories such as statistical factors, integral time measures, correlation measures, and
alternative indices. The CPM method classification according to [1] is shown in Figure 1.
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Figure 1. CPM method classification (adapted from [1]). The methods focused on in this work are
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Among the model-free CPM methods, the statistical approaches have shown benefits
for the cases of processes with non-linear properties. In [12], higher-order statistics-based
methods are used to identify oscillatory behavior and diagnose the possible cause for the
disturbance. Gaussianity and linearity are tested for in the process and possible identified
oscillatory behavior can be characterized by visual analysis of the process output vs. the
controller output plot. For example, valve stiction is generally identified by elliptical cycles
and sharp corners in the plot [12]. Statistical approaches also include methods such as cross-
correlation-based oscillation detection [13] and autocorrelation-based control performance
monitoring implementation [14].

Integral-based indices are a set of widely used performance indices such as Mean
Square Error (MSE), Integral Absolute Error (IAE), Integral Squared Error (ISE), and Integral
of Time-weighted Absolute Error (ITAE). Further adaptations of integral time measures
have been developed, some of which are described in Section 2.1. Integral-based indices
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have been widely utilized in the field of tuning control loops [15–18]. This work considers
application of these methods in dynamic control performance monitoring.

Alternative indices utilize other methods such as wavelets and entropy. The applicabil-
ity of dynamic response analysis is often limited in on-line control performance monitoring,
as it might require repeated process experiments and excitation.

2.1. Implemented CPM Indices

CPM methods for demonstration were chosen based on the criteria previously men-
tioned. The methods should perform without the need for modeling of the process. A priori
knowledge of the process should not be needed for estimating the control performance. As
such, the methods described in the following section were chosen.

Integrated Squared Error (ISE, Equation (1)) is calculated as a function of time and in
a sliding window. Here, a sliding window of one day is selected as:

ISE =
∫ n

n−x
e(t)2dt, (1)

where ISE is comprised of the sum of squared errors (e(t)) between the current time (n) and
the duration of the sliding window (x).

For the performed step changes, the Integral of Time-weighted Absolute Error (ITAE,
Equation (2)) is monitored for identifying longer period faults in the process. The longer
a fault is present, the larger the time weight grows and directly increases the metric. The
time weight used is the time since the last setpoint change:

ITAE =
∫ w

1
t|e(t)|dt, (2)

where ITAE is the sum of the absolute values of errors (e(t)) multiplied by the time since
the last setpoint change (w). Additionally, Amplitude Index (AMP, Equation (3)) is used
to measure the ratio between the maximum amplitude of process error and the size of the
performed step change. The value is obtained from the minimum and maximum values
after the rise time period, as in [3]:

AMP =
ymax − ymin

∆ysp
, (3)

where ymax and ymin are the maximum and minimum values, respectively, of the process
value after the rise time and ∆ysp is the magnitude of the performed step change.

The difference from normal operation in the process can be identified by utilizing
the measurement error residuals and comparing the distribution to a selected time period
from normal operation. Kullback–Leibler divergence (KL, Equation (4)) [19] provides
a measurement for difference between the two datasets. In real processes, obtaining
data from the normal operation may prove difficult, especially if the process has been in
operation for a while and unknown disturbances may have occurred. Kullback–Leibler
divergence has been previously adapted to an index in MIMO controller performance
monitoring [20]:

KL =
∫

h1 log
h1

h2
dx, (4)

where h1 is the reference dataset and h2 is the dataset in the chosen sliding window.
Additionally, histogram intersection (HI, Equation (5)) [21] and Euclidean distance (ED,
Equation (6)) [22] are used here to estimate the difference between the reference data and
the sliding window testing datasets:

HI =
∑m

j=1 min(h1,m, h2,m)

∑m
j=1 h2,m

, (5)
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ED =

√√√√ m

∑
j=1

(h1,m − h2,m)
2, (6)

where the datasets h1 and h2 are divided into m histogram bins.
In addition, a commercial CPM tool was applied to the studied process. Overall

Controller Efficiency (OCE) is a method developed by Insta Advance. The idea of OCE
was inspired from a more general framework called OEE and is an adaptation of it in
the context of PID controller performance. OCE defines one number that describes one
PID controller’s history, present, and future ability to function in a specified task. The
main point in OCE is to follow the trend of the OCE value, and a continuous decrease in
the OCE value may indicate the need for action. On the contrary, an increase in the OCE
value can show the recovery or improvement of PID controller efficiency. OCE was first
developed for detecting long-term phenomena (e.g., crawling due to wearing), but in this
paper, OCE’s suitability to detect short-term phenomena has been examined in detail in the
experimental part.

In general, OCEtotal is a product of three separate factors, as indicated in Equation (7):

OCEtotal = OCEa ×OCEp ×OCEq. (7)

In Equation (7), OCEa is the availability, or the portion of time the controller au-
tonomously produces good-quality data. OCEp is the performance, or the accuracy to
follow the setpoint value without oscillation, and OCEq is the quality, or the ability to
continue as part of the production process in the future.

In this application, availability is calculated based on the proportion of automatic and
manual control of the studied control loop, while performance is related to the setpoint
tracking error. Quality is related to several indices describing the control loop performance
in long-term trends. The details of the quality factors are omitted due to company confiden-
tiality reasons. Overall, the calculation of the OCEtotal value relies on a statistical algorithm.
The OCE method includes parameters to finetune the process, and in this paper, the two
parameters that describe the number of days in the buffer and evaluation are considered.
In both cases, a value of 10 was used.

Since OCEtotal represents a product of the three aforementioned factors, it is sensitive
to variability in any of the indices. An extreme example is that if any of the factors are zero,
the whole OCEtotal value becomes zero. Moreover, in the case of asymmetric indices, OCE
may become less appropriate.

2.2. Simulated Process

A supercritical fluid extraction (SFE) process utilizes properties of a supercritical fluid
to extract product from a raw material. Carbon dioxide (CO2) is commonly used as the
supercritical fluid due to the properties of CO2, with it being sufficiently easy to achieve
pressure (73.8 bar) and temperature (32.1 ◦C) for the critical point. The process consists of
six parts, namely, the extraction reactor, extract separator, condenser, CO2 storage, CO2
flow pre-heater, and pump, as shown in Figure 2. A set of central composite design
experimental test runs were performed and state-space models for the process components
were identified in [23,24]. Thus, the simulator used represents a validated model of the
physical process.
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Figure 2. Flow chart of the supercritical CO2 fluid extraction process [23].

One control loop from the previously identified simulator was isolated for this work.
The selected discrete-time, state-space model (see Equations (8) and (9)), namely, the CO2
flow, was identified from open-loop measurements of the original work [17,18], while other
portions of the simulator were identified with the existing PID control in the process. The
CO2 flow is the controlled variable, y(n), and valve position is the manipulated variable,
u(n). The second input is the external variable, ∆P. In this study, the external variable is
utilized as a disturbance, with a value of 0 in normal operation.

x(n + 1) =
[

0.9895 0.03677
−0.01237 0.9649

]
x(n)+[

−2.520e− 05 −1.673e− 06
−2.199e− 04 −5.346e− 06

]
u(n),

(8)

y(n) =
[
−10.22
−0.1235

]
x(n)

(
+

[
0
0

]
u(n)

)
, (9)

The state-space model for the supercritical fluid extraction process was implemented to
MATLAB® and Simulink® software (Version R2020b Update 2). PI control, with parameters
8 for proportional gain and 0.2 for integral gain, was added to the simulator, and the
parameters were kept constant for the simulations. As the simulator models the CO2 flow
into the reactor, the lower limit for the output was limited to 0. The closed-loop process
settling time after a step change is approximately 400 s. Therefore, the simulation scenario
involved setpoint changes every 1200 s. The setpoint values were selected randomly
from an even distribution between 0 and 0.8, with an interval of 0.1. With these chosen
step changes, a representative dataset for the process was obtained for the whole area of
operation of the process. Additionally, having frequent step changes in the process, the
overall size of the dataset could be reduced, decreasing computing time in the later stages
of the demonstration. The obtained measurement data were then sampled every 10 s to
further reduce the size of the data matrix.
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2.3. Simulated Faults

In Case 1, the performance of the CPM methods for different kinds of faults was
studied in a long simulation period. The faults were added to the simulated process, first
occurring individually and later simultaneously. From the common faults presented in [5],
the following faults were used in this work:

• Valve stiction, where a certain difference between the previous and new controller
output is required in order to have an effect on the actuator position. Nominally, the
valve stiction in a faulty situation was set to 0.002.

• Valve change rate limit—simulating a scenario where the motor controlling the valve
has a sudden fault limiting the speed of the valve change. In this case, the speed is
limited to 0.04 valve rotations/s.

• Sin-wave with a constant amplitude of 75 bar, a frequency of 0.00002 Hz, and a rising
amplitude (from 0 to 141.6 bar), with a frequency of 0.0001 Hz representing an external
disturbance to the process. This disturbance acts as the second input variable in the
state-space model (pressure error), as described in Section 2.2.

• Quantization, where the measured process value fed back for the controller is quan-
tized within an accuracy of 0.08 L/min instead of a floating number. This value was
selected to produce a noticeable effect on the process control behavior.

• PID controller tuning error, where the value of the P-parameter is changed from 8 to
0.8 for the duration of the fault.

The simulator with the implemented control and faults is displayed in Figure 3.
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The faults are enabled one by one as follows. The first 15 days of the simulation are
fault-free. The following 2.3 days of the simulation have only one fault activated. The
remaining faults are then enabled one by one, every 1.2 days, until each fault is enabled.
The faults are then disabled one by one every 1.2 days, following the order of activation for
the faults. Thus, during the period from 20.8 to 22.0 days, all faults are present. Afterwards,
a rising sin-wave external fault is enabled during the time period of 26.6 to 30.1 days. The
final 9.9 days of the simulation are without faults, where restoration to the normal state can
be observed.

Figure 4 depicts the simulation of 40 days containing the setpoint changes mentioned
in Section 2.3 and the faults described above for the case with PID p-value disturbance.
Simulations were repeated with different fault scenarios for a comparison of different
measurement metrics with each fault case.

In Case 2, the robustness of the methods was tested. A simulation dataset with
different values for fault intensities was obtained, focusing on the valve stiction fault. First,
a simulation with no faults was performed to obtain a reference dataset. A total of 500
different simulations were performed with different fault intensities for valve stiction,
chosen randomly for each simulation from an even distribution. For the valve stiction
intensity, a required difference from 0 to 0.0036 between new and old actuator values was
chosen. To speed up the simulation, 800 s between setpoint changes was used instead of
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the 1200 s used in Case 1. With the reduction of the simulation time, the OCE method does
not perform adequately and is left out for this case.
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3. Results
3.1. Case 1. Identification of Faults with Different CPM Methods

Kullback–Leibler divergence, histogram intersection, and Euclidean distance are used
in this case to compare the selected reference dataset to a testing set selected from a sliding
window of one day (8640 data points). The training data are selected from the beginning
of the simulation with a size of 50,000 data points. The start of the dataset is known to
represent the normal behavior of the process and can thus provide an accurate reference
for the methods. Additionally, the number of bins for the histograms used is set to 8.

In practice, identifying normal behavior of the process is a challenge for accurate
monitoring in industrial processes. For this purpose, the utilized simulator allows for a
fault-free scenario when identifying the normal process behavior and provides means for
estimating the performance of the chosen CPM indices.

In Figure 5, the differences between the reference data (first 50,000 data points) and a
testing set selected with a sliding window of size 8640 (1 day) can be seen for the histogram
intersection method. For the HI method, the high index values indicate good performance
as the statistical properties of the test set are close to the reference data obtained during
a normal control loop performance. Slight changes in the metrics occur even in normal
operation (days 6–15), due to the randomly chosen setpoints. During the periods with faults,
the index clearly deviates from the values in normal operation. After the simulated faults
have ceased, the index returns to nominal value range, indicating a good performance of
the CPM method. Similar performance was observed for the Kullback–Leibler divergence
and Euclidean distance metrics.
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However, with these methods, properties of the training data can affect the resulting
metrics. Deviations from the training data have a significant effect and retraining may be
necessary to adapt to an evolving process environment. Moreover, selection of the size
of the sliding window for the metrics affects the resolution of the results. With a larger
window size, the observation of a fault might be delayed as a lower proportion of the
window is from faulty data. Determining alarm limits is dependent on the process as
tolerances can vary.

Identification of an individual fault was considered by comparing a period of the
simulation where one fault was present with an equal-sized duration from the fault-free
period. In Figure 6a, this comparison for the OCE method was performed and presented
as a boxplot for normal, fault-free data, and separately for the five fault scenarios. A
high OCEtotal value corresponds to good control, whereas lower values indicate decreased
control loop performance. It can be seen that the OCE method can separate all of the faulty
situations from the normal operation, as the notches of the plot (95% confidence) do not
overlap. The process was repeated for all metrics (boxplots presented in Appendix A,
Figures A1–A7) and qualitatively compiled in Table 1. The fault was considered to be
identified when the index significantly differed from the normal behavior in the expected
direction. As indicated in Figure 6b, ISE shows a lower index value for the fault scenarios’
quantization and valve stiction, although it is expected that the integrated error value would
increase in the presence of fault. According to Table 1, among the tested CPM methods, KL,
HI, ED, OCEp, and OCEtotal could detect the decreased control loop performance simulated
in Case 1.
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Figure 6. (a) Boxplot of OCEtotal during a single fault, (b) Boxplot of ISE in sliding window during a
single fault.

Table 1. Qualitative performance of CPM indices. The fault situations marked with X showed
statistically significant difference in the monitored index between normal and faulty operation.

CPM Index Cont.
Tuning Ext. Dist. Rate Limit Quant. Valve

Stiction

ISE X X X - -

ITAE X - - X X

AMP X - X - -

KL X X X X X

ED X X X X X

HI X X X X X

OCEp X X X X X

OCEq - X X - X

OCEtotal X X X X X

3.2. Case 2. Robustness of the Methods with Varying Fault Intensities

The robustness of the demonstrated methods was considered with the second sim-
ulation case, where the fault intensity for valve stiction was changed randomly for 500
different simulations. The resulting index values for the histogram intersection are shown
in Figure 7.

It can be seen in Figure 7 that some of the intensities for valve stiction can be identified,
as the index value clearly decreases below the normal operation (dashed horizontal line).
However, most of the index values are near normal operation limits, suggesting a limited
performance of the CPM index in this case. To improve the identification of the fault, the
CPM method parameters need to be adjusted. After testing a different number of bins for
the histogram intersection method, the best results in terms of the method’s robustness to
different fault intensities was achieved with a parameter value of 15 bins. Figure 8 depicts
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the result. It is notable that the resolution (absolute values of the index) of the method was
now considerably lower in comparison to the results in Figure 7.
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Valve stiction was identified for different methods with varying degrees of intensity for
the fault required. In Figures 8 and 9, the metrics are drawn as a boxplot (median, and lower
and upper quartiles) as a function of the fault intensity. HI (Figure 8), ED, and KL (Figure 9a)
can identify the fault well, as the intensity of the fault increases above 0.002. AMP performed
poorly with all chosen intensities, due to the nature of the valve stiction fault. Among the
studied CPM methods, ITAE showed the most robust behavior for different intensities of
the valve stiction, shifting from the normal operation with even small disturbance values, as
shown in Figure 9b. ISE also performed well, as shown in Figure 9c.
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Figure 9. (a) Boxplot (median and IQR) for adjusted Kullback–Leibler divergence with 500 different
valve stiction intensities. (b) Boxplot (median and IQR) for ITAE with 500 different valve stiction
intensities. (c) Boxplot (median and IQR) for ISE in sliding window with 500 different valve stiction
intensities. For comparison, the red vertical line shows the value of valve stiction used in simulations
in Case 1 (Section 3.1).

The sensitivity of the demonstrated indices was compiled in Table 2, where statistically
significant difference (95% confidence) for the medians in the fault-free simulation and the
simulations with different fault intensities were compared.

The results suggest that KL, HI, and ED can identify small fault intensities with some
accuracy, but only reach accurate identification with the highest intensities. Additionally,
the absolute values of these metrics were low, and the performance may vary in more
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non-ideal conditions. AMP could not identify any of the implemented fault intensities.
Integrating methods ISE and ITAE performed well and had only a small range between the
lowest identified and highest non-identified fault intensities.

Table 2. Index performance with different fault intensities.

CPM
Index

Lowest Identified
Fault Intensity

Highest Non-Identified
Fault Intensity

Identified Fault
Intensities

Identification
Percentage

ISE 1.4 × 10−3 0.0015 307/500 61.4%
AMP - - 0/500 0%
ITAE 1.1 × 10−3 0.0014 345/500 69%
KL 6.9 × 10−6 0.0026 447/500 89.4%
HI 2.5 × 10−5 0.0031 194/500 38.8%
ED 2.5 × 10−5 0.0031 194/500 38.8%

4. Discussion

The current state of control performance monitoring methods was explored, and different
model-free CPM methods were chosen for a demonstration case with the aim of providing
easily adaptable methodologies for control loop performance monitoring in industrial appli-
cations. Some of these methods are widely used in control loop design and tuning, and this
work further adapts these methods in a dynamic control performance monitoring application.
A simulated environment was used to obtain a representative dataset for testing, with the
possibility of including different faults in different time periods in the simulation.

Among the studied methods, histogram intersection well identified the control error
residual difference from the reference data. Increased error from poor control results in an
abnormal distribution. However, the metric is heavily dependent on the conditions from
which reference data were obtained. Naturally causing drift and other changes in the process
can cause the metric to shift from an optimal area, even though the process may perform
adequately. As such, multiple metrics should be monitored for verifying the results of other
metrics and observing the actual state of the process. One option to facilitate this is to take
the approach used in the OCE method, which uses a product of several indices to assess the
overall controller performance. For example, the histogram intersection is naturally scaled to
values between 0 and 1, thus being an appropriate candidate for such a combined CPM index.

With respect to the second case with varying fault intensities, the KL, HI, and ED methods
performed rather poorly. The metrics mostly stayed at levels of normal operation with the
original method parameters. Adjusting the parameters for these methods allowed accurate
identification of the fault with the valve stiction values above 0.0031, as seen in Table 2.
However, robustness was compromised, with the methods only falling slightly below the
normal operation levels (for example, the median stayed above 0.96 for histogram intersection
in the highest valve stiction cases). The metrics could identify some of the lowest fault
intensities with decent accuracy but missed the identification of some of the highest intensities.
Amplitude Index performed poorly in the second case; however, the metric has utilization
potential in different fault cases. The integral methods ITAE and ISE performed well, with
ISE identifying 61.4% and ITAE 69% of the varying fault intensities. This can be explained
by the nature of the implemented fault, which caused residual setpoint error that integrating
methods can identify well. Additionally, due to the nature of the simulation, the chosen sliding
window has a large and very homogenous number of step changes. In practice, setpoint
changes can happen infrequently and at random time intervals. As such, applicability of the
methods should be considered when implementing CPM tools.

This paper focused on a single control loop case to build on a solid foundation for
further research. Multiple-input multiple-output control could prove an interesting topic
in the future. The setpoint changes utilized in the demonstrations were chosen to be
rather short, while industrial applications may run in the same state for weeks at a time.
Additionally, only one process was utilized for the simulations. Differences in process
dynamics may cause differences in the behavior of the control performance monitoring
metrics. Thus, the performance of the methods should also be studied for different types of
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data to ensure industrial applicability. Further, the demonstration presented was based on
simulated, noise-free data. Stability and tuning of the methods will require more attention
with real data, where noise is present or partially filtered.

5. Conclusions

In this work, it was found that the Kullback–Leibler divergence, Euclidean distance,
histogram intersection, and OCE method could identify all the simulated fault scenarios in
the first simulation case. In the second case, the robustness and sensitivity of the metrics
were further analyzed in the presence of valve stiction fault, where the integral-based ISE
and ITAE metrics demonstrated robust performance.

Control performance may suffer due to different sources of faults and different CPM
methods’ performance varies depending on the nature of the fault. Thus, a combination of
methods should be considered as a monitoring solution. As noted in this work, the OCE
method consisted of several factors and responded well to different fault scenarios.
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1. Domański, P.D. Performance Assessment of Predictive Control—A Survey. Algorithms 2020, 13, 97. [CrossRef]
2. Al Soraihi, H.G. Control Loop Performance Monitoring in an Industrial Setting. Master’s Thesis, RMIT University, Melbourne,

VIC, Australia, 2006.
3. Jamsa-Jounela, S.-L.; Poikonen, R.; Georgiev, Z.; Zuehlke, U.; Halmevaara, K. Evaluation of control performance: Methods and

applications. In Proceedings of the International Conference on Control Applications, Glasgow, UK, 18–20 September 2002;
Volume 2, pp. 681–686. [CrossRef]

4. Starr, K.D.; Petersen, H.; Bauer, M. Control loop performance monitoring—ABB’s experience over two decades. IFAC-PapersOnLine
2016, 49, 526–532. [CrossRef]

5. Bauer, M.; Horch, A.; Xie, L.; Jelali, M.; Thornhill, N. The current state of control loop performance monitoring—A survey of
application in industry. J. Process Control 2016, 38, 1–10. [CrossRef]

6. Holstein, F. Control Loop Performance Monitor. Lund Institute of Technology. 2004. Available online: https://lup.lub.lu.se/luur/
download?func=downloadFile&recordOId=8848037&fileOId=8859439 (accessed on 16 June 2022).

7. Múnera, J.G.; Jiménez-Cabas, J.; Díaz-Charris, L. User Interface-Based in Machine Learning as Tool in the Analysis of Control
Loops Performance and Robustness. In Computer Information Systems and Industrial Management; Saeed, K., Dvorský, J., Eds.; In
Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2022; pp. 214–230. [CrossRef]

8. Grelewicz, P.; Khuat, T.T.; Czeczot, J.; Nowak, P.; Klopot, T.; Gabrys, B. Application of Machine Learning to Performance
Assessment for a Class of PID-Based Control Systems. IEEE Trans. Syst. Man Cybern. Syst. 2023, 2023, 1–13. [CrossRef]

9. Stamatis, D.H. The OEE Primer: Understanding Overall Equipment Effectiveness, Reliability, and Maintainability; Productivity Press:
New York, NY, USA, 2011. [CrossRef]

10. Vorne Industries, Inc. What Is OEE (Overall Equipment Effectiveness)?|OEE. 2022. Available online: https://www.oee.com/
(accessed on 4 November 2022).

11. Ghaleb, M.; Taghipour, S. Assessing the impact of maintenance practices on asset’s sustainability. Reliab. Eng. Syst. Saf. 2022, 228,
108810. [CrossRef]

12. Choudhury, M.A.A.S.; Shah, S.L.; Thornhill, N.F. Diagnosis of poor control-loop performance using higher-order statistics.
Automatica 2004, 40, 1719–1728. [CrossRef]

13. Horch, A. A simple method for detection of stiction in control valves. Control Eng. Pract. 1999, 7, 1221–1231. [CrossRef]
14. Howard, R.; Cooper, D. A novel pattern-based approach for diagnostic controller performance monitoring. Control Eng. Pract.

2010, 18, 279–288. [CrossRef]
15. Mok, R.; Ahmad, M.A. Fast and optimal tuning of fractional order PID controller for AVR system based on memorizable-smoothed

functional algorithm. Eng. Sci. Technol. Int. J. 2022, 35, 101264. [CrossRef]
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