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Abstract

:

In cattle breeding, regularly taking the animals to the scale and recording their weight is important for both the performance of the enterprise and the health of the animals. This process, which must be carried out in businesses, is a difficult task. For this reason, it is often not performed regularly or not performed at all. In this study, we attempted to estimate the weights of cattle by using stereo vision and semantic segmentation methods used in the field of computer vision together. Images of 85 animals were taken from different angles with a stereo setup consisting of two identical cameras. The distances of the animals to the camera plane were calculated by stereo distance calculation, and the areas covered by the animals in the images were determined by semantic segmentation methods. Then, using all these data, different artificial neural network models were trained. As a result of the study, it was revealed that when stereo vision and semantic segmentation methods are used together, live animal weights can be predicted successfully.






Keywords:


animal weight estimation; deep learning; image processing; semantic segmentation; stereo vision












1. Introduction


Livestock farming has become an important industrial sector as well as a side occupation for people engaged in agriculture in rural areas. Thanks to practices such as cooperatives, producer unions, registered breeding, artificial insemination practices, and livestock supports, the place of the livestock sector in the country’s economy has started to gain more importance. It is necessary to determine the weight of the animals raised in cattle breeding farms and to follow them regularly. Increasing the profitability of the business depends on the regular follow-up of live weight [1].



The most common method of measuring the live weight of farm animals is traditional measurement using a scale. Although this direct approach is very accurate, it comes with various difficulties and limitations. Firstly, animals are required to be moved to the site of measurement scale, which can be time-consuming and laborious, especially in farms with a large number of animals. Secondly, this whole operation with the separation of animals from their natural environment causes stress, and therefore negatively affects their health and milk yield. Due to those drawbacks of direct measurement approaches, a variety of indirect measurement approaches have been proposed in the literature [2]. In indirect measurement, the true value of animal live weight is estimated by a regression model trained on various features extracted from measurements obtained from several sensors such as 2D [3] and 3D cameras [4], thermal cameras [5], and ultrasonic sensors [6].



In this study, we consider the determination of the live weight of farm animals as a computer vision and a regression problem. First, we obtain the images of farm animals using a stereo setup. Then, applying deep learning-based semantic segmentation techniques, we extract distance and size data from images to feed into a regression model. Finally, we obtain the weight estimates from the regression model as a proxy for the actual weights of the animals. The main motivation for our study was to apply state-of-the-art image processing techniques using modern deep learning approaches to propose an effective solution to the problem considered. The main contributions and novelty of our study can be summarized as follows:




	
We propose an effective indirect measurement method for determining the live weight of farm animals based on stereo vision and state-of-the-art semantic segmentation techniques using deep learning.



	
Our method is particularly important in that animals’ body measurements are taken without the need for separating them from their natural environments and thus not adversely affecting their health and milk yield.



	
We propose a very simple yet effective system and setup composed of relatively cheaper hardware that is accessible and affordable for many farms of small to large scale.



	
We investigate and compare the performances of three different Artificial Neural Network (ANN) architectures in estimating live animal weight.








The rest of this paper is organized as follows. The related work is reviewed in Section 2. In Section 3, we present the materials and methods used in the study. We present our experimental results and discussion in Section 4 and Section 5, respectively. Finally, in Section 6, we conclude the paper.




2. Related Work


In this section, we provide essential background on livestock weight estimation with a review of significant past research. Our focus in this review is on the work with indirect measurement approaches based on image processing techniques. We also summarize them in Table 1.



There are several studies in the literature that are based on image processing techniques on 2D images. In a study by Weber et al., the live body weight of cattle was estimated using dorsal area images taken from above using a kind of fence system [7]. Their system first performs segmentation and then generates a convex hull around the segmented area to obtain features to feed a Random Forest-based regression model. Tasdemir and Ozkan performed a study where they predicted the live weight of cows using an ANN-based regression model [8]. They determined various body dimensions such as wither height, hip height, body length, and hip width applying photogrammetric techniques on images of cows captured from various angles. Wang et al. developed an image processing-based system to estimate the body weight of pigs [9]. Their main approach was to process images captured from above to extract features such as area, convex area, perimeter, and so on. Then, using these features, they trained an ANN-based regression model for weight prediction. A Fuzzy Rule-Based System was also utilized in cattle weight estimation by Anifah and Haryanto [10]. They obtained 2D side images of cattle from a very close distance of 1.5 m. After applying the Gabor filter to the images, they obtained body length and circumference as features. Finally, they designed a fuzzy logic system to estimate body weight.



Three-dimensional imaging techniques also found application in body weight estimation systems. Hansen et al. used a 3D Kinect-like depth camera to obtain the views of cows from above as they passed along a fence [11]. Applying thresholding, they obtained the segmented area of cows to reach a body weight estimate. In another study where a 3D Kinect camera was used, Fernandes et al. processed images taken from above of pigs by applying two segmentation steps [12]. Then, they extracted features from segmented images such as body area, volume, width, and height to feed a linear regression model to obtain the weight estimate. In a similar study, Cominotte et al. developed a system to capture images of cattle using a 3D Kinect camera [13]. They trained and compared a number of linear and non-linear regression models by feeding them with features extracted from segmented images. In a study by Martins et al., a 3D Kinect camera was used to capture images of cows from lateral and dorsal perspectives [14]. They used several measurements obtained from these images to run a Lasso regression model to estimate body weight. Nir et al. used a 3D Kinect camera as well to take images of dairy heifers to estimate height and body mass [15]. Their approach was to fit an ellipse to the body image to calculate some features. Then, they used these features to train various linear regression models. Song et al. created a system to estimate the body weight of cows using a 3D camera system [16]. Similar to previous studies, they extracted morphological features from 3D images such as hip height, hip width, and rump length. Combining these features with some other cow data such as days in milk, age, and parity, they trained multiple linear regression models. Another study that employed a 3D Kinect camera is the one conducted by Pezzuolo et al. [17]. They captured body images of pigs using two cameras from top and side, and then extracted body dimensions from images such as heart girth, length, and height using image processing techniques. They developed linear and non-linear regression models based on these dimensions to predict weight.



Advanced scanning devices were also introduced in body weight estimation studies. Le Cozler et al. used a 3D full-body scanning device to obtain very detailed body images of cows [18]. Then, they computed body measures from these 3D images such as volume, area, and other morphological traits. Using these measures, they trained and compared several regression models. Stajnko et al. developed a system to make use of thermal camera images of cows to extract body features and then used them in several linear regression models to estimate body weight [19].



Stereo vision techniques are also used in the determination of live animal weight. Shi et al. developed a regression model to analyze and estimate the body size and live weight of farm pigs under indoor conditions in a farm [20]. Their system was based on a binocular stereo vision system and a special fence system through which animals passed for taking the measurements. They segmented the images obtained from the stereo system using a depth threshold and predicted the body length and withers height, then the body weight. Some other notable studies using stereo vision are by Nishide et al. and Yamashita et al. [21,22].



Deep learning-based approaches are very popular today due to their success in image-processing applications. Deep learning is a special form of neural network algorithm. Although it has achieved the most advanced results in many fields, its use in determining the weight of livestock is limited [23]. There are studies that apply deep learning algorithms and determine the weight of pigs [24,25].



When we examine the prior research on the estimation of live body weight of farm animals such as pigs, cattle, cows, and heifers, there is a common approach to capturing images of animals that the animals are forced to move into special types of boxes or fences, or they are forced to pass through a special passage. This operation is very similar to traditional weight measurement with scales, and therefore, it also requires the separation of animals from their natural environment, and it causes stress-related problems in their health and milk yield [3]. Our proposed approach is superior to this in that animals’ pictures are taken in their natural environments without the need for a special measurement station. Additionally, our approach is totally contactless and pictures do not need to be taken from very close proximity, unlike previous studies. One other advantage of our proposed approach provides a simpler structure and setup composed of relatively cheaper hardware that can be accessible and affordable for many farms of small to large scale. Last but not least, we employ modern and state-of-the-art deep learning-based image processing techniques in our system, which is one of the few such studies.




3. Materials and Methods


3.1. Overview of the Proposed Method


Our proposed system is composed of a number of steps performing various tasks from raw data collection to model training. These steps are presented in Figure 1 as block components and they are described in their respective subsections.




3.2. Data Collection


In the study, a stereo setup was prepared to obtain animal images. The stereo mechanism is used to capture digital images with stereo vision techniques used in computer vision and to obtain some inferences from these images. The setup used in the study is shown in Figure 2.



During the data collection phase, 85 animals were photographed from the side and the back with this setup. In total, 170 pairs and 340 stereo images were obtained. Using stereo vision techniques on these images, the distance of each animal to the camera plane was calculated.



Architectural components of the stereo setup are given in Figure 2 and their relationships are presented in Figure 3. At the heart of the system is a Raspberry Pi 4 microcomputer with 4 GB of RAM, where the Python code we developed runs to capture animal images. It is powered by a mobile power supply. Two Microsoft Lifecam Studio Webcams are connected to it via two USB ports. A mobile phone with Android OS acts as a monitor and it is connected to Raspberry Pi via Video Capture USB 2.0 to HDMI converter. Finally, a wireless mini integrated keyboard and touchpad are used to control the device.




3.3. Stereo Vision and Image Correction


Stereo vision is a technique used to calculate the distance and position of a point to the camera plane viewed by two cameras whose relative positions and projections are known. A single camera is a mapping between a 3D world and a 2D image [26,27,28]. The geometry of a stereo setup consisting of two identical cameras is shown in Figure 4.



Here,   O l   and Or are the focal points of both cameras, f is the focal length of both cameras, P is any point in space, Z is the distance of this point in space to the camera plane, T is the translation value between the two cameras.   x l   and   x r   are reflections of the P point on both viewing planes. This geometry creates similar triangles between the   P −  x l  −  x r    and   P −  O l  −  O r    points. The Z value can be easily calculated using Equation (1) and the similarity theorem.


    T − (  x l  −  x r  )   Z − f   =  T Z  → Z =   f T    x l  −  x r    → Z =   f T  d   



(1)







In Figure 4, the   x l   –   x r   value is expressed with the variable d. In stereo vision, the d value is also expressed as disparity. In order to increase the accuracy of the stereo vision calculation, stereo calibration is required. Stereo calibration is related to the rotation matrix R, which defines the relative rotation between the coordinate systems of the two cameras, and the transformation vector T, which defines the translation of the two camera centers. After a correctly performed calibration, R and T matrices are obtained. By using the calibration matrices obtained as a result of stereo calibration, corrections or rectification processes can be made on stereo images. Stereo rectification ensures that objects are positioned correctly in pairs of images to match the stereo arrangement. Thus, the stereo distance calculation is performed with less cost and higher accuracy. Stereo rectification aligns the image pair for more reliable stereo distance results [28]. Example images obtained with the help of stereo setup are shown in Figure 5.




3.4. Deep Learning and Semantic Segmentation


Deep learning, a sub-branch of machine learning, is used in many different fields. Deep learning algorithms offer better results than traditional machine learning algorithms if more data are provided. Therefore, object segmentation approaches such as Mask R-CNN [29] based on deep learning can also be used to perform tasks such as weight estimation. Semantic segmentation is used to determine object boundaries. In this study, deep learning semantic segmentation methods were used on stereo images, and then the areas covered by the animals in the images were determined. Semantic segmentation classifies each pixel in the image as belonging to a class. Various models have been introduced in semantic segmentation over time: the Fully Convolutional Network [30], which is based on deep learning; U-Net [31], which takes its name from its architecture and is used especially in medical problems; and Deeplab v3+ [32], which showed the highest success in segmentation tasks in the PASCAL VOC 2012 dataset in 2018. In this study, the PASCAL VOC 2012 dataset and Deeplab v3+ segmentation model were used to perform segmentation tasks on the rectified images. Deeplab v3+ architecture is shown in Figure 6.



The segmentation results on the images taken with the model used are shown in Figure 7 and Figure 8.




3.5. Dataset Creation


After completing the segmentation processes in all images, the number of pixels occupied by the animals was calculated in the segmentation maps of the images from the left and right cameras for each animal. The distance of each animal to the camera plane was calculated by stereo calculation technique using segmentation maps. In order to calculate the distance of the animal to the camera plane from the segmentation maps, the position of the left border of the animal in pixels on the X-axis was determined in each of the image pairs. The disparity (d) value was calculated by subtracting the limit value in the segmentation map from the left camera and the limit value in the segmentation map coming from the right camera. Figure 9 shows the pixel numbers of the areas covered by a sample animal in the stereo image pair and the X-axis value of the left border of the animal in both images.



The stereo distance calculation for a single animal is conducted as follows. As seen in Figure 9, if the   X L   (Left camera view) and   X R   (Right camera view) values are subtracted from each other, the disparity (d) value is found as 23 pixels. Along with this value, the distance value can be easily calculated using the focal length (f) from the stereo calibration matrices and the shift value (T) between the cameras from the translation matrix. As a result of the camera calibration processes, the focal length distance was obtained as 646.45 cm. The translation T value for our setup is 9.92 cm. The stereo distance calculation for the example animal in Figure 8 was obtained as in Equation (2).


  Z =   f T  d  →   646.45 × 9.92  23  = 278.82  



(2)







After calculating the distance values for each animal, the number of pixels occupied by the animals in the images was also determined. Using all these values, a dataset consisting of 85 rows was created for a total of 85 animals. The created dataset is shown in Table 2 and Table 3, and the distances are written in meters.




3.6. Model Training


In the images obtained, the number of pixels in the area occupied by the animal, that is, the segmentation data, does not make any sense on its own. Even if an animal is light in weight, it will take up a lot of space in the image if it is viewed close to the plane of the camera. The opposite is also possible. Pixel numbers are directly proportional to weight, and disparity value is inversely proportional to weight. An increase in the disparity value means that the animal is viewed from a point close to the camera plane. In the study, distance-related errors are eliminated, since the stereo camera setup is calibrated. In the images obtained, the values were made meaningful by considering the stereo distance variable. When the prepared dataset is examined, it is seen that there are data at very different scales from each other. While the pixel numbers in the image are expressed in thousands, the stereo distances are expressed in a few meters, and the disparity values are expressed in the range of 5 and 30 pixels. Training a neural network with such inputs may take a lot of time and the network may not be successful enough. Data at such different scales should be expressed as values close to each other by normalization techniques. The main reason for this is that these features are multiplied by the model weights. Data normalization also accelerates the training time by transforming the raw data into a specific range. Data normalization is extremely useful for modeling applications where the inputs are often at very different scales [33]. In this study, the Z-score normalization technique was used. Here, the Z-score value is calculated by Equation (3), where  μ  represents the arithmetic mean of the data,  σ  standard deviation, and   Z k   the data to be normalized.


   Z  k    ′   =    Z k  − μ  σ   



(3)







In the study, three different artificial neural networks were trained after the data obtained from the images taken from different directions were normalized. The first network (ANN-1) is trained with image data taken from the side, the second network (ANN-2) from the back, and the third network (ANN-3) from both directions. A total of 90% of the dataset is reserved for training artificial neural networks and 10% for testing. The architecture of artificial neural networks used in the proposed system is shown in Table 4.



ANN-1 and ANN-2 artificial neural networks used for training are fully connected networks with a three-element input layer, two hidden layers consisting of 64 nodes, and an output layer consisting of one element. Each network has 4488 parameters. The ReLU function is used as the activation function, the mean absolute error function is used as the loss function, the Adam optimizer is used as the optimizer, and a constant value of   10  − 3    is used as the learning rate value. A total of 1000 training steps were seen as sufficient. The ANN-3 network has the same features as other networks. It covers the entire dataset. Therefore, the number of inputs is 8 and the total number of parameters is 4818.




3.7. Recommended Method for Weight Prediction


The performed study is a hybrid system that makes weight estimation using semantic segmentation and stereo distance data together. The basic operation steps of this system for weight predictions are shown in Figure 10.





4. Results


In this section, we present the prediction performances of the neural networks trained in a comparative manner. The performance levels of the networks are shown in Figure 11.



The success rate of the ANN-1 network is higher than the ANN-2 network. The reason for this is the inability of the images taken from the back to reveal the general body dimensions of the animal. On the other hand, the performance rate of the ANN-3 network is higher than the other two networks. This is because the network was trained with data from images taken from both angles of animals. Randomly, 10% of the taken images were not used in the training but in the testing of the estimated animal weights. Weight estimation was made separately for the three proposed networks and the results are shown in Table 5, Table 6 and Table 7.



As seen in Table 5, the estimations for the test data made by the ANN-1 network vary between approximately ±50 kg. Note that ANN-1 is only trained with data obtained from the side. In Table 6, the error amounts in the estimations made by the ANN-2 network, which was trained only with photographs taken from the back, vary between approximately ±50 kg. However, the error rates increased dramatically in animals with id numbers 36, 70, and 81. This significantly reduces the accuracy of the network trained with images taken from behind. The reason for this is the inability of the images taken from the back to reveal the general body dimensions of the animal. Table 7 shows the results obtained from the ANN-3 network trained with the entire dataset. In most cases, the predictions were made with a margin of error of approximately ±20 kg, and much more successful results were obtained than the first two networks. The animal image taken in prediction number 36 with a high amount of error is very close to the camera plane. The image of the animal taken very close to the camera plane causes serious errors as it cannot be adequately represented in the dataset. For this reason, it would be more appropriate to take the images to be obtained at reasonable distances not very close to the camera plane.



In this study, the K-fold cross-validation technique was used to test the validity of the proposed method and the accuracy of the results obtained. K-fold cross-validation is one of the methods of splitting the dataset for evaluation of classification models and training of the model [34,35]. This method is used to generate random layers. Each layer represents a combination of training data subset and test data subset sections for training and validating machine learning models. For each layer, a certain accuracy value is obtained for the model. For example, in the case of 10-fold cross-validation, the overall accuracy is estimated by averaging the accuracy values produced by all 10 folds. For any dataset with a given number of samples, there are many possible combinations of training and test datasets that can be generated. Some of these datasets are used to train the model and some are used to test the success of the model. Therefore, it allows each divided part to be used separately for both training and testing. The representation of the K-fold cross-validation method for K = 10 is given in Figure 12.



Training and testing the model up to K can take a long time and can be costly in terms of computation and time for large datasets. On the other hand, it provides a reliable result. In this study, the K value was accepted as 10, and validity tests were carried out. Here, the test and training images at each step are meaningfully segmented. A similar situation was repeated at each K step and validity tests were performed on different images. In this study, the validity of the ANN-3 architecture, which was trained using both side and rear images, was tested with K-fold. The results obtained are given in Figure 12. When the predicted values obtained in each K step are compared with the actual values in Table 8, it can be concluded that the proposed model is quite successful. It is thought that 85 animals are not enough to successfully train a neural network. In addition, the weight distribution of the animals, whose images were taken with the stereo device, is generally around 400 kg. Therefore, the estimates made by nets are generally more successful for animals weighing 400 kg. Another weakness of the dataset we created is that animal images are generally taken from 6 to 8 m away. During the image acquisition phase, it was mostly not possible to take images from closer distances, such as 2–3 m, due to frightening the animals. At these distances, stereo vision works more successfully than at distances of 6–8 m. Utilizing all this information, more successful results can be obtained from a trained network with more animal images whose weights are normally distributed. In order to train a neural network successfully, the dataset on which the neural network is trained must be large enough, that is, it must consist of a sufficient number of observations [36]. All known possible variations of the problem area should be added to the dataset. Adequate data delivery to a system is necessary to obtain a robust and reliable network [37,38]. For example, the generated third neural network is trained with data created with images taken from both the side and the back. The amount of error in the weight estimations made by this neural network decreased to the range of ±20 kg.




5. Discussion


In this study, an attempt was made to estimate live animal weight by using stereo vision and semantic segmentation methods in the literature. Within the scope of the study, a stereo vision device was prepared, and stereo images of 85 cattle whose weights were known beforehand were obtained with this setup. Segmentation maps of the animals in these images were created with the Deeplab v3+ deep learning model, which is one of the semantic segmentation models.



Using the segmentation maps, the number of pixels covered by each animal in the image and their distance to the camera plane were calculated using the stereo distance calculation technique. A dataset was created by combining these obtained data. The dataset was created from the data obtained from photographs of animals taken from two different angles, from the side, and from the back.



Using this dataset, three different artificial neural networks, which are architecturally similar to each other, are trained. When the trained neural networks were compared, it was seen that the third neural network trained with the whole dataset was significantly more successful than the first two neural networks. At this point, it is clear that neural networks to be trained with datasets created with images taken from more angles will be more successful. For example, top images of cattle contain important information about the animal’s body structure. It can be said that networks trained with a dataset that includes top-shot data, if possible, will be more successful.



In addition, it is possible to say that neural networks will make more successful predictions if the quality and quantity of the dataset are increased. In the resulting estimations, although rare, dramatically incorrect estimations were observed. Weight estimations of animals that were limited in number in the dataset, that were light in weight, and whose stereo distance was very different from the rest of the dataset were found to be relatively unsuccessful. Therefore, it is clear that creating a more comprehensive and homogeneously distributed dataset will significantly increase the performance of the models.



Moreover, characteristics such as race and gender of animals directly affect their weight. For example, if the body sizes of two animals of different breeds are assumed to be exactly the same, it will be seen that the weights of these two animals are different from each other. At this point, in the study, a deep learning method that recognizes the breed and gender of the animal can be developed and the performance in weight estimation can be increased with a separate training model for each breed.




6. Conclusions


In this study, we considered the problem of live weight prediction of farm animals from a computer vision perspective. We applied state-of-the-art stereo vision and deep learning-based semantic segmentation using the setup we created that consists of a Raspberry Pi 4 microcomputer and two identical cameras. We used this setup to capture images of 85 farm animals taken from different angles. Applying stereo distance computation and semantic segmentation, we created a dataset to train various ANN models. Our test results of the trained ANNs suggest that our proposed system achieves good performance in terms of weight prediction. The most significant feature of the system is that it does not require the separation of animals from their natural environment to measure their weight, unlike traditional systems. This is particularly important because the separation is known to cause stress and negatively affect health and milk yield. Therefore, our system provides a convenient and contact-free weight measurement with minimal measurement error. The main limitation of our study is the number of images captured from real farm environments. It would be possible to achieve more accurate measurement predictions if more data were available and ANNs were trained with more data.
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Figure 1. General block diagram of the study. 
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Figure 2. The stereo vision mechanism used in the study. 
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Figure 3. Architectural components of the stereo setup. 
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Figure 4. Diagram of stereo camera system. 
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Figure 5. Rectified and unrectified stereo images: (a,e) Original image taken from left camera. (b,f) Original image taken from right camera. (c,g) Rectified left camera view. (d,h) Rectified right camera view. 
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Figure 6. Deeplab v3+ Architecture. 
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Figure 7. Segmentation results in stereo images taken from the side: (a) Left camera input image; (b) Left camera segmentation map; (c) Left camera segmentation overlay; (d) Right camera input image; (e) Right camera segmentation map; (f) Right camera segmentation overlay. 
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Figure 8. Segmentation results in stereo images taken from the rear: (a) Left camera input image; (b) Left camera segmentation map; (c) Left camera segmentation overlay; (d) Right camera input image; (e) Right camera segmentation map; (f) Right camera segmentation overlay. 
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Figure 9. Disparity value and pixels count of the animal in the image: (a) Left camera segmentation map; (b) Right camera segmentation map. 
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Figure 10. Basic Operation Steps for Weight Prediction. 






Figure 10. Basic Operation Steps for Weight Prediction.



[image: Applsci 13 06944 g010]







[image: Applsci 13 06944 g011 550] 





Figure 11. Loss graphs of artificial neural networks: (a) Loss graph of ANN-1 network; (b) Loss graph of ANN-2 network; (c) Loss graph of ANN-3 network. 
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Figure 12. General structure of the k-fold cross-validation method. 
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Table 1. Summary of the previous studies.
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	Reference
	Animal Type
	Image Type
	Method
	Environment





	[7]
	cattle
	2D
	segmentation + convex hull, random forest regression
	fence system



	[8]
	cow
	2D
	ANN Regression
	-



	[9]
	pig
	2D
	ANN Regression
	-



	[10]
	cattle
	2D
	gabor filter, fuzzy logic
	-



	[11]
	cow
	3D
	segmentation
	fence system



	[12]
	pig
	3D
	segmentation, linear regression
	-



	[13]
	cattle
	3D
	segmentation, linear and non-linear regression
	-



	[14]
	cow
	3D
	Lasso regression
	fence system



	[15]
	heifer
	3D
	ellipse fitting, linear regression
	narrow passage



	[16]
	cow
	3D
	linear regression
	-



	[17]
	pig
	3D
	linear and non-linear regression
	-



	[18]
	cow
	3D full-body scan
	linear regression
	special scanning station



	[19]
	cow
	thermal
	linear regression
	-



	[20]
	pig
	stereo vision
	least squares regression
	fence system



	[21]
	calf
	stereo vision
	linear regression
	-



	[22]
	calf
	stereo vision
	linear regression
	-



	[23]
	heifer
	2D
	deep learning-based image processing and regression
	-



	[24]
	pig
	3D
	deep learning-based image processing and regression
	-



	[25]
	pig
	2D
	deep learning-based image processing and regression
	-
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Table 2. Dataset created using semantic segmentation and stereo images.
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	ID
	Left Side Shooting (Pixel)
	Right Side Side Shooting (Pixel)
	Side Pixel Difference (Pixel)
	Side Distance (m)
	Left Back Shooting (Pixel)
	Right Back Shooting (Pixel)
	Back Pixel Difference (Pixel)
	Back Distance (m)
	Real Weight (kg)





	1
	28,359
	28,270
	11
	5.83
	13,487
	11,858
	16
	4.00
	448



	2
	23,355
	23,495
	10
	6.41
	6915
	7563
	10
	6.41
	408



	3
	53,850
	54,433
	23
	2.78
	25,761
	23,903
	22
	2.91
	464



	4
	22,388
	22,388
	10
	6.41
	20,769
	21,169
	18
	3.56
	453



	5
	32,924
	33,902
	16
	4.00
	14,208
	12,965
	15
	4.27
	399



	6
	27,173
	27,186
	14
	4.58
	11,872
	10,927
	12
	5.34
	385



	7
	16,891
	16,602
	8
	8.01
	15,219
	18,846
	16
	4.00
	421



	8
	55,587
	54,904
	18
	3.56
	14,044
	14,221
	20
	3.20
	503



	9
	28,354
	28,732
	9
	7.12
	5688
	5465
	7
	9.16
	529



	10
	60,146
	59,403
	34
	1.88
	9819
	10,676
	24
	2.67
	291



	11
	24,671
	25,601
	14
	4.58
	8627
	9039
	12
	5.34
	337



	12
	35,293
	35,112
	13
	4.93
	17,373
	17,537
	18
	3.56
	490



	13
	7756
	8485
	6
	10.69
	7732
	7686
	13
	4.93
	259



	14
	37,897
	38,291
	14
	4.58
	16,978
	17,075
	21
	3.05
	470



	15
	15,376
	16,865
	8
	8.01
	20,588
	19,499
	15
	4.27
	446



	16
	45,773
	46,440
	17
	3.77
	28,808
	30,308
	25
	2.56
	519



	17
	17,356
	17,062
	9
	7.12
	16,494
	16,498
	10
	6.41
	474



	18
	64,575
	63,646
	27
	2.37
	10,830
	10,623
	20
	3.20
	388



	19
	22,841
	23,861
	9
	7.12
	7100
	6923
	9
	7.12
	449



	20
	21,445
	20,735
	9
	7.12
	10,806
	10,364
	10
	6.41
	453



	21
	17,529
	16,663
	8
	8.01
	12,026
	11,422
	13
	4.93
	405



	22
	14,031
	14,031
	7
	9.16
	8818
	9227
	11
	5.83
	376



	23
	10,215
	10,117
	6
	10.69
	9339
	8508
	7
	9.16
	395



	24
	22,478
	22,313
	9
	7.12
	7753
	9370
	10
	6.41
	445



	25
	26,216
	25,909
	13
	4.93
	8568
	9541
	12
	5.34
	367



	26
	16,398
	16,649
	8
	8.01
	2442
	2194
	2
	32.06
	429



	27
	17,876
	17,985
	10
	6.41
	12,635
	10,864
	9
	7.12
	413



	28
	38,094
	38,575
	14
	4.58
	26,909
	29,423
	25
	2.56
	515



	29
	65,217
	63,783
	26
	2.46
	38,327
	38,258
	28
	2.29
	513



	30
	17,561
	18,930
	11
	5.83
	10,185
	9289
	12
	5.34
	329



	31
	42,775
	42,389
	18
	3.56
	5799
	6216
	10
	6.41
	395



	32
	22,861
	22,793
	8
	8.01
	8307
	8269
	8
	8.01
	518



	33
	21,796
	21,849
	8
	8.01
	8665
	8652
	9
	7.12
	491



	34
	17,212
	16,648
	8
	8.01
	9280
	9070
	9
	7.12
	418



	35
	39,769
	39,128
	18
	3.56
	22,879
	21,255
	24
	2.67
	414



	36
	26,027
	26,613
	13
	4.93
	18,094
	17,368
	16
	4.00
	417



	37
	72,247
	71,788
	30
	2.13
	45,864
	45,521
	59
	1.08
	423



	38
	53,922
	53,663
	20
	3.20
	12,417
	13,487
	20
	3.20
	444



	39
	23,689
	23,606
	15
	4.27
	12,118
	12,222
	14
	4.58
	326



	40
	16,112
	16,544
	9
	7.12
	5726
	5370
	5
	12.82
	389



	41
	52,820
	51,293
	25
	2.56
	18,313
	18,414
	23
	2.78
	384



	42
	47,105
	47,196
	20
	3.20
	25,168
	25,835
	22
	2.91
	468



	43
	22,610
	22,732
	11
	5.83
	3485
	3543
	6
	10.69
	352



	44
	85,009
	84,174
	50
	1.28
	15,174
	14,346
	25
	2.56
	304



	45
	44,624
	44,198
	20
	3.20
	10,000
	10,126
	11
	5.83
	418



	46
	47,577
	47,492
	18
	3.56
	7215
	6680
	10
	6.41
	444



	47
	27,168
	27,367
	10
	6.41
	5648
	5795
	7
	9.16
	472



	48
	43,968
	44,156
	20
	3.20
	28,421
	29,072
	25
	2.56
	447



	49
	27,869
	29,934
	18
	3.56
	7089
	6826
	4
	16.03
	446



	50
	17,976
	19,213
	9
	7.12
	11,372
	10,612
	7
	9.16
	484



	51
	28,860
	29,024
	11
	5.83
	7773
	7242
	8
	8.01
	475



	52
	44,589
	44,200
	18
	3.56
	6112
	5523
	10
	6.41
	406



	53
	35,882
	36,441
	14
	4.58
	5838
	5705
	9
	7.12
	429



	54
	15,853
	16,071
	7
	9.16
	7081
	7606
	7
	9.16
	443



	55
	26,192
	25,951
	11
	5.83
	8405
	7094
	10
	6.41
	419



	56
	85,252
	84,638
	36
	1.78
	26,276
	28,467
	37
	1.73
	413



	57
	39,223
	38,667
	17
	3.77
	9791
	9380
	14
	4.58
	396



	58
	33,084
	32,123
	10
	6.41
	4714
	4567
	9
	7.12
	503



	59
	37,999
	37,285
	15
	4.27
	15,396
	15,864
	18
	3.56
	450



	60
	34,845
	34,814
	14
	4.58
	5951
	5853
	12
	5.34
	397



	61
	73,264
	72,385
	25
	2.56
	4873
	4534
	10
	6.41
	451



	62
	67,691
	68,701
	40
	1.60
	6715
	7211
	30
	2.13
	258
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Table 3. Dataset created using semantic segmentation and stereo images (cont.)
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	ID
	Left Side Shooting (Pixel)
	Right Side Side Shooting (Pixel)
	Side Pixel Difference (Pixel)
	Side Distance (m)
	Left Back Shooting (Pixel)
	Right Back Shooting (Pixel)
	Back Pixel Difference (Pixel)
	Back Distance (m)
	Real Weight (kg)





	63
	12,482
	12,607
	7
	9.16
	3774
	3962
	3
	21.37
	410



	64
	24,641
	24,474
	12
	5.34
	21,629
	21,273
	19
	3.37
	423



	65
	20,079
	19,978
	8
	8.01
	5726
	5492
	6
	10.69
	458



	66
	17,766
	17,845
	8
	8.01
	13,943
	13,465
	11
	5.83
	462



	67
	16,253
	16,783
	7
	9.16
	6386
	6398
	7
	9.16
	436



	68
	18,592
	18,507
	8
	8.01
	6002
	6056
	8
	8.01
	409



	69
	19,406
	19,573
	25
	2.56
	5575
	5958
	26
	2.46
	133



	70
	45,515
	44,650
	18
	3.56
	17,590
	17,739
	16
	4.00
	481



	71
	13,850
	13,713
	22
	2.91
	6753
	6239
	18
	3.56
	131



	72
	26,396
	27,250
	18
	3.56
	13,920
	12,953
	18
	3.56
	298



	73
	37,666
	37,200
	14
	4.58
	8633
	8590
	14
	4.58
	438



	74
	24,942
	24,704
	10
	6.41
	11,840
	12,272
	14
	4.58
	445



	75
	28,717
	28,191
	12
	5.34
	6477
	6478
	6
	10.69
	460



	76
	20,346
	19,837
	12
	5.34
	4541
	4541
	10
	6.41
	283



	77
	35,896
	36,164
	16
	4.00
	9569
	8195
	12
	5.34
	398



	78
	30,093
	30,029
	12
	5.34
	11,402
	9606
	12
	5.34
	450



	79
	24,082
	23,725
	14
	4.58
	7662
	7535
	14
	4.58
	300



	80
	16,450
	16,536
	9
	7.12
	4717
	4537
	9
	7.12
	312



	81
	13,613
	13,582
	7
	9.16
	7379
	7372
	10
	6.41
	357



	82
	40,195
	40,141
	22
	2.91
	3831
	3852
	10
	6.41
	294



	83
	21,014
	20,703
	8
	8.01
	9017
	8616
	10
	6.41
	465



	84
	18,571
	18,758
	8
	8.01
	5314
	5374
	5
	12.82
	453



	85
	16,099
	16,051
	7
	9.16
	9067
	9352
	11
	5.83
	417
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Table 4. Properties of artificial neural networks used in the proposed system.
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	Architecture
	Num. of Elements in Input Layer
	Num. of Nodes in the First Hidden Layer
	Num. of Nodes in the Second Hidden Layer
	Num. of Elements in Output Layer
	Total Num. of Parameters in the Network





	ANN-1
	3
	64
	64
	1
	4488



	ANN-2
	3
	64
	64
	1
	4488



	ANN-3
	8
	64
	64
	1
	4818
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Table 5. Prediction values on the test dataset of ANN-1 network.
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	ID
	Left Side Shooting (Pixel)
	Right Side Shooting (Pixel)
	Side Pixel Difference (Pixel)
	Real Weight (kg)
	Estimated Weight (kg)
	Difference (kg)





	9
	60,146
	59,403
	34
	291
	275.08
	15.17



	21
	14,031
	14,031
	7
	376
	418.70
	−42.70



	36
	72,247
	71,788
	30
	423
	421.77
	1.22



	44
	44,624
	44,198
	20
	418
	396.78
	21.21



	47
	43,968
	44,156
	20
	447
	394.97
	52.02



	64
	20,079
	19,978
	8
	458
	446.57
	11.42



	67
	18,592
	18,507
	8
	409
	434.73
	−25.73



	70
	13,850
	13,713
	22
	131
	139.36
	−8.36



	81
	40,195
	40,141
	22
	294
	324.35
	−30.35
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Table 6. Prediction values on the test dataset of ANN-2 network.
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	ID
	Left Back Shooting (Pixel)
	Right Back Shooting (Pixel)
	Back Pixel Difference (Pixel)
	Real Weight (kg)
	Estimated Weight (kg)
	Difference (kg)





	9
	9819
	10,676
	24
	291
	302.66
	−11.66



	21
	8818
	9227
	11
	376
	415.95
	−39.95



	36
	45,864
	45,521
	59
	423
	632.53
	−209.53



	44
	10,000
	10,126
	11
	418
	422.55
	−4.55



	47
	28,421
	29,072
	25
	447
	492.18
	−45.18



	64
	5726
	5492
	6
	458
	441.39
	16.60



	67
	6002
	6056
	8
	409
	425.11
	−16.11



	70
	6753
	6239
	18
	131
	332.30
	−201.30



	81
	3831
	3852
	10
	294
	391.84
	−97.84
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Table 7. Prediction values on the test dataset of ANN-3 network.
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	ID
	Left Side Shooting (Pixel)
	Right Side Shooting (Pixel)
	Side Pixel Difference (Pixel)
	Side Distance (m)
	Left Back Shotting (Pixel)
	Right Back Shotting (Pixel)
	Back Pixel Difference (Pixel)
	Back Distance (m)
	Real Weight (kg)
	Estimated Weight (kg)
	Difference (kg)





	9
	60,146
	59,403
	34
	1.88
	9819
	10,676
	24
	2.67
	291
	281.71
	9.29



	21
	14,031
	14,031
	7
	9.16
	8818
	9227
	11
	5.83
	376
	389.12
	−13.12



	36
	72,247
	71,788
	30
	2.13
	45,864
	45,521
	59
	1.08
	423
	566.15
	−143.15



	44
	44,624
	44,198
	20
	3.20
	10,000
	10,126
	11
	5.83
	418
	389.92
	28.08



	47
	43,968
	44,156
	20
	3.20
	28,421
	29,072
	25
	2.56
	447
	438.57
	8.43



	64
	20,079
	19,978
	8
	8.01
	5726
	5492
	6
	10.68
	458
	456.09
	1.91



	67
	18,592
	18,507
	8
	8.01
	6002
	6056
	8
	8.01
	409
	430.47
	−21.47



	70
	13,850
	13,713
	22
	2.91
	6753
	6239
	18
	3.56
	131
	130.8
	0.2



	81
	40,195
	40,141
	22
	2.91
	3831
	3852
	10
	6.41
	294
	272.02
	21.98
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Table 8. Example of a table showing that its caption is as wide as the table itself and justified.
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	K
	Real Weight
	Estimated Weight





	1
	399.8889
	403.3733



	2
	403.8889
	395.3233



	3
	390.6667
	407.6100



	4
	378.5556
	381.4744



	5
	451.0000
	447.5600



	6
	436.0000
	431.0100



	7
	434.5000
	436.4238



	8
	384.8750
	382.3738



	9
	380.2500
	410.3075



	10
	459.8750
	468.5738



	Average
	411.9500
	416.4030
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