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Abstract: Electroencephalographic (EEG) signal processing and machine learning can support neu-
rologists” work in discriminating Psychogenic Non-Epileptic Seizure (PNES) from epilepsy. PNES
represents a neurological disease often misdiagnosed. Although the symptoms of PNES patients
can be similar to those exhibited by epileptic patients,EEG signals during a psychogenic seizure
do not show ictal patterns such as in epilepsy. Therefore, PNES diagnosis requires long-term EEG
video. Applying signal processing and machine-learning methodologies could help clinicians find
helpful information in the clinical diagnosis of PNES by analyzing EEG signals registered in resting
conditions and in a short time. These methodologies should prevent long EEG recording sessions
and avoid inducing seizures in the subjects. The aim of our study is to develop and validate several
machine-learning models on a larger dataset, consisting of 225 EEGs (75 healthy, 75 PNES, and
75 subjects with epilepsy). A deep analysis of our results shows that changes in the evaluation
strategy led to changes in accuracy from 45% to 83.98% for a standard Light Gradient Boosting
Machine (LGBM) classifier. Our findings suggest that it is necessary to operate a very rigorous control
in terms of experimental data collection (patient selection, signal acquisition) and terms of validation
strategies to obtain and reproducible results.

Keywords: epilepsy; PNES; quantitative EEG; data mining; classification

1. Introduction

Psychogenic Non-Epileptic Seizures (PNES) and epilepsy are two distinct conditions
that can present with similar symptoms, particularly during seizure activity. In fact,
both PNES and epilepsy can result in episodes that resemble seizures and may involve
convulsions, loss of consciousness, abnormal movements, and altered awareness. However,
the underlying causes and diagnostic criteria for these conditions are different.

Electroencephalography (EEG) is a non-invasive neurophysiological technique used to
measure and record the electrical activity of the brain. EEG provides valuable insights into
the brain’s functioning and is widely employed in clinical, research, and diagnostic settings.
EEG measures the fluctuations in electrical potentials generated by the synchronized
activity of neurons in the brain. It provides a representation of the brain’s electrical
activity over time. The electrical signals detected by EEG, commonly referred to as EEG
signals, represent the collective activity of the brain’s neurons over time. These signals
are characterized by different frequency bands, delta (0.54 Hz), theta (4-8 Hz), alpha
(8-13 Hz), beta (13-30 Hz), and gamma (30+ Hz). Each frequency band corresponds to
specific states of brain activity and provides insights into different aspects of brain function.

Analyzing EEG signals can be a valuable tool in the clinical diagnosis of PNES. In
fact, PNES is considered a psychological disorder related to psychological stressors or
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trauma. During a psychogenic seizure, the EEG readings typically do not show any specific
abnormal electrical discharges or epileptiform activity. In contrast, epilepsy is a neurological
disorder characterized by abnormal electrical activity in the brain. Epileptic seizures often
exhibit characteristic epileptiform discharges, such as spikes, sharp waves, or rhythmic
activity in specific regions of the brain.

Since the clinical presentation of PNES can resemble epileptic seizures, this makes
the distinction challenging. As a result, the patient is unaware that the seizures are not
epileptic. Moreover, anti-epileptic medications, which are effective in managing epileptic
seizures, generally do not alleviate PNES. Therefore PNES patients inaccurately diagnosed
as epileptic initiate inappropriate drug therapy, which results in adverse reactions [1-3].
Different studies assess the frequency of functional or PNES seizures during the COVID-19
outbreak [4,5]. These studies evidence the possible factors associated with worsening in
this population.

Although EEG alone cannot diagnose PNES because, during a PNES crisis, electrical
brain activity remains normal, it can provide supportive evidence when interpreted in
conjunction with other information. The most widely accepted and reliable method for
diagnosing PNES is video-EEG monitoring, which is considered the gold standard in the
field, and during which seizures are acquired spontaneously or provoked. Video-EEG
monitoring allows simultaneous recording of both video footage and EEG signals during
the occurrence of seizure events or seizure-like episodes. By capturing the patient’s physi-
cal movements, behaviors, and visible manifestations alongside the corresponding EEG
patterns, video-EEG helps establish a direct correlation between the clinical manifestations
and the observed electrical activity. This correlation aids healthcare professionals in distin-
guishing between epileptic seizures and PNES, as the manifestations in PNES are typically
not associated with specific abnormal electrical discharges. Stimulation techniques are
employed to trigger or induce seizures during EEG monitoring. This can include hyperven-
tilation, photic stimulation (exposure to flashing lights), or other techniques specific to the
individual patient. In PNES, the EEG remains unchanged or shows non-specific changes
during the induced events. In contrast, epileptic EEG recordings show IED (interictal
epileptiform discharge). However, it is challenging to distinguish IEDs often due to the
muscle artefacts that overlap the signal during the EEG crisis.

In addition, prolonged EEG monitoring over an extended period, such as several
hours or days, can increase the likelihood of capturing both typical and atypical events.
This long-term monitoring can provide a more comprehensive assessment of the EEG
patterns associated with PNES and aid in distinguishing them from epilepsy. Nevertheless,
long-term monitoring and recording are expensive and time-consuming.

Machine-learning methodologies can play a crucial role in optimizing EEG analysis
and reducing the need for long recording sessions while minimizing the risk of inducing
seizures in subjects. One of the purpose of machine-learning techniques is to extract relevant
features from the EEG signals, capturing important patterns and characteristics associated
with specific conditions. These features can be used to create concise representations
of the EEG data, allowing for efficient analysis and reducing the need for prolonged
recording sessions. By focusing on informative features, machine learning can help identify
key aspects of the EEG signals without requiring excessive recording time. Moreover,
machine-learning methods, such as for instance some data augmentation approaches,
can artificially expand the available dataset by generating synthetic EEG samples. This
approach can be used to simulate different scenarios, including seizure activity, without
the need to induce actual seizures in subjects. By incorporating augmented data into the
training process, machine-learning models can learn to recognize and classify patterns
associated with seizures, potentially reducing the dependence on inducing seizures during
recording sessions.

Regarding identifying new methods to support medical decisions, the quantitative
analysis sought to highlight differences between PNES and epileptics and healthy subjects.
Specifically, some studies are based on analyzing and classifying the semiology of PNES and
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epilepsy [6,7]. An example is reported in [8], where the authors describe a new method for
diagnosing PNESs. Fifty-five PNES video-EEG recordings were retrospectively analyzed
by four epileptologists and one psychiatrist blindly and classified into four distinct groups:
Hypermotor (H), Akinetic (A), Focal Motor (FM), and Subjective Symptoms(SS). Eleven
signs and symptoms frequently found in PNESs were chosen for statistical validation of
the classification. Agreement between ANN classification and visual classification reached
83.3%. In [9], the researchers present a pilot feasibility study with “Digital Semiology” (DS),
a novel seizure encoding software. It allows semi-automated annotation of the videos of
suspected events from a predetermined, hierarchical set of options, with highly detailed
semiologic descriptions, somatic localization, and timing. Sixty episodes from a mixed
adult and pediatric cohort from one level 4 epilepsy centre VEM archives were analyzed
using DS. The reports were compared with the standard free-form ones written by the same
epileptologists. The behavioural characteristics in the DS and free-form reports overlapped
by 78-80%. The present study represents an important step toward forming an annotated
video archive for machine-learning purposes.

Many other literature studies focus on EEG signal processing and machine learning.
In [10], the authors analyze short-term EEG data for classifying epilepsy and PNES subjects,
functional network, and EEG microstate features. Their results showed that the beta-band
is the most helpful EEG frequency sub-band as it performs best for classifying subjects.
The work was evaluated through 25 pairs of cross-validation. In [11], an automated dis-
crimination method from EEG signals is proposed to eliminate the misdiagnosis and long
inspection time of EEG recordings in PNES diagnosis. For this purpose, subbands of EEG
signals are determined from discrete wavelet transform (DWT), and then classification is
performed using ensemble classifiers fed with energy features extracted from the subbands.
Results show that in the TLE (Temporal Lobe Epilepsy), PNES, and healthy epoch classifi-
cation, performance evaluations were realized by using five-fold cross-validation method
and the highest accuracy of 97.2%, the sensitivity of 97.9%, and specificity of 98.1% were
achieved by applying the adaptive boosting method, and the highest accuracy of 87.1%, the
sensitivity of 86.0%, and specificity of 93.6% were attained using random under sampling
(RUS) boosting method in TLE patients, PNES patients, and healthy subject discrimination.
The study presented in [12] investigates the quantitative electroencephalography (QEEG)
features for PNES by evaluating the resting EEG spectral power changes during the periods
between seizures. Using Fast Fourier transformation (FFT), a spectral power analysis was
calculated for different EEG subbands from the EEG of 39 patients. As a result, six separate
EEG band powers were found (C3-high beta, C3-gamma, C3-gamma-1, C3-gamma-2, P3-
gamma, and P3 gamma-1) to be higher in the patients diagnosed with PNES than in the
control group.

Innovative diagnostic tools that exploit non-linear EEG analysis and deep learning
(DL) could provide essential support to physicians for clinical diagnosis. In [13], 18 patients
with new-onset ES and 18 patients with video-recorded PNES with normal interictal EEG
at visual inspection were enrolled. None of them were taking psychotropic drugs. A
convolutional neural network (CNN) scheme using DL classification was designed to
classify the two categories of subjects (ES vs. PNES). The proposed architecture performs
an EEG time-frequency transformation and a classification step with a CNN. The CNN
was able to classify the EEG recordings of subjects with ES vs. subjects with PNES with
94.4% accuracy, and a leave-one-patient-out cross-validation, providing high performance
in the assigned binary classification compared to standard learning algorithms. In addition,
a theoretical information analysis was carried out to interpret how CNN achieved this
performance. Specifically, the feature maps’ permutation entropy (PE) was evaluated
and compared in the two classes. In [14], the authors investigated the power spectrum
density (PSD) in resting-state EEGs to evaluate the abnormalities in PNES-affected brains.
Additionally, they used functional connectivity tools, such as phase lag index (PLI) and
graph-derived metrics, to observe better the integration of distributed information of
regular and synchronized multi-scale communication within and across inter-regional
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brain areas. Three classification models, namely, support vector machine (SVM), linear
discriminant analysis (LDA), and multilayer perceptron (MLP), were used to model the
relationship between the functional connectivity features. The best performance for the
participants” discrimination was obtained using the MLP classifier with an accuracy of
91.02% and a leave-one-out cross-validation.

Faiman et al. stated that quantitative analysis from resting-state electroencephalogram
(EEG) provides helpful information to support the diagnosis of seizure disorders [15].
Studies were selected from five databases and evaluated using the Quality Assessment of
Diagnostic Accuracy Studies-2. Results suggest that oscillations along the theta frequency
(4-8 Hz) may have a relevant role in idiopathic epilepsy, whereas in PNES, there was no
evident trend. However, by examining several studies, the authors put forth evidence
that many were subject to several methodological limitations, potentially introducing bias.
Specifically, they pointed out that studies using machine-learning methods should report
information such as model architecture and training parameters to guarantee reproducibil-
ity. Moreover, it is necessary to analyze EEG recordings that did not occur a few hours
before a seizure.

Recent studies in the field of seizure classification from EEG data have highlighted
the importance of adopting more stringent evaluation criteria. Specifically, Peng et al. [16]
proposed the leave-one-patient-out validation method based on the leave-one-out val-
idation criterion. Additionally, Shafiezadeh et al. [17] compared the performance of a
XGBoost classifier using two different validation criteria across two distinct EEG datasets.
Results indicate a significant decline in accuracy from 80% to 50% when changing the
evaluation strategy.

In this paper, we investigate the possibility of distinguishing between epileptic patients,
PNES, and healthy subjects by analyzing resting-state EEG data using machine-learning
techniques. The objective is to avoid inducing seizures in patients and minimize the need
for lengthy EEG recording sessions. By leveraging machine-learning algorithms, we seek
to identify specific patterns and features within the resting-state EEG signals that can
effectively classify and differentiate between epileptic seizures and PNES events. This
approach offers the potential to establish a non-invasive and efficient diagnostic method,
reducing patient discomfort and optimizing resource utilization in clinical settings.

This work extends the work of Zucco et al. [18]. Specifically, our paper discusses a
semi-automatic pipeline to discriminate between healthy, PNES, and epileptics subjects
based on the extraction of spectral features from EEG signals and classification through
machine-learning-based approaches. The innovative aspects are highlighted in the follow-
ing. First, we tested the implemented pipeline on a larger dataset of 225 EEG recordings,
equally distributed between the three classes. As pointed out in the previous paragraphs,
the datasets are smaller in the literature; moreover, in our study a multi-class problem is
addressed. We also implemented an automatic method to discard EEG-corrupted record-
ings due to the amplifier’s saturation on at least one channel for the entire duration of
the EEG recording. Finally, we trained a suite of different machine learning algorithms to
classify EEG recordings. In order to highlight the importance of establishing evaluation
protocols that ensure the reproducibility and effectiveness of the models, we also aimed to
explore how variations in the validation method, notably the use of patient-aware 10-fold
cross-validation vs. standard 10-fold cross-validation, affected the average accuracy values
of the models trained on our dataset.

In detail, the paper compares three different validation approaches : (i) preprocessing
and feature extraction are performed on the EEG recordings without epochs segmentation
and a standard 10-fold cross validation strategy; (ii) the preprocessing is performed on
the entire EEG recording. The EEG is subsequently segmented in epochs, and patient-
aware 10-fold cross-validation strategy evaluates several classifiers; (iii) the preprocessing
is performed on the entire EEG recording. Each EEG is subsequently subdivided into
epochs, and a standard 10-fold cross-validation evaluates several classifiers.
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This paper is structured as follows: Section 2 presents EEG signal processing and
classification methods; Section 3 shows and discusses the results collected from the experi-
mentation of the proposed software pipeline. Section 4 concludes the paper, highlighting
the main contribution of the work.

2. Materials and Methods

Neurologists of the Operative Unit of Neurology, Mater Domini Polyclinic, University
of Catanzaro, Italy, had acquired EEG signals from three groups of subjects in a resting
condition. The first group includes healthy subjects and is referred to as CNT, the control
group. The second group included PNES subjects (PNES) who were diagnosed based on a
video-EEG recording of a typical episode, where the EEG did not display any concurrent
ictal activity or post-ictal patterns, whereas the last group comprises epileptic subjects. The
study followed the Declaration of Helsinki and was formally approved by the local Medical
Research Ethics Committee.

2.1. EEG Signals Acquisition

EEG recordings were acquired using 19 Ag/AgCl surface electrodes (C3, C4, O1, O2,
Cz, F3, F4, F7, F8, Fz, Fp1, Fp2, P3, P4, Pz, T3, T4, T5 and T6) positioned according to the
International 10/20 System (see Figure 1). Recordings were performed with an Xltek Brain
Monitor EEG Amplifier with a sampling rate of 256 Hz. A band-pass filter with cut-off
frequencies 0.5-70 Hz, and a 50 Hz notch filter were used. Participants were comfortably
seated in a semi-darkened room and with open eyes.

Figure 1. The figure shows 10/20 International Standard for EEG electrodes positioning.

All the electrode-skin impedance was kept below 5 k(). The average duration of EEG
acquisition ranged from 10 to 20 min.

2.2. EEG Data Pre-Processing

Generally, acquiring EEG signals is a challenging task due to their weak nature and
susceptibility to contamination from environmental noise or distortion caused by physi-
ological artifacts such as ocular and muscle artifacts. Consequently, noise removal plays
a crucial role in the processing of EEG signals. Furthermore, proper data cleaning may
improve the signal-to-noise ratio and allow for discriminating the most meaningful features
from the EEG signals.
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In clinical practice, trained neurologists visually detect artefacts by discarding contami-
nated EEG epochs. Although the pre-processing phase is operator-dependent, monotonous
and time-consuming, in clinical practice, no automatic tools are applied in clinical context
to detect and eliminate artefacts without eliminating useful signal parts.

In this study, a qualified neurologist examined each EEG recording to identify and
annotate epochs corrupted by noise and artifacts (refer to Figure 2). Afterwards, all EEG
data were pre-processed using an automatic routine that individuates the EEG portions
where the amplifier is in a saturation stage (i.e., electrode malpositioning). The procedure
scans all recordings and eliminates the portions of the EEG data (for all channels) where the
amplifier is in saturation mode or all EEG recordings, if corrupted for the entire duration.
Then, digital filtering techniques were applied. To mitigate high-frequency artifacts and
power-line interference, we specifically applied a Butterworth band-pass filter with a
frequency range of 0.1 to 70 Hz. Additionally, a notch filter with a cut-off frequency of
50 Hz was utilized. These filtering techniques were employed to minimize the impact of
such disturbances during signal processing, as depicted in Figure 3.
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Figure 2. The plots show EEG signals acquired from electrodes positioned on the frontal and
central lobes.
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Figure 3. The plots show filtered EEG signals acquired from electrodes positioned on the frontal and
central lobes.
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After noise removal, EEG signals were segmented in EEG epochs of 10 s to apply the
following feature extraction methods on each epoch. Considering the average duration of
each recording, an average number of 111 epochs was obtained for each channel for each
subject. Segmenting the EEG signal into epochs is beneficial as it enables a more precise
analysis of local variations within the signal. This segmentation approach facilitates a
detailed examination of the EEG signal’s fluctuations on a localized level, and also extends
the dataset without using artificial methods, enhancing the accuracy of the analysis.

2.3. EEG Feature Extraction

Following the pre-processing step, the subsequent stage in the EEG software pipeline
is the feature extraction stage. As previously mentioned, the purpose of feature extraction
is to extract pertinent information contained within the signals.

We decided to implement the Power Spectral Density (PSD) analysis because it is a
robust extractor largely used for EEG quantitative analysis. Specifically, among the several
methods for PSD estimation reported in the literature, Welch’s method was employed in
our analysis. Let x[n], n =0, -- , N — 1 be the samples from an EEG epoch. The evaluation
of PSD by using Welch’s method consists of the following steps:

e the EEG epoch is divided into N sections (possibly overlapped O) of equal lengths M;
x|n| =x|n+i0| i=0,...K—1,andn=0,...N—1 1)

* awindow is applied to each section, and then the periodogram on the windowed
sections is calculated. We can define the periodogram in the following way:

2
_ 2mjkn
N

Suall) = @

N-1
Y x(n)e
n=0

*  the periodograms are averaged from the K sections in order to obtain an estimation of

the spectral density
1 K=1

Pyx(f):K Zpl(f) (3)

In this equation, Py, represents the estimation of the cross power spectral density
between two discrete-time signals, x and y. The Welch method eliminates the trade-off
between spectral resolution and variance by allowing overlapping segments. When a high-
frequency resolution is required, the recorded data can be divided into a small number
(N) of segments with a length of L. However, in our analysis, we used non-overlapping
segments and applied the Hamming window.After PSD calculation on all EEG epochs, we
consider the following EEG sub-bands: delta (14 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta
(13-30 Hz), gamma (30-70 Hz) and calculated the cumulative power for each sub-band.
Moreover, we evaluated the total cumulative power for all EEG frequencies.

The main processing steps of our feature extraction approach can be summarized as:

*  Power Spectral Density (PSD) was estimated through Welch method;
e From PSD matrix output, we selected five frequency sub-bands;
*  For each band (delta, teta, alpha, beta, gamma) we computed cumulative power.

Figure 4 shows an example of cumulative power in beta band for all epochs extracted
from an EEG signal.

We constitute the features vector with the six power cumulative coefficients for all
EEG epochs.

The features vector has the following dimension: the number of cumulative power
coefficients (six) times the number of epochs (an average of 105 epochs for each EEG) times
the number of channels (19) times the number of subjects (225).
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Figure 4. EEG signals power in the beta band evaluated for all epochs.

2.4. EEG Classification

The PyCaret library (available on https:/ /pycaret.org, accessed on 13 May 2023) was
used for the classification of EEG signals. PyCaret is an open-source low-code machine
learning library for the Python language that automatically trains and evaluates a suite
of different algorithms for classification. The present study considers the classifiers who
obtained the best results in the various experiment conducted. In particular different en-
semble techniques have been tested to discriminate among PNES, EPI and CNT: AdaBoost,
Random Forest, Decision Trees, and Gradient Boosting.

Ensemble learning approaches assume the principle that different base models can be
combined to build a more predictive model. Bagging [19] and Boosting [20] are the most
popular ensemble learning techniques. In Bagging, the base learners are trained in parallel
on bootstrap replicates of the training set and then the final prediction is made by majority
voting, while in Boosting, the aggregate model is built in sequential fashion in order to
train models that are increasingly more “attentive” to instances misclassified by previous
models. AdaBoost [21] is one of the most popular boosting algorithm.

In a decision tree algorithm [22], knowledge is acquired through a collection of rules
organized in a tree structure. The Random Forest algorithm, introduced by Breiman in
2001 [23], is an ensemble method that combines multiple decision trees through bagging.
On the other hand, the Light Gradient Boosted Machine (LGBM), proposed by Ke et al.
in 2017 [24], is a boosting ensemble of decision trees. LGBM constructs the ensemble by
minimizing a differentiable loss function using the gradient descent optimization algorithm.

3. Results

This section presents and compares the results of training different machine learning
algorithms in three different fashions.

Before presenting the results of the different test batteries in detail, a preliminary
exploratory analysis of the data is presented to gain useful insights into the EEG data
distribution after their preprocessing and epoching.

The experimental EEG raw data are available from 75 patients with PNES, 75 healthy
patients (CNT), and 75 epileptic patients (EPI).

However, 10 EEGs (1 CNT, 3 PNES, 6 EPI) showed the presence of an amplifier in
saturation stage on at least one channel for the entire duration of the EEG recording and
were excluded from further analyses. As shown in the pie chart in Figure 5a, the exclusion
criteria did not produce an imbalance between the classes.

Since the 225 input EEG data do not have the same duration, and the routine that
eliminates EEG portions where the amplifier is in a saturation stage further reduces the
duration of some EEG recordings, the segmentation process does not produce the same
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number of epochs for each EEG. Therefore, we also verified that the dataset continued
to be balanced even after segmenting the signal into epochs, as shown in the pie chart in
Figure 5b.

34.42% 32.09% 33.03% 32.61%

33.49% 34.36%

() (b)

Figure 5. Class distribution (a) after preprocessing (b) after segmentation. Due to the different
duration of the EEGs recordings, the segmentation process does not produce the same number of
epochs for each EEG. However, the comparison of the two pie charts shows that the dataset of
segmented EEGs epochs does not presents any significant imbalance among classes.

The violin plots in Figure 6 allow to visually compare the distributions of the EEGs
epochs obtained for each class. To formally compare the epochs distribution obtained
by class, we first check the three distributions are not normally distributed through the
Shapiro-Wilk’s test and a significance level & = 0.05 with p < 0.001 for the EPI group,
p < 0.001 for the PNES group, and p < 0.001 for the CNT group. Then, a Kruskal-Wallis
test showed that there was no statistically significant difference in segmented epochs among
the three groups, x?(X) = 1.17, p = 0.56, & = 0.05.

200 A

150 4

100 1

count

50 A

T T
PNES EPI CNT
class

Figure 6. Violin plot of the EEGs epochs distributions by class. Although the PNES class shows an
high outlier and the CNT and EPI classes show low outliers, the three distributions are unimodal and
show similar median and interquartile range.

The different test batteries described in Section 2 were conducted through the Python
PyCaret library.

To be able to evaluate how much the segmentation of the EEG recordings in epochs
affects the performance, three different approaches were considered. In particular:
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Bl We extracted features as described in Section 2 from the 215 EEG recordings, without
EEG epoching, and evaluate the classifiers by a standard 10-fold cross validation.

B2 We performed EEG epoching and feature extraction as described in Section 2, then
different models built on the 22,261 EEG epochs dataset were evaluated by a patient-
aware 10-fold cross validation strategy. Specifically, the 215 patients were randomly
divided into 10 sets and all the 10 s epochs extracted from the same EEG recording
were constrained to belong to the same fold. Therefore, at every run, the features of
the EEG epochs segmented from the same EEG recording, appear either in the training
or in the test set.

B3 We performed EEG epoching and feature extraction as described in Section 2, then
different models built on the 22,261 EEG epochs dataset were evaluated by a standard
10-fold cross validation strategy. Each EEG epoch was considered independent from
the others and therefore, while ensuring that the 10-folds were disjointed, we allowed
that different EEG epochs segmented from of the same EEG recording could appear in
different folds. In other words, the same EEG epoch cannot be present simultaneously
in two different folds, while two different EEG epochs segmented from the same
patient can appear in different folds and therefore, at a particular 10-fold validation
run, one epoch could appear in the training set and the other in the test set.

For each test battery, we compared the performance of different algorithms provided
by PyCaret. PyCaret includes a variety of classification algorithms that can be used for
machine learning tasks. These algorithms cover a wide range of classification techniques,
from traditional algorithms such as, for instance, logistic regression and decision trees, to
ensemble methods as for instance random forest and gradient boosting. PyCaret provides
a unified interface to work with these algorithms, making it easy to compare and evaluate
their performance on different datasets. To streamline the discussion, we focused on
the performance of the two top-performing models for each battery, namely, AdaBoost
and Decision Tree (the most performant models for Battery [B1]), and Random Forest
and Light Gradient Boosting Machine (the top performers for the validation approaches
described in [B2] and [B3]). To assess the effectiveness of the algorithms, we examined
various evaluation metrics, including accuracy and AUC. The results demonstrated notable
variations in performance across the different batteries and algorithms.

Accuracy and AUC (Area Under the Curve) with a One vs. Rest (OvR) strategy [25]
were considered for comparison.

Accuracy measures the number of correct prediction made by the algorithm. Denoting
with TCNT, TEPI and TPNES and FCNT, FEPI and FPNES, the number of CNT, EPI
and PNES subjects well or misclassified by the model, respectively, the model accuracy is:

TCNT 4+ TEPI+ TPNES
TCNT +TEPI + TPNES + FCNT + FEPI + FPNES

AUC was chosen as measure to assess the model’s capability of distinguishing among
classes. In the multiclass problem formulation, using the One-vs.-Rest (OvR) strategy, the
evaluation of the AUC measure was performed individually for each class.

Table 1 presents Accuracy and micro-average Area Under the Curve (AUC) of the
classifier models built from the 215 x 116 EEG dataset, where the 116 features described in
Section 2 were extracted without epoching the EEG recordings. A 10-fold cross validation
was exploited for perfomance evaluation (see the validation approach described in [B1]).
Best values are highlighted in bold. The results show that also the Ada Boost model, which
was the most-performing, reached low accuracy levels.

Accuracy =
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Table 1. Accuracy and AUC of the considered models for test battery B1.

Model Accuracy AUC
Ada Boost 43.33% 60.48%
Decision Tree 38.63% 53.89%
Random Forest 34.00% 56.91%
Light Gradient Boosting Machine 36.00% 53.80%

Table 2 presents Accuracy and micro-average Area Under the Curve (AUC) of the
classifiers trained on 22,261 x 116 EEG dataset. A patient-aware 10-fold cross validation
was exploited for perfomance evaluation (see the validation approach in [B2]). Best values
are highlighted in bold. The results obtained in terms of accuracy and AUC summarized in
Table 2 show that, especially with regard to the best performing classifiers, i.e., Random
Forest and AdaBoost, the EEG epoching combined with a patient-aware 10-fold cross
validation strategy, did a slight improvement of performance.

Table 2. Accuracy and AUC of the considered models for test battery B2.

Model Accuracy AUC
Ada Boost 43.27% 59.81%
Decision Tree 39.88% 55.70%
Random Forest 45.03% 62.79%
Light Gradient Boosting Machine 44.46% 63.39%

Table 3 summarizes Accuracy and micro-average Area Under the Curve (AUC) of the
classifiers trained on 22,261 x 116 EEG dataset. A 10-fold cross validation was exploited
for perfomance evaluation (see the approach described in [B3]). Best values are highlighted
in bold. The results obtained in terms of accuracy and AUC show a significant increase in
performance with respect to the previous approaches.

Table 3. Accuracy and AUC of the considered models for test battery [B3].

Model Accuracy AUC
Ada Boost 61.58% 78.63%
Decision Tree 73.29% 80.48%
Random Forest 83.08% 94.53%
Light Gradient Boosting Machine 83.98% 96.49%

Figure 7 compares the approaches in [B2] and [B3] in terms of learning curves for
Light Gradient Boosting.

Learning curves, in the context of machine learning, are graphical representations that
depict the relationship between a model’s performance and the amount of training data
used. They provide insights into how the model’s performance improves or stabilizes as
more data become available for training. A learning curve typically plots a performance
metric; in this work, we considered the accuracy on the y-axis against the number of
training examples or the training set size on the x-axis. Accuracy is computed on both
training and test set. The learning curve shows how the model’s performance evolves
as more data points are included in the training process. The learning curve can exhibit
different patterns that convey valuable information about the model:

*  Overfitting: If the learning curve shows high performance on the training set but
significantly lower performance on the validation set, with a large gap between the
two curves. This indicates that the model is capturing noise or specific patterns in the
training data that do not generalize well to unseen data.
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¢ Underfitting: If the learning curve demonstrates low performance on both the training
and validation sets. In this case, more data are needed or the model is probably too
simple and is unable to capture the underlying patterns in the data.

*  Convergence: Ideally, a learning curve shows that the model’s performance on both
the training and validation sets converge or stabilize as more data are included. This
suggests that the model is learning from the data and generalizing well to unseen ex-
amples.

The results in Figure 7a suggest that the model leads to a poor generalization, with
probable model overfitting on the training dataset, while Figure 7b shows a better ability to
generalize the model on the data.

Learning and curve for Light Boost Learning and curve for Light Boost
Gradient Machine and vahdaugon as in [B2] Gradient Machine and validation as in [B3]
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Figure 7. Comparison of learning curves for Light Gradient Boosting Machine classifier on the same
EEG epoched dataset, and (a) with a patient-aware 10-fold cross validation as described in approach
[B2], (b) with a Stratified 10-fold cross validation as described in approach [B3]. The y-axis represents
accuracy score. In figure (a), the learning curve shows high performance on the training set (in blue)
but significantly lower performance on the training set where accuracy is between 40% and 50%
(green curve), with a large gap between the two curves. This indicates overfitting on the training
dataset and poor generalization on unseen data. In figure (b), the learning curve shows accuracy over
90% on the training set (in blue) and accuracy over 80% on the training set (in green). This indicates
that the model generalizes to unseen data.

To better investigate the performance of the LBGM model and [B3] test battery, in
Figure 8 the OvR ROC curves and the micro and macro average ROC curves for each class
are compared. In Figure 9, precision-recall curve is displayed for LBGM, illustrating a
favorable balance between false positive and false negative rates. Furthermore, Figure 10
provides additional insights into which features have the most influence on the model’s
predictions, allowing researchers and practitioners to understand the relative importance
of different variables in the model’s decision-making process. Significant features have
been selected through PyCaret’s feature importance permutation technique. This method
involves randomly permuting the values of a single feature and measuring the impact
on the model’s performance. By comparing the model’s performance before and after
permuting the feature, the importance of the feature can be determined. Features with
larger performance drops after permutation are considered more important.

The analysis reveals that the cumulative power in the theta band at the Pz electrode
and the gamma band are particularly influential in predicting the target variable. These
findings are consistent with prior research in the field, which has consistently identified the
theta and gamma frequency bands as relevant indicators in similar contexts.
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Figure 8. ROC Curves for LGBM Classifier and [B3] validation approach. Class 0 refers to CNT,
class 1 to EPI, and class 2 to PNES.
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Figure 9. Precision-Recall curve and [B3] validation approach.
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Figure 10. The ten most important features w.r.t. LGBM and [B3] validation approach.

In general, the results show a good predictive power of the last discussed model, and
the EPI class demonstrated the highest level of discrimination, with an AUC of 98% and an
error rate of 11%, see Figures 8-11. However, more comprehensive analyses are required
to delve deeper into the comparison of different validation approaches across multiple
EEG datasets. These analyses would help investigate the underlying factors contributing
to the significant difference in performance observed between validation approaches [B2]

and [B3].
Class Prediction Erraor for LGBEMClassifier
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Figure 11. Class prediction errors for LGBM classifier and [B3] validation approach.

To gain a better understanding of the observed performance disparities, further investi-
gations should be conducted on a larger and more diverse set of EEG datasets. This would
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enable researchers to explore potential sources of variation, such as differences in data
characteristics, recording protocols, or patient populations. By examining the performance
across multiple datasets, it would be possible to assess the generalization capabilities of the
model and determine whether the observed discrepancies are consistent or dataset-specific.

4. Conclusions

In recent years, the use of machine-learning techniques for EEG analysis for the
automatic differentiation of PNES and epileptic subjects has attracted a lot of interest in the
scientific community.

This work proposed an analysis pipeline that, starting from raw EEG acquired in
resting conditions, combines signal processing and machine learning techniques for the
automatic classification of PNES, epileptic and healthy subjects. Our analysis pipeline
underwent testing on a large dataset comprising approximately 225 subjects, resulting in
classification accuracy exceeding 83% for distinguishing between control subjects, PNES,
and epileptics.

The study also focused on the effects of segmenting the EEG in epochs and in partic-
ular showed that, under the Kruskal-Wallis test assumptions, we found no statistically
significant difference in segmented epochs among the three groups, x?(X) = 1.17, p = 0.56,
« = 0.05.

Then, different evaluation strategies were compared to quantify how much the seg-
mentation of the EEG recordings in epochs may affect the performance.

The results indicate the presence of overfitting in the best-performing model when
validated using patient-based 10-fold cross validation. Specifically, the learning curve
of this model exhibits signs of overfitting, with the training curve showing a large gap
between the accuracy on training and test set. However, by only changing the validation
method on the same dataset, the accuracy is doubled and the learning curve did show
good convergence. These findings aligned well with recent studies that highlight the
critical importance of carefully selecting an appropriate validation strategy to ensure the
reproducibility and applicability of the method. It emphasizes the need to investigate
and compare different validation criteria to determine the most effective approach for
evaluating the modelsas well as the importance of defining rigorous evaluation protocols
to ensure reproducibility and good generalization of the proposed model on unseen data.

Therefore, we plan to conduct more in-depth analyses that extend the comparison
of different validation approaches to several EEG datasets, to investigate the cause of the
strong difference in performance between different validation approaches.

Author Contributions: Conceptualization, B.C., C.Z. and M.C.; methodology, C.Z., B.C. and M.C,;
validation, C.Z. and B.C.; data curation, M.S. writing—original draft preparation, B.C. and C.Z,;
writing—review and editing, B.C., C.Z.,, M.C., RM., M.S,, EP. and A.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data sharing not applicable The data are not publicly available due to
privacy regulation.

Conflicts of Interest: The authors declare no conflict of interest.

1. Gasparini, S.; Beghi, E.; Ferlazzo, E.; Beghi, M.; Belcastro, V.; Biermann, K.P.; Bottini, G.; Capovilla, G.; Cervellione, R.A.; Cianci,
V.; et al. Management of psychogenic non-epileptic seizures: A multidisciplinary approach. Eur. J. Neurol. 2019, 26, 205-e15.

[CrossRef]

2. Albert, D.V. Psychogenic Nonepileptic Seizures in Children and Adolescents. Semin. Pediatr. Neurol. 2022, 41, 100949. [CrossRef]


http://doi.org/10.1111/ene.13818
http://dx.doi.org/10.1016/j.spen.2021.100949

Appl. Sci. 2023,13, 6924 16 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

22.
23.
24.

25.

Volbers, B.; Walther, K.; Kurzbuch, K.; Erdmann, L.; Gollwitzer, S.; Lang, ].D.; Dogan Onugoren, M.; Schwarz, M.; Schwab, S.;
Hamer, H.M. Psychogenic nonepileptic seizures: Clinical characteristics and outcome. Brain Behav. 2022, 12, €2567. [CrossRef]
Rosengard, J.L.; Ferastraoaru, V.; Donato, J.; Haut, S.R. Psychogenic nonepileptic seizures during the COVID-19 pandemic in
New York City—A distinct response from the epilepsy experience. Epilepsy Behav. 2021, 123, 108255. [CrossRef]

Valente, K.D.; Alessi, R.; Baroni, G.; Marin, R.; Dos Santos, B.; Palmini, A. The COVID-19 outbreak and PNES: The impact of a
ubiquitously felt stressor. Epilepsy Behav. 2021, 117, 107852. [CrossRef]

Gomez-Figueroa, E.; Vargas-Sanchez, A.; Alvarado-Bolafios, A.; Paredes-Aragon, E.; Alatriste-Booth, V.; Moreno-Avellan, A
Ferndndez, M. The role of short-term video electroencephalogram monitoring for epilepsy and psychogenic seizures. J. Clin.
Neurosci. 2020, 82, 105-110. [CrossRef]

Deli, A.; Huang, Y.G.; Toynbee, M.; Towle, S.; Adcock, J.E.; Bajorek, T.; Okai, D.; Sen, A. Distinguishing psychogenic nonepileptic,
mixed, and epileptic seizures using systemic measures and reported experiences. Epilepsy Behav. 2021, 116, 107684. [CrossRef]
Magaudda, A.; Lagana, A.; Calamuneri, A ; Brizzi, T.; Scalera, C.; Beghi, M.; Cornaggia, C.M.; Di Rosa, G. Validation of a novel
classification model of psychogenic nonepileptic seizures by video-EEG analysis and a machine learning approach. Epilepsy
Behav. 2016, 60, 197-201. [CrossRef]

Benoliel, T.; Gilboa, T.; Har-Shai Yahav, P.; Zelker, R.; Kreigsberg, B.; Tsizin, E.; Arviv, O.; Ekstein, D.; Medvedovsky, M. Digital
Semiology: A Prototype for Standardized, Computer-Based Semiologic Encoding of Seizures. Front. Neurol. 2021, 12, 711378.
[CrossRef]

Ahmadi, N.; Pei, Y.; Carrette, E.; Aldenkamp, A.P; Pechenizkiy, M. EEG-based classification of epilepsy and PNES: EEG
microstate and functional brain network features. Brain Inform. 2020, 7, 6. [CrossRef] [PubMed]

Figic1, C,; Telatar, Z.; Erogul, O. Automated temporal lobe epilepsy and psychogenic nonepileptic seizure patient discrimination
from multichannel EEG recordings using DWT based analysis. Biomed. Signal Process. Control 2022, 77, 103755. [CrossRef]
Arikan, K.; Oksiiz, O.; Metin, B.; Giinver, G.; Lagin Cetin, H.; Esmeray, T.; Tarhan, N. Quantitative EEG Findings in Patients with
Psychogenic Nonepileptic Seizures. Clin. EEG Neurosci. 2021, 52, 175-180. [CrossRef] [PubMed]

Lo Giudice, M.; Varone, G.; Ieracitano, C.; Mammone, N.; Tripodi, G.G.; Ferlazzo, E.; Gasparini, S.; Aguglia, U.; Morabito, F.C.
Permutation Entropy-Based Interpretability of Convolutional Neural Network Models for Interictal EEG Discrimination of
Subjects with Epileptic Seizures vs. Psychogenic Non-Epileptic Seizures. Entropy 2022, 24, 102. [CrossRef] [PubMed]

Varone, G.; Boulila, W.; Lo Giudice, M.; Benjdira, B.; Mammone, N.; Ieracitano, C.; Dashtipour, K.; Neri, S.; Gasparini, S.; Morabito,
F.C,; etal. A Machine Learning Approach Involving Functional Connectivity Features to Classify Rest-EEG Psychogenic
Non-Epileptic Seizures from Healthy Controls. Sensors 2021, 22, 129. [CrossRef] [PubMed]

Faiman, I.; Smith, S.; Hodsoll, J.; Young, A.H.; Shotbolt, P. Resting-state EEG for the diagnosis of idiopathic epilepsy and
psychogenic nonepileptic seizures: A systematic review. Epilepsy Behav. 2021, 121, 108047. [CrossRef]

Peng, P; Song, Y.; Yang, L.; Wei, H. Seizure prediction in EEG signals using STFT and domain adaptation. Front. Neurosci. 2022,
15, 1880. [CrossRef]

Shafiezadeh, S.; Duma, G.M.; Mento, G.; Danieli, A.; Antoniazzi, L.; Del Popolo Cristaldi, F.; Bonanni, P; Testolin, A. Methodolog-
ical issues in evaluating machine learning models for EEG seizure prediction: Good cross-validation accuracy does not guarantee
generalization to new patients. Appl. Sci. 2023, 13, 4262. [CrossRef]

Zucco, C.; Calabrese, B.; Mancuso, R.; Sturniolo, M.; Gambardella, A.; Cannataro, M. Resting-State EEG Classification for PNES
Diagnosis. In Proceedings of the Computational Science-ICCS 2022: 22nd International Conference, London, UK, 21-23 June
2022; pp. 526-538.

Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123-140. [CrossRef]

Schapire, R.E.; Freund, Y. Boosting: Foundations and algorithms. Kybernetes 2013, 42, 164-166. [CrossRef]

Schapire, R.E. Explaining adaboost. In Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik; Springer Science & Business
Media: Berlin, Germany, 2013; pp. 37-52.

Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81-106. [CrossRef]

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision
tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4-9 December 2017.
Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1002/brb3.2567
http://dx.doi.org/10.1016/j.yebeh.2021.108255
http://dx.doi.org/10.1016/j.yebeh.2021.107852
http://dx.doi.org/10.1016/j.jocn.2020.10.035
http://dx.doi.org/10.1016/j.yebeh.2020.107684
http://dx.doi.org/10.1016/j.yebeh.2016.03.031
http://dx.doi.org/10.3389/fneur.2021.711378
http://dx.doi.org/10.1186/s40708-020-00107-z
http://www.ncbi.nlm.nih.gov/pubmed/32472244
http://dx.doi.org/10.1016/j.bspc.2022.103755
http://dx.doi.org/10.1177/1550059420918756
http://www.ncbi.nlm.nih.gov/pubmed/32362136
http://dx.doi.org/10.3390/e24010102
http://www.ncbi.nlm.nih.gov/pubmed/35052128
http://dx.doi.org/10.3390/s22010129
http://www.ncbi.nlm.nih.gov/pubmed/35009675
http://dx.doi.org/10.1016/j.yebeh.2021.108047
http://dx.doi.org/10.3389/fnins.2021.825434
http://dx.doi.org/10.3390/app13074262
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1108/03684921311295547
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1023/A:1010933404324

	Introduction
	Materials and Methods
	EEG Signals Acquisition
	EEG Data Pre-Processing
	EEG Feature Extraction
	EEG Classification

	Results
	Conclusions
	References

