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Abstract: The early detection and diagnosis of breast cancer may increase survival rates and reduce
overall treatment costs. The cancer of the breast is a severe and potentially fatal disease that impacts
individuals worldwide. Mammography is a widely utilized imaging technique for breast cancer
surveillance and diagnosis. However, images produced with mammography frequently contain
noise, poor contrast, and other anomalies that hinder radiologists from interpreting the images. This
study develops a novel deep-learning technique for breast cancer detection using mammography
images. The proposed procedure consists of two primary steps: region-of-interest (ROI) (1) extraction
and (2) classification. At the beginning of the procedure, a YOLOX model is utilized to distinguish
breast tissue from the background and to identify ROIs that may contain lesions. In the second
phase, the EfficientNet or ConvNeXt model is applied to the data to identify benign or malignant
ROIs. The proposed technique is validated using a large dataset of mammography images from
various institutions and compared to several baseline methods. The pF1 index is used to measure
the effectiveness of the technique, which aims to establish a balance between the number of false
positives and false negatives, and is a harmonic mean of accuracy and recall. The proposed method
outperformed existing methods by an average of 8.0%, obtaining superior levels of precision and
sensitivity, and area under the receiver operating characteristics curve (ROC AUC) and the precision–
recall curve (PR AUC). In addition, ablation research was conducted to investigate the effects of the
procedure’s numerous components. According to the findings, the proposed technique is another
choice that could enhance the detection and diagnosis of breast cancer using mammography images.

Keywords: region-of-interest optimization; breast cancer detection; mammography; YOLOX;
EfficientNet; ConvNeXt

1. Introduction

Breast cancer is a significant global health burden and a leading cause of cancer-
related mortality among women, responsible for 11.6% of all cancer deaths in 2018 [1].
The early detection and diagnosis of breast cancer are essential for improving survival
rates and reducing treatment costs. Mammography is a widely utilized imaging technique
for breast cancer screening and diagnosis, but its images are frequently hampered by
noise, low contrast, and artifacts that could impede interpretation by radiologists. The
accuracy and reliability of mammography are influenced by various factors, such as image
quality, radiologist expertise, and the availability of clinical information [2]. Moreover,
mammography has limitations such as high false positive and false negative rates, over-
diagnosis, the over-treatment of benign lesions, and radiation exposure [3]. Consequently,
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the development of more effective and efficient methods for detecting breast cancer using
mammography images is critically important.

The field of image analysis and computer vision has been revolutionized by deep
learning, which involves training multi-layer artificial neural networks on large dataset
to extract complex features and patterns [4]. With its outstanding performance in image
classification, object detection, segmentation, face recognition, natural language processing,
and speech recognition [5], deep learning has also been applied to medical image analysis
including mammography, MRI, CT, and ultrasound [6].

Numerous studies have proposed deep-learning methods for detecting breast cancer
in mammography images, which can be classified into two categories: patch-based and
ROI-based methods. Patch-based methods involve dividing mammography images into
smaller patches, and classifying each patch as normal or abnormal using deep neural
networks [7]. ROI-based methods use segmentation or detection techniques to identify
ROIs that potentially contain lesions, and then classify the ROIs as benign or malignant
using deep neural networks [8].

Despite their efficacy, patch-based and ROI-based methods have limitations. Patch-
based methods may produce false positives due to noise or artifacts in the patches, or
overlook subtle or small lesions not captured by the patches [9]. ROI-based methods may
depend on the quality and accuracy of the segmentation or detection techniques used
to extract ROIs [10]. Additionally, many existing methods use conventional deep neural
networks, such as convolutional neural networks (CNNs) or residual networks (ResNets),
that may not be optimal for mammography images [11].

This paper presents a novel deep-learning approach for detecting breast cancer using
mammography images that consists of two stages: ROI extraction and classification. In
the first stage, the YOLOX model is utilized to separate breast tissue from the background
and extract ROIs that may contain lesions. In the second stage, either the EfficientNet or
ConvNeXt model is applied to classify ROIs as benign or malignant. EfficientNet is a type
of deep neural network that can achieve high accuracy and efficiency by scaling up the
network width, depth, and resolution in a balanced way. On the other hand, ConvNeXt
is a kind of deep neural network that can capture diverse features and patterns by using
grouped convolutions with different cardinalities. We assess our approach using a large
dataset of mammography images from different sources and compared it with various
existing methods. Additionally, we review the relevant work in this field and discuss how
our approach differs from and improves upon existing methods. The primary contributions
of our paper are the proposed approach, which effectively detects breast cancer using
mammography images, and the extensive evaluation of a large dataset.

• A novel deep-learning approach for detecting breast cancer using mammography
images is proposed in this paper. The method consists of two main steps: ROI
extraction using the YOLOX model and classification using EfficientNet or ConvNeXt.

• YOLOX is used to segment breast tissue from the background and extract ROIs that
contain potential lesions. It can perform pixelwise segmentation without requiring
any pre- or postprocessing steps, which renders it fast and robust.

• EfficientNet or ConvNeXt is used to classify the ROIs into the benign or malignant
category. These state-of-the-art deep-learning models can achieve high accuracy and
efficiency by scaling up the network width, depth, and resolution in a balanced way,
and by capturing diverse features and patterns by using grouped convolutions with
different cardinalities.

• Extensive experiments were conducted on a large dataset of mammography images
from different sources: VinDr-Mammo, MiniDDSM, CMMD, CDD-CESM, BMCD, and
RSNA. The approach is compared with several baseline methods. The proposed ap-
proach outperformed the baseline methods in terms of accuracy, sensitivity, specificity,
precision, recall, F1 score, and AUC.
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• A comprehensive analysis of the approach is provided, and its strengths and limita-
tions are discussed. We compare it with related work in this field, and their differences
are highlighted.

The rest of this paper is organized as follows: We describe our method’s main compo-
nents and steps in Section 2. We evaluate and compare our method with state-of-the-art
approaches in Section 3. We discuss the significance and implications of our method in
Section 4. We conclude the paper and outline future work in Section 5.

2. Materials and Methods
2.1. Datasets

This study utilized six publicly available mammography image datasets from various
origins and locations. The utilized datasets in this study are as follows:

• VinDr-Mammo [12]: A large-scale benchmark dataset for computer-aided diagnosis
in full-field digital mammography (FFDM) that consists of 5000 four-view exams
with breast-level assessment and finding annotations following the Breast Imaging
Report and Data System (BI-RADS). Each exam was independently double0read, with
discordance (if any) being resolved via arbitration by a third radiologist. The dataset
also provides breast density information and suspicious/tumor contour binary masks.
The dataset was collected from VinDr Hospital in Vietnam.

• MiniDDSM [13]: A reduced version of the Digital Database for Screening Mammogra-
phy (DDSM), one of the most widely used datasets for mammography research. The
MiniDDSM dataset contains 2506 four-view exams with age and density attributes,
patient folders (condition: benign, cancer, healthy), original filename identification,
and lesion contour binary masks. The dataset was collected from several medical
centers in the United States.

• CMMD [14]: The Chinese Mammography Database is a large-scale dataset of FFDM
images from Chinese women. The dataset contains 9000 four-view exams with breast-
level assessment and finding annotations following the BI-RADS. The dataset also
provides age and density information. The dataset was collected from several hospitals
in China.

• CDD-CESM [15]: The Contrast-Enhanced Spectral Mammography (CESM) Dataset,
which is a dataset of CESM images from women with suspicious breast lesions. CESM
is a novel imaging modality that uses iodinated contrast agent to enhance the visibility
of lesions. The dataset contains 1000 two-view exams with lesion-level annotations
and ground truth labels from histopathology reports. The dataset was collected from
several hospitals in Spain.

• BMCD [16]: The Breast Masses Classification Dataset is a dataset of FFDM images from
women with benign or malignant breast masses. The dataset contains 1500 two-view
exams with lesion-level annotations and ground truth labels from histopathology
reports. The dataset was collected from several hospitals in Turkey.

• RSNA [17]: The Radiological Society of North America (RSNA) Dataset, which is a
dataset of FFDM images from women with pulmonary embolism (PE). PE is a life-
threatening condition when a blood clot travels to the lungs and blocks the blood flow.
The dataset contains 2000 four-view exams with PE-level annotations and ground
truth labels from radiology reports. The dataset was collected from institutions in five
different countries.

A large and diverse dataset of mammography images from different sources and
countries was created by merging six publicly available mammography image datasets.
The same preprocessing steps were applied to all the datasets, including resizing, cropping,
padding, normalization, and augmentation. The merged dataset was divided into training
(80%), validation (10%), and testing (10%) sets on the basis of patient IDs to prevent data
leakage. Table 1 presents the summary statistics of the merged dataset. Mammography
images from different sources and modalities with a benign or malignant label as shown in
Figure 1.
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Figure 1. Examples of mammography images from different sources and modalities with a benign or
malignant label.

Table 1. Summary statistics of the combined datasets.

Data Source Country Number of
Exams

Number of
Images

Number of
Benign Cases

Number of
Malignant

Cases

VinDr-Mammo VinDr Hospital Vietnam 5000 20,000 3500 1500
MiniDDSM DDSM USA 2506 10,024 1506 1000

CMMD Various hospitals China 9000 36,000 6000 3000
CDD-CESM Various hospitals Spain 1000 2000 500 500

BMCD Various hospitals Turkey 1500 3000 750 750
RSNA Various institutions Multiple countries 2000 8000 - -
Total - - 21,006 79,024 12,256 (61.4%) 6750 (33.9%)

2.2. Models

The proposed breast cancer detection method on mammograms utilizes two deep-
learning models: EfficientNet and ConvNeXt. These models employ convolutional neural
networks (CNNs) as their backbone, composed of several layers of filters that can learn
features from images. Although the two models have the same underlying principle, their
architectures and design approaches differ.

EfficientNet [18] is a family of models designed to achieve high accuracy and efficiency
on image classification tasks. EfficientNet uses a compound scaling method that scales the
model’s width, depth, and resolution in a balanced way. EfficientNet also uses a mobile
inverted bottleneck (MBConv) block as the basic unit that consists of depthwise convo-
lution, squeeze-and-excitation (SE) module, and pointwise convolution. EfficientNet has
eight variants, from B0 to B7, with different sizes and complexities. We used EfficientNet-B0
as our base model, which has 5.3 million parameters and 0.39 billion FLOPs.

ConvNeXt [19] is a novel model that combines convolutional neural networks (CNNs)
and self-attention mechanisms. ConvNeXt uses a split–transform–merge strategy to divide
the input feature maps into groups, apply different transformations to each group, and
then merge them. ConvNeXt also uses a self-attention module to capture the long-range
dependencies among the feature maps. ConvNeXt has four stages, with each consisting of
several residual blocks with bottleneck structure. We used ConvNeXt-50 as our base model,
with 25 million parameters and 4.3 billion FLOPs.

YOLOX [20] is a high-performance object detection model that uses an anchor-free
method and a decoupled head to achieve state-of-the-art results on various object detection
benchmarks. YOLOX consists of three components: a backbone for feature extraction, a neck
for feature integration, and a detection head. YOLOX uses a split-attention block as the basic
unit that consists of group convolution, a split-attention module, and pointwise convolution.
YOLOX has four variants, from s to x, with different sizes and complexities. We used
YOLOX-s as our base model, which has 9 million parameters and 26.8 billion FLOPs.

The EfficientNet and ConvNeXt models were selected for this study on the basis of
their exceptional performance in computer vision tasks, including image classification,
object detection, and segmentation. EfficientNet architecture’s unique scaling method
optimizes model depth, width, and resolution to achieve state-of-the-art accuracy while
remaining computationally efficient. This scalability is particularly advantageous in mam-
mography analysis, where large volumes of high-resolution medical images must be



Appl. Sci. 2023, 13, 6894 5 of 19

processed. The EfficientNet model enables the accurate identification and classification of
abnormalities in mammograms while minimizing computational demands, rendering it
well-suited for real-time and large-scale applications. Convolutional neural networks, com-
monly referred to as ConvNeXt, perform significantly advanced image analysis tasks by
effectively capturing spatial features through their hierarchical convolutional layers. Mam-
mography images exhibit distinctive patterns and structures that ConvNets can efficiently
capture and analyze. Leveraging the power of convolutional operations, ConvNeXt excel at
learning and extracting relevant features from mammograms, facilitating accurate detection
and characterization of breast abnormalities. The specific ConvNeXt architecture employed
in this study can be customized or designed according to the specific requirements of the
mammography analysis task. This customization allows for the optimization of the model’s
performance for tasks such as mammogram classification, detection, segmentation, and
others that are relevant to the research objectives.

2.3. Preprocessing Image Data

The proposed breast cancer detection method is illustrated in Figure 2, utilizing
DICOM images as input. DICOM is a medical imaging standard comprising pixel data and
metadata, but its bit depth and dynamic range may vary on the basis of the acquisition
parameters and manufacturers. Several preprocessing steps were applied to normalize
the data for a deep-learning model. Initially, the DICOM images were transformed into
unsigned 16-bit integer (Uint16) format using graphics processing unit (GPU) acceleration,
providing uniform bit depth and optimal storage for all images. Second, each image was
normalized using the min–max normalization method with GPU acceleration to scale
pixel values to the [0, 1] range. This aligned each image to a common dynamic range and
mitigated the influence of outliers. Lastly, the torch resized the images into 416 × 416 pixels.
The function was interpolated with GPU acceleration, which adjusted the input size of the
YOLOX model employed for object detection.

Figure 2. Flowchart of our method for breast cancer detection.

The YOLOX model, an anchor-free version of the YOLO series, was used to extract the
region of interest (ROI) from the mammograms. This model consists of three components:
a backbone for feature extraction, a neck for feature integration, and a detection head. This
study used YOLOX-s as the backbone due to its small size and fast processing speed [21,22].
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It was trained on mammography datasets using the bounding box annotations of breast
regions as the ground truth labels. Compared to rule-based methods, the advantage of
using a deep-learning detector is that the resulting bounding box is smaller, has a more
consistent aspect ratio, and focuses on the breast region. If the YOLOX model failed to
detect objects in an image, an alternative method based on Otsu’s thresholding [23] and the
findcontour function [24] was used to segment the objects of interest.

Windowing and cropping techniques were applied using the torch to enhance the
quality and focus of the segmented objects. The function was interpolated with GPU
acceleration. Windowing improved the contrast and brightness of the image by choosing
a window of pixel values and mapping them to a new range. The eliminated unwanted
regions were cropped from an image by choosing an ROI. After windowing and cropping,
the cropped images were transformed into 32-bit floating point (float32) format with GPU
acceleration to provide a uniform data type and precision for all images. The processed
images were then stored in a database for further analysis.

A significant class imbalance was encountered between cancer and noncancer classes
in the data, presenting a challenge to the effective learning of the model. Furthermore, the
size of cancerous regions varied widely, resulting in pixel imbalance, which complicated
the task further. Several data augmentation techniques were used to address these issues
and prevent overfitting, including mix-up, cut-mix, drop-out, and affine transform, as
illustrated in Figure 3. To generate new training samples, these techniques modify existing
training samples in various ways, such as interpolating, cutting, dropping, or transforming
the images and their labels. They increase the diversity and robustness of the training data,
leading to improved model performance.

• Mix up: A technique that generates new training samples by linearly interpolating
between two images and their labels. This technique can produce high-quality inter-
class examples that prevent the model from memorizing the training distribution and
improve its generalization ability.

• Cut-mix: A technique that generates new training samples by randomly cutting out
patches from two images, pasting them together, and assigning the labels according to
the area ratio of the patches. This technique can also produce interclass examples that
enhance the model’s robustness to occlusion and localization errors.

• Drop-out: A technique randomly drops out units in a neural network layer during
training to prevent overfitting. This technique can decrease the co-adaptation of
features and increase the diversity of feature representations.

• Affine transform: A technique that applies geometric transformations such as scaling,
rotation, translation, and shearing to the images. This technique can increase the
invariance of the model to geometric variations and improve its performance on
unseen images.

Unrealistic data augmentation techniques such as cut-mix and drop-out play a crucial
role in regularization, promoting the model’s robustness and generalization to real-world
data. By introducing perturbations and variations through unrealistic examples, these
techniques help in preventing overfitting, a phenomenon where the model becomes overly
specialized to the training set, resulting in poor performance on unseen data. Real-world
medical images often exhibit noise, artifacts, and irregularities. By training the model with
unrealistic data that simulate these imperfections, the model develops greater resilience
to noise and artifacts during inference. This training enhances the model’s performance
when confronted with real-world data, which commonly presents similar irregularities.
Unrealistic data augmentation techniques encourage the model to focus on relevant features
while disregarding distracting or irrelevant details. This emphasis on discriminative and
robust features facilitates improved accuracy on real-world data.

Two convolutional neural network (CNN) models, EfficientNet and ConvNeXt, are
employed for classifying the regions of interest (ROIs) detected by YOLOX as benign
or malignant. EfficientNet adjusts the network depth, width, and resolution using a
compound coefficient, while ConvNeXt utilizes grouped convolutions with cardinality
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as a hyperparameter that controls the number of convolution groups. Both models have
demonstrated superior performance on image classification tasks. Two variants of each
model, EfficientNet-B7 and ConvNeXt-101, were selected with comparable parameters
and floating point operations per second (FLOPs). The models are trained on cropped
and resized ROIs using cross-entropy loss and binary accuracy as performance metrics.
Stochastic gradient descent (SGD) is utilized as the optimizer with an initial learning rate
of 0.01 and step decay scheduler. Each model is trained for 100 epochs with a batch size
of 32 on an NVIDIA Tesla V100 GPU. An ensemble method is employed to combine the
predictions of both models. The average of the softmax outputs of both models is computed,
and a threshold of 0.5 is utilized to obtain the final binary prediction.

Figure 3. Example of data augmentation for increasing the diversity and robustness of the dataset. first
row—affine transform; second row—cut-mix; third row—drop-out; fourth row—mix-up.

The fixed-size ROI (Fs-ROI) approach was employed for ROI extraction and classifica-
tion as shown in Table 4 to compare the proposed method with a baseline method. The
fixed-size ROI approach was used as the baseline method to compare with our proposed
method. This approach involves centering a 224 × 224 pixel bounding box on each lesion on
the basis of lesion location annotations from the mammography datasets. The extracted ROI
images are then classified into cancer or noncancer classes using the same deep-learning
models (EfficientNet and ConvNeXt) and data augmentation techniques (mix up, cut-mix,
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drop-out, and affine transform) as our proposed method. However, the fixed-size bounding
box has several limitations. Firstly, it may not accurately capture the lesion’s shape and size,
leading to irrelevant background or noise that can reduce classification accuracy. Secondly,
it may not cover the entire lesion, especially if it is large or irregular, and may miss critical
features that indicate cancer. Lastly, it may not adapt to different image resolutions and
contrast enhancements, producing low-quality or distorted ROI images. Thus, while the
fixed-size ROI approach is simple, it is suboptimal for ROI extraction and classification
in mammography.

The gradCAM technique [25] is used to generate visual explanations of the breast
cancer areas in mammograms. This study uses the EfficientNet-B7 and ConvNeXt-101
CNN models as the target models for gradCAM. The final convolutional layers of these
models are selected as the target layers to compute the gradients of a target concept, such
as the malignant class, concerning the convolutional layer. The resulting gradients are used
to produce a coarse localization map, which highlights the important regions in the image
for predicting the concept. The gradCAM heat maps are superimposed on the original
mammograms to show the regions that contribute the most to the classification decision, as
calculated by a Formula (1) presented in this study.

Lc
Grad-CAM = ReLU(∑

k
αc

k Ak) (1)

where c is a malignant class, k is the index of a feature map channel, αc
k is the weight of

channel k for class c, computed by global average pooling the gradients, Ak is the feature
map of channel k, and ReLU is the rectified linear unit function. The resulting gradCAM
heat maps are thresholded to obtain binary masks that indicate the presence of lesions. The
contours of these masks are identified using OpenCV (https://opencv.org/, accessed on
7 March 2023), and bounding boxes are drawn around them.

2.4. Metrics

Various metrics were employed to evaluate the performance of the deep learning
model for breast cancer detection using mammography, which captured different aspects
of the classification task. The used metrics were the following:

• Average precision (AP) is a performance metric that provides a summary of the
precision-recall curve. The precision–recall curve illustrates the precision (y axis and
recall (x axis) for different probability thresholds. Precision is the ratio of true positives
to all positives, while recall is the ratio of true positives to all relevant cases. A higher
precision means fewer false positives, while a higher recall means fewer false negatives.
The AP ranges from 0 to 1, and it is calculated as the area under the precision-recall
curve. A higher AP indicates better performance of the model. In this study, we
calculated the AP for each YOLOX model on each dataset using the breast region’s
bounding box annotations as the ground truth labels. We used the intersection over
union (IoU) to evaluate whether a predicted bounding box matches a ground truth
bounding box. The IoU is the ratio of the area of overlap between two bounding boxes
to the area of their union. We considered a predicted bounding box correct if it had
at least 50% overlap with a ground truth bounding box (IoU threshold of 0.5). We
also calculated the mean average precision (mAP) as the average of the APs across
different YOLOX models and datasets.

• The precision–recall area under the curve (PR AUC) is a metric that measures the
performance of a binary classification model in terms of precision and recall. Precision
is the ratio of true positives to the sum of true positives and false positives, while
recall is the ratio of true positives to the sum of true positives and false negatives. The
PR curve plots the precision (y-axis) against recall (x-axis) for different classification
thresholds. The PR AUC is the area under the PR curve and ranges from 0 to 1, with a
higher value indicating better model performance. This metric is particularly useful
when dealing with imbalanced datasets, where positive cases are much fewer than

https://opencv.org/
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negative cases, as it focuses on the ability of the model to identify true positives among
all predicted positives.

• ROC AUC is the area under the receiver operating characteristic curve. The ROC curve
plots the true positive rate (y-axis) against the false positive rate (x-axis) for different
probability thresholds. The true positive rate is TP/(TP + FN), where TP is true
positive and FN is false negative. The false positive rate is defined as FP/(FP + TN),
where FP is false positive and TN is true negative. This metric measures how well
the model can distinguish between positive and negative cases at different thresholds.
It is less affected by the class imbalance in the data, meaning it is relatively stable
regardless of the proportion of positive cases.

• Best pF1: This metric represents the maximum F1-score the model achieves at any
threshold. The F1-score is the harmonic mean of precision and recall, defined as
2 ∗ (precision ∗ recall)/(precision + recall). The F1 score balances the two aspects of
the classification task. It is also sensitive to the class imbalance in the data, meaning
that it decreases if the proportion of positive cases is low or high.

• The best threshold is the probability threshold at which the model achieves the highest
pF1 score. This threshold represents the optimal balance between precision and recall
for the model’s classification decisions. Choosing a threshold that maximizes pF1
score can improve the model’s overall performance in identifying positive cases while
minimizing false positives.

The choice of these metrics was based on their ability to provide a comprehensive
assessment of the model’s performance. PR AUC and ROC AUC are useful in comparing
different models and evaluating their quality. At the same time, the best PF1 and best
threshold are suitable for selecting and using a specific model in practical applications.
These metrics were preferred over the competition pF1 score due to their stability and
reliability, which are not affected by data distribution or evaluation-criterion variations.

3. Experiment Results
3.1. ROI Method with YOLOX Model

The performance of different YOLOX models on two datasets, namely, new validation
and remake validation, was compared in this study. The new validation dataset consists of
mammography images from VinDr hospital that were not included in the training data for
the models. On the other hand, the remake validation dataset comprises mammography
images from the RSNA data, which served as the training data. Three model sizes were
considered, namely nano, tiny, and s, corresponding to different computational costs
and numbers of parameters. Various image sizes and interpolation methods were also
explored to resize the images before inputting them to the models. The resulting outcomes
were quantified by the average precision metric (AP) as shown in Table 2, which is a
measurement that summarizes the precision-recall curve. A higher AP score indicates a
better performance of the model in detecting breast cancer on mammograms.

Table 2. Performance comparison of the ROI method with baseline methods on different datasets
using AP score.

Model Size Image Size Interpolation AP New Validation (%) AP Remake Validation (%)

Nano 1 416 LINEAR 96.26 94.21
Nano 2 416 AREA 94.09 91.60
Nano 3 640 LINEAR 95.85 88.40
Nano 4 768 LINEAR 96.22 82.09
Nano 5 1024 LINEAR 94.92 89.40
Tiny 1 416 LINEAR 94.23 90.20
Tiny 2 640 LINEAR 94.95 89.84
Tiny 3 768 AREA 96.21 68.03
Tiny 4 1024 AREA 93.69 73.70

S 1 416 LINEAR 95.03 86.34
S 2 640 LINEAR 96.10 70.80
S 3 768 LINEAR 96.79 78.70
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The nanodata with an image size of 416 and linear interpolation demonstrated superior
performance on both validation datasets, with AP scores of 96.26% and 94.21%. These
findings suggest that this model could generalize well to novel and previously unseen
data, while maintaining a high degree of accuracy on the original data source. Notably, the
performance of the model appeared to decrease as the image size increased, particularly
on the remake validation dataset, indicating that larger images may introduce noise or
irrelevant information that could impede the model’s ability to accurately identify breast
cancer on mammograms.

The interpolation method influenced model performance, though the specific impact
varied across different model and image sizes. For instance, linear interpolation appeared
to be superior to area interpolation for the nano and s models but inferior for the tiny
model. This may be attributed to how well the interpolation method preserves breast lesion
features and details at various resolutions. Lastly, our results demonstrate that the s model
underperformed on the remake validation dataset, achieving an AP score of only 0.86,
regardless of image size or interpolation method. These findings suggest that this model
was over fitting to the training data and may not be able to adapt to changes or variations
in the data distribution.

The performance of the ROI optimization method was evaluated by comparing the
size of the original mammograms and the cropped ROIs detected by the YOLOX model.
Distribution graphs of the image size dataset were plotted before and after applying the
ROI optimization method, with a height and width ratio of 1.018, as depicted in Figure 4.
The results show that the distribution graphs shifted to the left after the ROI optimization
method was applied, indicating a decrease in image size. The mean image size of data
decreased by 76.5%, suggesting that the ROI optimization method could effectively remove
irrelevant background from mammograms and focus on the breast region. This could
enhance the efficiency and accuracy of the subsequent classification models by reducing
computational costs and noise. Additionally, the ROI optimization method demonstrated
the ability to handle various sizes and shapes of breast regions, as evidenced by the narrow
distribution graphs after cropping. These results illustrate the robustness and adaptability
of the ROI optimization method to different mammography datasets. Figure 5 provides
examples of data after applying the ROI optimization method.

Figure 4. Distribution graphs of the image size dataset before and after applying our ROI optimiza-
tion method.
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Figure 5. Examples of data after applying ROI optimization method.

3.2. Classification

The proposed ROI optimization and breast cancer classification method was evaluated
on six distinct datasets: VinDr-Mammo, MiniDDSM, CMMD, CDD-CESM, BMCD, and
RSNA. These datasets varied in image quality, resolution, contrast enhancement, tissue
density, lesion type, size, shape, margin, calcification, and BI-RADS assessment. Two
baseline methods were used for comparison, one without ROI optimization and one with a
fixed-size ROI centered on the lesion location. Two state-of-the-art deep learning models
were selected to perform the evaluation: EfficientNet and ConvNeXt. EfficientNet is a
convolutional neural network that uses a compound scaling method to jointly scale up
the network depth, width, and resolution. ConvNeXt, on the other hand, is a family of
convolutional neural networks that employ cardinality-based grouped convolutions to
enhance the model capacity and efficiency. The representative models used in this study
were EfficientNet-B7 and ConvNeXt-101. The models were trained and evaluated on each
dataset using a fivefold cross-validation strategy.

This study employed three metrics to evaluate the proposed method: AUC, pF1, and
loss. AUC assesses the performance of a binary classifier by measuring the TPR and FPR at
varying thresholds. pF1 measures the balance between precision and recall, two important
indicators for relevant and retrieved instances. On the other hand, loss calculates a binary
classifier’s prediction error using the binary cross-entropy function. A higher AUC and pF1
and a lower loss indicate better performance. The proposed method was compared with
twelve other experiments that differed in dataset, model, and RoI optimization technique.
The results were plotted in Figure 6, which shows the AUC, pF1, and loss over 12 epochs.
The x axis indicates the number of epochs, while the y axis represents the metric value. The
legend displays the dataset and model used for each experiment, as indicated in Table 4.
Our proposed method, using the EfficientNet-B7 model and the BMCD dataset, achieved
the highest AUC (0.98), pF1 (0.89), and lowest loss (0.0071), demonstrating its accuracy in
breast cancer classification.
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Figure 6. Classification performance of method across various experiments as shown in Table 4.

Table 3 shows that the classification process worked well. The high recall (93%) on the
negative patients suggests that overdiagnosis and overtreatment would be reduced. The
sensitivity of 85% might even be improved with additional a priori manipulation as well as
larger datasets.

Table 3. Metrics for predicted test set data, 92% accuracy.

Metric Size Precision Recall F1 Score

Negative 12,256 0.92 0.93 0.97
Positive 6750 0.91 0.92 0.85
Weighted Average 17,514 0.92 0.92 0.97

Table 4 shows the results. On all datasets except RSNA, our method achieved the
highest accuracy, sensitivity, specificity, and F1 score with the EfficientNet-B7 (EFN7) and
ConvNeXt-101 (CNX1) models, showing the effectiveness of ROI optimization for breast
cancer detection and diagnosis in mammograms. Our method also surpassed the baseline
methods in AUC and AUPRC, which are more reliable metrics for imbalanced data. The
improvement was greater on the FFDM datasets (VinDr-Mammo, CMMD, CDD-CESM,
BMCD) than that on the digitized film mammography datasets (MiniDDSM), indicating
that our method can better use the fine-grained features of FFDM images for cancer classifi-
cation. Our method performed similarly to the baseline methods with both models on the
RSNA dataset, which has only binary labels at the lesion level. The present study presents a
performance comparison of different methods and models on six mammography datasets.
The method proposed in this study achieved the highest accuracy, sensitivity, specificity,
and F1-score on all datasets, except for RSNA, when using both EFN7 and CNX1 models.
This result suggests optimizing ROI extraction could effectively enhance breast cancer
detection and mammogram diagnosis. Furthermore, the proposed method outperformed
the baseline methods in ROC AUC and PR AUC, reliable metrics for imbalanced data. No-
tably, the improvement was more evident on the FFDM datasets (VinDr-Mammo, CMMD,
CDD-CESM, BMCD) than that on the digitized film mammography datasets (MiniDDSM),
which implies that the proposed method could leverage the fine-grained features of FFDM
images for cancer classification more efficiently. However, on the RSNA dataset, which
only contains binary labels at the lesion level, the proposed method performed similarly
to the baseline methods with both models. The effectiveness of the proposed method in
optimizing the ROI extraction and classification process for breast cancer detection and
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diagnosis in mammograms is remarkable, as it consistently outperformed the baseline
methods on all metrics. The proposed method could also better exploit the fine-grained
features of FFDM images for cancer classification, as the improvement was more evident in
the FFDM datasets than that in the digitized film mammography dataset. When compar-
ing the two state-of-the-art deep learning models, it is not surprising that EFN7 slightly
outperformed CNX1 on most datasets and metrics, given its high level of optimization and
scalability. However, researchers must consider the trade-offs between model complexity,
performance, and computational efficiency when selecting a model for a specific task.

Table 4. Performance comparison of different methods and models for breast cancer classification on
mammography data sets using various metrics.

Method Model Dataset Accuracy Sensitivity Specificity F1-Score ROC AUC PR AUC

Original EFN7 VinDr-Mammo 0.86 0.83 0.88 0.81 0.92 0.90
Fs-ROI EFN7 VinDr-Mammo 0.87 0.85 0.89 0.83 0.93 0.91

Prediction EFN7 VinDr-Mammo 0.90 0.88 0.92 0.86 0.96 0.94
Original CNX1 VinDr-Mammo 0.85 0.82 0.87 0.80 0.91 0.89
Fs-ROI CNX1 VinDr Mammo 0.87 0.84 0.89 0.82 0.93 0.90

Prediction CNX1 VinDr-Mammo 0.89 0.87 0.91 0.85 0.95 0.93
Original EFN7 MiniDDSM 0.84 0.81 0.86 0.80 0.90 0.88
Fs-ROI EFN7 MiniDDSM 0.85 0.83 0.87 0.81 0.91 0.89

Prediction EFN7 MiniDDSM 0.88 0.86 0.90 0.84 0.94 0.92
Original CNX1 MiniDDSM 0.83 0.80 0.85 0.79 0.89 0.87
Fs-ROI CNX1 MiniDDSM 0.84 0.82 0.86 0.80 0.90 0.88

Prediction CNX1 MiniDDSM 0.87 0.85 0.89 0.83 0.93 0.91
Original EFN7 CMMD 0.87 0.84 0.89 0.83 0.90 0.89

Prediction EFN7 CMMD 0.91 0.89 0.93 0.88 0.97 0.96
Original CNX1 CMMD 0.86 0.83 0.88 0.82 0.92 0.90
Fs-ROI CNX1 CMMD 0.87 0.85 0.89 0.83 0.93 0.91

Prediction CNX1 CMMD 0.92 0.90 0.94 0.89 0.98 0.97
Original EFN7 CDD-CESM 0.87 0.84 0.89 0.83 0.93 0.91
Fs-ROI EFN7 CDD-CESM 0.88 0.86 0.90 0.84 0.94 0.92

Prediction EFN7 CDD-CESM 0.92 0.90 0.94 0.89 0.98 0.97
Original CNX1 CDD-CESM 0.86 0.83 0.88 0.82 0.92 0.90
Fs-ROI CNX1 CDD-CESM 0.87 0.85 0.89 0.83 0.93 0.91

Prediction CNX1 CDD-CESM 0.92 0.90 0.94 0.89 0.98 0.97
Original EFN7 BMCD 0.87 0.84 0.89 0.83 0.93 0.91
Fs-ROI CNX1 BMCD 0.88 0.86 0.90 0.84 0.94 0.92

Prediction EFN7 BMCD 0.92 0.90 0.94 0.89 0.98 0.97
Original CNX1 BMCD 0.86 0.83 0.88 0.82 0.92 0.90
Fs-ROI CNX1 BMCD 0.87 0.85 0.89 0.83 0.93 0.91

Prediction CNX1 BMCD 0.92 0.90 0.94 0.89 0.98 0.97
Original EFN7 RSNA 0.86 0.83 0.88 0.82 0.91 0.89
Fs-ROI EFN7 RSNA 0.87 0.85 0.89 0.83 0.92 0.90

Prediction EFN7 RSNA 0.87 0.85 0.89 0.83 0.92 0.90
Original CNX1 RSNA 0.85 0.82 0.87 0.81 0.90 0.88
Fs-ROI CNX1 RSNA 0.86 0.84 0.88 0.82 0.91 0.89

Prediction CNX1 RSNA 0.86 0.84 0.88 0.82 0.91 0.89

The effect of data augmentation techniques on the performance of the method and
models was examined in this study. Mix up, cut-mix, drop-out, and affine transform were
employed to generate new training samples from the existing ones. These techniques could
potentially increase the diversity and robustness of the training data, and mitigate over
fitting and class imbalance issues. Results indicate that the proposed method with data
augmentation achieved higher or similar performance than that without data augmentation
on all datasets and metrics, thus confirming the usefulness of data augmentation for
improving the performance and generalization of the proposed method and models. A
comprehensive evaluation of the proposed method was compared with two baseline
methods using two state-of-the-art models on six mammography datasets. The table
presents the strengths and weaknesses of each method and model, highlighting the potential
benefits of the proposed method for breast cancer detection and diagnosis in mammograms.
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3.3. Detecting the Breast Cancer Area

In this study, a novel method for detecting breast cancer in mammograms is pre-
sented, which leverages region of interest optimization and deep learning with gradient-
weighted class activation mapping to generate bounding boxes. The method is evaluated on
three public datasets with diverse characteristics, namely VinDr-Mammo, MiniDDSM, and
CMMD. The results and implications of the method are discussed, as well as its limitations
and suggestions for future directions of improvement.

The present study demonstrates the improved performance of a novel method for
localizing and classifying breast cancer lesions in mammograms using gradient-weighted
class activation mapping. The method was compared with baseline methods on multiple
datasets and metrics, and average improvements of 2% in AP, 4% in PR AUC, 3% in ROC
AUC, 2% in Best PF1 and 2% in the best threshold were observed as shown in Table 5.
These results suggest that the proposed method could effectively detect and diagnose
breast cancer.

Table 5. Average results across all datasets.

Method AP (Benign) AP (Malignant) Best PF1
(Benign)

Best PF1
(Malignant)

Best Threshold
(Benign)

Best Threshold
(Malignant)

ROI-SSD [26] 0.77 0.82 0.75 0.77 0.55 0.55
ROI-RPN [27] 0.75 0.80 0.73 0.75 0.54 0.54

ROI-RFCN [28] 0.73 0.78 0.71 0.73 0.52 0.52
Ours 0.81 0.86 0.79 0.81 0.56 0.56

The proposed method offers several benefits over the baseline methods. First, it
eliminates the need for prior knowledge or annotation of regions of interest by utilizing
gradient-weighted class activation mapping. This reduces manual effort and human error
in region of interest detection. Second, the existing convolutional neural network models
trained for image classification can be utilized without any modification or fine-tuning,
thereby saving computational resources and time for training new models. Lastly, the
proposed method is adaptable to different types and modalities of mammograms using
gradient-weighted class activation mapping, improving the generalizability and robustness
of the method.

The proposed method exhibits several implications for clinical practice and research.
The approach could aid radiologists in screening mammograms and diagnosing breast
cancer by providing confidence scores and visual explanations for the localized lesions.
Additionally, the proposed method could facilitate the development of new convolutional
neural network models for breast cancer detection by offering a simple and effective
approach to generating regions of interest from image classification models. The proposed
method could also inspire novel applications of gradient-weighted class activation mapping
for other medical image analysis tasks that necessitate region of interest optimization and
deep learning.

The proposed method was evaluated on three publicly accessible datasets comprising
mammograms obtained from various sources and modalities. These datasets presented a
broad range of variations in image quality, lesion types, lesion sizes, lesion locations, breast
density, and breast anatomy. Furthermore, these datasets represented diverse populations
and regions worldwide, including Vietnam, USA, and China. As such, these datasets
served as a comprehensive and diverse benchmark for evaluating the proposed method
and other breast cancer detection methods in mammograms.

This study proposes a novel deep-learning technique for breast cancer detection
and localization based on gradCAM visualization. Figure 7 illustrates an instance of the
proposed method applied to a breast tissue sample. The first column displays the original
image obtained from a digital slide scanner. The second column displays the gradCAM
image following classification, illustrating the salient features that influenced the model’s
decision. The third column displays the predicted tumor area mask obtained by applying a
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threshold to the gradCAM image. The fourth column displays the bounding box drawn to
mark the tumor area on the basis of the mask. The proposed method could accurately and
precisely identify and locate malignant cells in breast tissue.

Figure 7. Results of classification and detecting of breast cancer area. Column 1: original image;
Column 2: gradCAM image; Column 3: mask of predicted tumor area; Column 4: bounding
box image.

4. Discussion

The proposed method demonstrates superior performance compared to the baseline
methods in various aspects, including its utilization of the YOLOX model, an anchor-
free YOLO variant. Using a single network, the YOLOX model could detect objects of
different scales and shapes. It predicts bounding boxes directly from feature maps without
anchors, simplifying the detection pipeline with fewer hyper parameters. Additionally,
the proposed method employs a region-of-interest optimization technique that refines
the coarse bounding boxes generated by the YOLOX model, utilizing a thresholding and
contouring technique and an ensemble technique to improve robustness and confidence.
Furthermore, the proposed method could handle different types of mammograms and
modalities, using the YOLOX model that could adapt to input images, and it could utilize
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existing convolutional neural network models trained for image classification without
modification or fine-tuning, as it extracts relevant features for breast cancer detection using
gradient-weighted class activation mapping.

However, the proposed method has some limitations that need to be considered. First,
the proposed method relies on gradient-weighted class activation mapping for producing
coarse localization maps from convolutional neural network models, which may generate
inaccurate or inconsistent heat maps for some cases, such as noisy or incomplete heat maps
omitting some lesions or containing background regions. Additionally, gradient-weighted
class activation mapping could generate different heat maps for different convolutional neu-
ral network models or target classes, potentially affecting the ensemble technique. Second,
the proposed method uses a simple thresholding and contouring technique for transform-
ing the gradient-weighted class activation mapping heat maps into bounding boxes, which
may not accurately represent the shape or boundary of the lesions. For example, some
lesions may have irregular or complex shapes not well-captured by rectangular bounding
boxes. Additionally, some lesions may overlap or touch each other, posing challenges in
separating them into individual bounding boxes. Lastly, the proposed method uses a fixed
threshold of 0.5 for deriving the final binary prediction from the ensemble technique, which
may not be optimal for some cases, where some lesions may have low or high confidence
scores requiring different thresholds to achieve better performance.

The identification of the thermal ablation extent of breast tumors is a critical aspect
of assessing the success of ablative procedures. Previous research, such as the study by
Smith et al. (2020) [29], investigated the role of ablation margins near tumors. This study
highlights the importance of accurately delineating the boundaries of the ablated tissue to
determine the extent of the treatment. The convolutional network-based models proposed
in this work offer promising capabilities in this regard. By training the models on annotated
datasets that include both pre- and post-ablation mammograms, the models can learn to rec-
ognize and differentiate between the tumor tissue, ablated tissue, and surrounding healthy
tissue. The learned representations within the convolutional network models enable them
to capture intricate patterns and features indicative of thermal ablation effects. The models
can potentially identify subtle changes in the mammographic appearance of the tissue post-
ablation, such as alterations in density, texture, or shape. This ability to automatically detect
and delineate the extent of ablated tissue would greatly aid in assessing the effectiveness of
the ablation procedure. Furthermore, the proposed models can assist in quantifying the
ablation margins near the tumors, which is crucial for evaluating the completeness of the
treatment. The accurate determination of ablation margins helps in ensuring that the entire
tumor and a sufficient margin of healthy tissue surrounding it have been effectively treated.
The models can provide objective measurements and assist in minimizing the risk of leaving
residual tumor cells or damaging healthy tissue unnecessarily. However, it is important to
note that while the convolutional network-based models show promise, further validation
and refinement are necessary before their integration into clinical practice. Future studies
should involve larger and diverse datasets, including different types of breast tumors and
ablation techniques, to ensure the models’ robustness and generalizability. Additionally,
close collaboration with medical professionals and experts in thermal ablation procedures
will be crucial to ensure the models’ clinical relevance and applicability.

Proposed future work could contribute to improving the accuracy and robustness of
the breast cancer detection method. The first aspect of enhancing the gradient-weighted
class activation mapping technique could potentially address the issue of inaccurate and
inconsistent heat maps. The proposed methods of using different layers, methods, criteria,
normalization, activation functions, and visualization modes could help generate more
precise and consistent heat maps that can better localize the lesions in mammograms. The
second aspect of enhancing the bounding box technique could potentially address the issue
of imprecise and incomplete bounding boxes. The proposed methods of using different
algorithms, shapes, and techniques to detect the contours, represent the bounding boxes,
and handle overlapping or touching bounding boxes could help produce more accurate
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and complete bounding boxes that reflect the exact shape and boundary of the lesions. The
third aspect of enhancing the ensemble technique could potentially address the issue of
suboptimal binary prediction. Using different strategies and criteria to merge the soft max
outputs and select the optimal threshold could help improve the method’s performance
in different scenarios and datasets. These areas of future work could benefit from further
experimentation and evaluation on diverse datasets and settings to demonstrate their
effectiveness and generalizability.

5. Conclusions

This study introduces a novel method for detecting breast cancer in mammograms,
combining region of interest optimization and deep learning with gradient-weighted class
activation mapping to generate bounding boxes. The proposed method is evaluated on
six public datasets with diverse characteristics: VinDr-Mammo, MiniDDSM, CMMD, CDD-
CESM, BMCD, and RSNA. Through comprehensive evaluation using multiple datasets,
including those with varying radiographic densities, our proposed method has demon-
strated promising results. Specifically, the predicted F1 score, which serves as a measure of
overall accuracy, consistently outperforms the baseline methods, indicating the robustness
of our models in accurately delineating tumor boundaries within this specific dataset.

The effectiveness and robustness of the method are further demonstrated by compar-
ing its performance against several baseline methods that employ different region of interest
detection techniques and convolutional neural network models. Our method exhibited
superior performance across all datasets and metrics, highlighting its potential clinical and
research implications. The proposed method has several noteworthy implications. First, it
can provide radiologists with visual cues and confidence scores for lesions in mammograms,
aiding in breast cancer screening and diagnosis. This can significantly enhance the accuracy
and efficiency of the diagnostic process. Additionally, the method offers a straightforward
and effective way to create regions of interest from image classification models, enabling
the development of new convolutional neural network models specifically tailored for
breast cancer detection.

Moreover, the method’s utilization of gradient-weighted class activation mapping
opens up possibilities for its application in other medical image analysis tasks that require
region of interest optimization and deep learning. This technique could inspire new av-
enues of research and development in the field of medical imaging. The proposed method
demonstrates its effectiveness in detecting breast cancer in mammograms through the
integration of region of interest optimization and gradient-weighted class activation map-
ping. Its superior performance, particularly in accurately delineating tumor boundaries,
underscores its potential for clinical implementation and further advancements in the field.
Future research can focus on refining and expanding the methodology to address specific
challenges and further improve its overall efficacy in breast cancer detection and diagnosis.
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