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Abstract: A shortwave infrared Ge–Si photodetector will become the core device of the LiDAR optical
receiver. In order to meet the urgent demand for photodetectors in the LiDAR field, we designed
and produced a 32 × 32-pixel Ge–Si photodetector array, which was proposed and developed to
meet the performance requirements of the detector array. A dark current detection system for fast
scanning and detecting large-scale Ge–Si detector arrays was proposed and developed to achieve
the rapid detection of dark current in each detector pixel, with a detection accuracy of less than
1 nA. The system validated the primary performance indicators of the detector array we designed,
achieving rapid discrimination of the array performance and rapid localization of damaged pixels.
The scanning test results showed that the average dark current of the designed detector array chip
was on the nanoampere level, and the proportion of bad points was less than 1%. The consistency
of the array chip was high, which meets the requirements of light detection at the receiving end of
LiDAR. This work laid the foundation for our subsequent development of a LiDAR prototype system.

Keywords: shortwave infrared; LiDAR; photodetector array; dark current detection

1. Introduction

The application of LiDAR is extensive, and in the future, it will have a large market
worth hundreds of billions of yuan [1–3]. LiDAR is a radar system that uses lasers to
accurately measure the position, velocity, and other characteristics of targets. It is an optical
remote-sensing technology that can transmit distance information from the real world to
computers, giving machines human depth vision and providing the function of “eyes”
for humans to explore a wider three-dimensional world. LiDAR can be used for intelli-
gent transportation, the real-time monitoring of vehicle characteristics (size, speed, and
volume), and flow; intelligent vehicle (intelligent connected vehicles) ranging and speed
measurements and obstacle avoidance navigation; intelligent robots to achieve precise
positioning, gesture recognition, etc.; unmanned aerial vehicles for land surveying and
environmental monitoring; intelligent healthcare, by achieving virtual imaging and 3D
printing; and digital cities, urban 3D modeling, digital maps, etc. [4–9]. In the military, it can
be used for battlefield reconnaissance, fighter telemetry, fire control tracking, underwater
detection, laser communication, electronic countermeasures, and so on [10–13]. Shortwave
infrared is safer for the human eye and is the best choice for LiDAR light sources. Short-
wave infrared generally refers to wavelengths of 0.9~1.7 µm [14]. Electromagnetic waves
between 0.9 µm and 1.7 µm cannot be seen by the human eye, but they are very similar to
visible light and can be reflected on the surface of an object. The image has shadows and
contrast, making the object easy to recognize. Shortwave infrared technology has a series of
outstanding advantages such as high recognition, all-weather adaptation, low-light night
vision, covert active imaging, and simple optical configuration, giving it special application
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prospects in fields such as aerospace remote sensing, archaeological identification, military
reconnaissance, public safety, industrial testing, medical diagnoses, etc. [15–17].

Although MoO3-based ultraviolet photodetectors have an extremely high responsive-
ness, their operating wavelengths are usually 300–400 nm [18]. However, for automotive
LiDAR applications, eye-safe shortwave infrared LiDAR will be the mainstream direc-
tion in the future. Presently, short-infrared-wavelength InGaAs avalanche photodiode
detectors are starting to be applied in high-end LiDAR, but the cost is relatively high [19].
For example, the 32 × 1-linear-array InGaAs detector array produced by Hamamatsu
Photonics in Japan has a dark current of less than 2.5 nA and a response of 0.95 A/W,
which belongs to the more advanced InGaAs detector array at present. However, the unit
price of the three-line array is as high as USD 1000 [20]. Ge–Si photodetectors compatible
with CMOS technology with lower costs have been extensively studied in the past decade
and remarkable progress has been made [21–30]. Especially in the past couple of years,
at low temperatures, research has shown that the performance of Ge avalanche photo-
diode single-photon detectors is comparable to that of InGaAs [21]. Moreover, from an
integration perspective, making Ge photodetectors on single-crystal Si is compatible with
Si-based CMOS technology and can be integrated with optical circuits on a single chip.
With a low cost and high integration, it will become the mainstream for LiDAR detectors.
Therefore, the research on Ge–Si photodetectors has become increasingly important. Early
Ge–Si photodetectors were mainly used in the field of optical communication, so more
attention was paid to the gain–bandwidth product and the weak light detection limit. The
gain–bandwidth product reached above 300 GHz [22,23]. The Si waveguide made by the
Institute of Electronics at the Université Paris-Sud on a 300 nm Ge epitaxial layer was
integrated with a Ge–Si photodetector on a single chip. The weak light detection limit
could be as low as −35 dBm, while the bias voltage was only 7 V [24]. The University of
Heriot–Watt in the UK conducted research on single-photon Ge–Si APDs (avalanche photo-
diodes). In 2013, they produced a traditional vertical-structure Ge–Si APD, which achieved
a single-photon detection function in the Geiger mode at the low temperature of 100 K [25].
The Sandia National Laboratory in the United States produced a novel horizontal-structure
Ge–Si APD, which improved the single-photon detection efficiency to 5.27%, providing a
solid technical foundation for implementing ultra-long-range LiDAR [26]. The Singapore
Institute of Microelectronics first reported the research results of Ge–Si APD arrays forming
photomultiplier tubes at the 2019 OFC International Conference [27], and the photoelectric
detection efficiency between array units showed good consistency. However, the dark
current was still relatively high, and the dark current near the breakdown voltage of the
single-transistor APD also reached the µA level. Academician Wang Qiming’s research
group at the Institute of Semiconductors of the Chinese Academy of Sciences studied the
epitaxial growth of Ge on monocrystalline silicon using ultra-high-vacuum CVD (chemical
vapor deposition). Recently, extensive research has been conducted on Ge–Sn alloys [28].
Xiamen University studied upper and lower DBR (distributed Bragg reflector) microcavity-
enhanced germanium photodetectors with similar surface emission structures [29], but the
photoelectric conversion efficiency was slightly low. The Zhiping Zhou research group at
Peking University studied a short-cavity Ge–Si photodetector with an enhanced horizontal
DBR reflection of 5 µm. The long absorption region achieved a photoelectric conversion
efficiency of 0.72 A/W, the 3 dB bandwidth reached 31.7 GHz, and the dark current was
only 7 nA [30].

In response to the urgent demand for photodetectors in the field of LiDAR, we con-
ducted research on PIN-type Ge–Si photodetectors. By optimizing the doping structure
and concentration design, we effectively suppressed the electric field distributed at Ge and
Si heterojunctions and prepared a low-dark-current and high-responsiveness 32 × 32-pixel
Ge–Si photodetector array. In order to test the performance of the detector array, we needed
to design a fast dark current detection system. The system quickly scans each pixel of the
array, applies different bias voltages to each pixel, and reads the different dark currents
generated by the pixel. The photocurrent generated by the detector includes the sum of
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the photogenerated current and the dark current. If the proportion of dark current is large,
the photocurrent cannot effectively characterize the photoelectric conversion performance
of the detector, and the dark current of the detector is inversely proportional to its optical
response characteristics.

Usually, the dark current of photodetectors is at the nanoampere level and has a large
range of variation. It is generally necessary to use high-gain preamplifier circuits and a
range of automatic conversion circuits to achieve this [31–33]. For detector arrays, it is
necessary to design corresponding scanning circuits to select pixels [34], similar to the
imaging principle of charge-coupled device (CCD) cameras. Based on the characteristics of
Ge–Si detector arrays and the design principles of detection circuits, our detection system
can quickly detect the dark current distribution of the entire array and locate damaged
pixels, providing us with testing and verification methods for device design. It can be used
for the rapid detection of dark currents in larger detector arrays in the future.

2. Principle and System
2.1. New Ge–Si Detector Array

A photodetector is a device that converts light signals into electrical signals. In order
to effectively capture the reflected light signals of the target object on the LiDAR in space,
we designed and prepared a 32 × 32-pixel Ge–Si photodetector array with a Ge active
area of up to 707 µm2, as shown in Figure 1. The array consisted of pixels, leads, and
electrodes. The pixel-doping structure was achieved by injecting boron elements into the
top Si layer on the SOI wafer, forming a P-type doping region and a heavily doped P++
region, respectively. The P++ region formed a cathode through ohmic contact with the
Al metal electrode. Afterward, selective epitaxy was carried out on the Si substrate to
prepare Ge thin films as the active absorption region of the detector. Finally, phosphorus
was injected above the Ge absorption region to form a heavily doped N++ region, which
formed an anode through ohmic contact with the Al electrode.
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Figure 1. New Ge–Si detector array structure.

In order to characterize the photodetectors, we mainly studied their responsivity and
quantum efficiency, dark current, noise characteristics, response bandwidth, gain, gain–
bandwidth product, and other parameters [35]. When the photodetector is in a reverse-bias
state, even without incident light, a weak current is generated, which is known as a dark
current. Dark current generation is related to the electron–hole pairs generated by the
thermal motion inside the detector. On the other hand, it is related to the defect of the
detector surface, bias voltage, and surface area. Figure 2a shows the equivalent circuit
model of the PIN photodetector under no light conditions. In the circuit, Cj is the junction
capacitance, Cs is the equivalent parallel capacitance, Rs is the equivalent series resistance,
and the dark current Idark includes the reverse-bias current Igen, the tunneling current Itun,
and the parasitic leakage current Iohm [36]. In addition, the dark current is related to the
thermal ion emission and temperature [18], and its impact on Ge–Si detectors is relatively
small and can be ignored. Figure 2b shows the corresponding bias voltage–dark current
curve, where the dark current increases with an increase in the reverse-bias voltage.
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under no illumination. (b) Bias voltage–dark current curve.

As shown in Equation (1), the dark current can be expressed as:

Idark = Igen + Itun + Iohm (1)

Under reverse-bias voltage, electron–hole pairs are generated in the space charge
region. Once an electron hole is generated, it is swept out of the space charge region by
an electric field, forming a reverse bias to generate current. Equation (2) is the calculation
method for the current Igen generated by reverse bias:

Igen =
Aeniw

2τ0
(2)

where τ0 is the average lifetime of the carrier, ni is the intrinsic carrier concentration, e is
the electron charge, w is the volume of the space charge region, and A is the device area.

According to the tunneling effect, when the reverse-bias voltage is too high, the
probability of carriers passing through the barrier width of the space charge region greatly
increases, resulting in a large current that cannot be ignored. This current is called the
tunneling current, and the calculation method for the tunneling current is:

Itun =

(
2m∗

Eg

) 1
2
· exp

(
− 4

3eE}

√
2m∗E3

g

)
·A· e3EV

4π2}2 (3)

where E is the maximum field strength in the depletion region of the PN junction, V is the
applied reverse-bias voltage, A is the device area, m* is the effective mass of the electron, Eg
is the energy band gap, h̄ is the reduced Planck constant, and e is the electronic quantity.

The expression for the parasitic leakage current is:

Iohm =
V
Rd

(4)

where V is the bias voltage applied at both ends of the detector and Rd is the dark resistance
of the photodetector. Generally, the dark current mainly generates current and parasitic
leakage current at a low bias and tunneling current at a high bias. Therefore, it is necessary
to check the distribution of dark current under different reverse-bias voltages and improve
the photodetector performance; efforts should be made to reduce dark current.

2.2. Scanning Detection Method and System

Figure 3 is the principal block diagram of the Ge–Si-detector-array dark-current fast
detection system, which consists of a controllable voltage source, a Ge–Si detector array
and its scanning circuit, an electrometer-level amplifier, a programmable amplifier, an
MCU (micro-controller), and an LCD (liquid crystal display). During the working pro-
cess, the MCU controls the bipolar DAC (digital-to-analog converter) output voltage in
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the controllable voltage source, which is amplified by a voltage follower to generate a
controllable bias voltage. The controllable bias voltage is loaded onto the optical relay.
The MCU controls the 3–8 decoder for row selection, selecting one row of pixels to make
one row of pixels conductive. The MCU also controls the 3–8 decoder for column selection,
selecting one column of pixels to make one column of pixels conductive. Finally, the bias
voltage is applied to a single detector. The dark current signal generated by the pixel
generates a voltage signal through the electrometer amplifier. The generated voltage signal
is amplified by the programmable amplifier. The amplified voltage signal is input to the
ADC (analog-to-digital converter) module in the MCU and converted into a digital signal
displayed on the LCD screen. This system can achieve rapid scanning and dark current
detection of large-scale Ge–Si detector arrays.
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Figure 3. Schematic diagram of the composition of the detection system.

The controllable voltage source consists of a bipolar DAC and a voltage follower, with
a bipolar DAC power supply voltage of ±5 V. Therefore, the bias voltage range of the
detector can reach −5 V to +5 V. We continuously read the dark current under reverse-bias
voltage and positive-bias voltage. The actual voltage scanning range was −3 V~+1 V. As
shown in Figure 4, the bipolar DAC chip used ADI (Analog Devices Inc.)’s LTC2664-12.
The DAC chip had four output channels, one of which was used for actual measurement. If
the DAC is 12 bits, the voltage resolution is:

∆V =
(+5V)− (−5V)

212 ≈ 2.44 mV (5)

The voltage follower was implemented using Texas Instrument’s high-output current
amplifier LM7332, which can output a maximum current of up to 70 mA.

The dark current amplification circuit is shown in Figure 5, consisting of a cross-
impedance amplifier (TIA), a programmable amplifier, and a general-purpose amplifier.
The TIA was realized by an electrometer amplifier ADA4530-1 of ADI. This chip is an
operational amplifier with an input bias current on a flying ampere level, which is suitable
for measuring weak currents. The impedance connected in Figure 5 was 1 MΩ, so the
output voltage of the TIA is:

V1 = −R1 Idark (6)
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Due to the extensive dark current variations in PD detectors, especially in the case
of reverse bias and forward bias, there is a greater difference in the current. Therefore,
a programmable amplifier was used to amplify V1 to ensure a variable amplification
factor. The programmable amplifier consisted of ADI’s instrument amplifier AD8220 and a
single-pole 8-position analog switch. The amplification factor of AD8220 is:

G = 1 +
49.4 kΩ

RG
(7)

The eight resistors connected to the single-pole 8-position analog switch were 1 MΩ,
12 KΩ, 5.1 KΩ, 1 KΩ, 510 Ω, 240 Ω, 100 Ω, and 51 Ω. Based on the resistors Rx1~Rx8, the
corresponding amplification factors can be calculated as 1.05, 5.22, 9.36, 50.40, 97.86, 206.83,
495.00, and 969.63. During testing, adjusting the amplification factor according to the size
of the measured value can improve the measurement accuracy, with A, B, and C being the
address inputs of the analog switch controlled by the MCU.

Due to the negative dark current of the PD detector under reverse bias and the positive
dark current under forward bias, V2 can be either positive or negative, while the ADC
inside the MCU can only read positive voltages. Therefore, we designed a third-stage
amplification circuit, which outputs in-phase voltages on one side and reverses voltages on
the other side; namely: {

VP = V2 = −GR1 Idark
VN = −V2 = GR1 Idark

(8)

when Idark < 0, VP > 0, and VN < 0, the ADC reads the voltage of VP. When Idark > 0, VP < 0,
and VN > 0, the ADC reads the voltage of VN. We used two ADC channels to read the Idark
for reverse and forward bias.
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Using the Toshiba semiconductor’s optical relay TLP3320 to achieve the row and
column selection of detector arrays and to replace mechanical relays with optical relays can
reduce the installation area and achieve fast switch selection. Figure 6a shows the internal
structure of an optical relay, which is similar in principle to an optocoupler. The switching
speed of TLP3320 is less than 300 µs. This system can achieve fast scanning of the array.
The on-resistance of TLP3320 is about 10 Ω, and the off-resistance is about 1014 Ω. Usually,
the dark current of the PD detector is between 1 and 100 nA under a reverse-bias voltage
of 1 V, and the equivalent resistance of PD is between 107 and 109 Ω. If the on-resistance
RON of TLP3320 is set to 10 Ω, the off-resistance ROFF is set to 1014 Ω, and the equivalent
resistance RPD of PD is set to 108 Ω, then the equivalent circuit of the array is that shown
in Figure 6b. The on-current ION is approximately 1013 times the off-current IOFF, so the
influence of the off-resistance can be ignored. The dark current IA on the PD detector in the
first row and column selected in Figure 6b is approximately equal to the dark current Idark
of the array.
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Figure 6. Optical relays and their equivalent circuits. (a) Internal structure of optical relays. (b) Equivalent
scanning circuit.

As shown in Figure 7, the hardware diagram of the detection system is composed of
a Ge–Si detector array and its scanning circuit, a variable voltage source, a dark current
detection circuit, a control circuit, and an LCD screen. The Ge–Si detector array is placed in
the middle of the scanning circuit, and pixel selection is carried out by an optical relay. The
variable voltage source and dark current detection circuit are integrated on a printed circuit
board (PCB), and the bias voltage is output to the scanning circuit. The dark current is also
connected to the dark current detection circuit from the scanning circuit. The control circuit
is located below the LCD screen, and the MCU used is the ARM chip STM32F103ZET6
from STMicroelectronics. The LCD screen can draw a bias voltage–dark current curve
and display the magnitude of dark current under different bias voltages. The system
detection includes two modules: single measurement and continuous measurement. In the
single-measurement mode, rows and columns can be selected, and the bias voltage–dark
current curve of the row and column pixels can be measured in a single measurement. By
continuously measuring the modulus, we can automatically measure the bias voltage–dark
current curve of all pixels at once and ultimately store all test data in the SD (secure digital
memory) card. By inserting the SD card into the computer host, we can read all the data.
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3. Array Test and Data Analysis

We designed detector arrays of four different sizes, A, B, C, and D. The target sur-
face of array A is 2.5 cm × 2.5 cm, that of array B is 2.0 cm × 2.0 cm, that of array C
is 1.5 cm × 1.5 cm, and that of array D is 1.0 cm × 1.0 cm, as shown in Figure 8. The
photosensitive surface of a pixel accounts for about half of the whole pixel area, that is,
the fill factor of all devices is 0.5. We needed to detect dark current on these four arrays
and determine the distribution of dark current and pixel consistency under different sizes,
ultimately guiding us in device design.
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Figure 8. PD array chips (A–D).

Firstly, we measured a single pixel’s bias voltage–dark current curve, as shown in
Figure 9. The voltage scanning range was −3500 mV~+100 mV, and the step voltage was
50 mV. As shown in Figure 9, the bias voltage–dark current curve of the first-row and
first-column pixels of device A was consistent with the theoretical curve in Figure 2.
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Figure 9. The bias voltage–dark current curve of the pixel (the first-row and first-column pixels of
device A).

Furthermore, we measured all dark currents in the device and determined their
distribution characteristics. Figure 10 shows the two-dimensional histogram of the dark
current distribution of device A, and Figure 10 shows the two-dimensional histogram of
the dark current distribution at the bias voltages −2.5 V, −2.0 V, −1.5 V, −1.0 V, and −0.5 V.
The higher part of the histogram in the figure shows a large and abnormal dark current.
To quantify the array damage, we counted the number of pixels > 10 times the average
dark current and the number of pixels > five times the average dark current. Table 1 shows
the measurement results. The number of pixels with device A > 10 times the average dark
current was two, totaling 1024 pixels and accounting for 0.2%. The number of pixels with
device A > five times the average dark current was nine, accounting for 0.9%. The pixel
damage of device A was <1%, indicating a good performance. Our system can continuously
detect device damage and quickly locate the position of damaged pixels, so we can respond
to imaging applications through compensation in the later stage.

Further, we measured the dark current and its distribution of devices A, B, C, and D, as
shown in Table 2. According to the theoretical design, the smaller the pixel area, the smaller
the average dark current. Figure 11a shows the average dark current values of devices A,
B, C, and D when the bias voltages were −2.5 V, −2.0 V, −1.5 V, −1.0 V, and −0.5 V. The
higher the reverse-bias voltage, the larger the average dark current. In theory, the average
dark current is in the order A > B > C > D. In actual measurements, A > B > C ≈ D was
shown, and the pixel areas of devices C and D were not significantly different. All average
dark currents were indistinguishable. The actual measurement was consistent with the
theoretical analysis.
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Figure 10. Histogram distribution of dark current test for PD array A. (a) Bias voltage = −2.5 V.
(b) Bias voltage = −2.0 V. (c) Bias voltage = −1.5 V. (d) Bias voltage = −1.0 V. (e) Bias voltage = −0.5 V.
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Table 1. PD array A’s dark current parameters.

Bias Voltage
(V)

Average Dark
Current

(nA)

Number of Pixels
> 10 Times the

Average Dark Current

Number of Pixels > 5
Times the Average

Dark Current

−2.5 147 2 9

−2.0 86 2 7

−1.5 54 2 3

−1.0 35 0 2

−0.5 22 0 0

Table 2. Distribution characteristics of dark current in PD arrays A, B, C, and D.

Bias Voltage
(V)

Average Dark Current
(nA)

Number of Pixels > 10 Times the
Average Dark Current

Number of Pixels > 5 Times the
Average Dark Current

A B C D A B C D A B C D

−2.5 147 75 28 24 2 10 4 3 9 11 8 5

−2.0 86 47 15 15 2 7 1 0 7 11 6 5

−1.5 54 27 8 12 2 5 1 0 3 8 4 1

−1.0 35 16 5 9 0 4 1 0 2 5 2 0

−0.5 22 9 2 8 0 1 0 0 0 1 5 0
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Figure 11. Distribution of dark currents in PD arrays A, B, C, and D. (a) Average dark current distri-
bution. (b) Distribution of the number of pixels > 10 times the average dark current. (c) Distribution
of the number of pixels > 5 times the average dark current.

Figure 11b,c show the number of pixels with a bias voltage of −2.5 V, −2.0 V, −1.5 V,
−1.0 V, and −0.5 V for devices A, B, C, and D > 10 times the average dark current and
five times the average dark current, respectively. All devices had a pixel damage rate < 1%,
indicating a good performance. Among them, device B had the most severe pixel damage
and the worst performance, while device D had the least pixel damage and the best
performance. The damage to devices A and C was relatively small and basically equivalent,
and both had a good performance. The above measurement results can guide us in the
design of Ge–Si detector array chips. The detection system has a good performance and
can quickly detect the dark current characteristics of the device.

By further studying the device’s performance and verifying the functionality of the
testing system, we measured the detector array’s photocurrent to obtain the array chip’s
average response. We used a laser wavelength of 1550 nm with a power of −6.78 dBm and
irradiated it on the detector array chip. The responses of devices A, B, C, and D are shown
in Table 3. In addition, Figure 12 also shows plotted histograms of the response of these
four devices. Device A had the highest responsiveness, followed by B, C, and D. Device A
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had the largest effective photosensitive area and the best effect. The average response of
device A was greater than 0.4 A/W, which was about half of the response of the InGaAs
detector of Hamamatsu Photonics at 0.95 A/W, indicating a better performance.

Table 3. Responsiveness of devices A, B, C, and D under different bias voltages.

Bias Voltage
(V)

Responsiveness (A/W)

A B C D

−2.5 0.417 0.418 0.325 0.213

−2.0 0.435 0.421 0.335 0.226

−1.5 0.448 0.443 0.350 0.256

−1.0 0.456 0.452 0.376 0.263

−0.5 0.478 0.455 0.383 0.286
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Figure 12. Responsiveness of devices A, B, C, and D under different bias voltages.

4. Conclusions

By analyzing the dark current characteristics and detection methods of Ge–Si pho-
todetector arrays, this paper proposed and developed a dark current detection system for
the rapid scanning and detection of large-scale Ge–Si detector arrays. The high-isolation
optical relay was used to quickly select the pixels of the array chip, and the electrometer
amplifier was used to amplify the dark current to quickly detect the dark current of each
pixel of the detector. We used this system to detect dark currents on array devices. The
experimental results indicate that our designed system achieved rapid discrimination of
the array performance and rapid localization of damaged pixels. The scanning test results
show that the average dark current of the detector array chip was on the nanoampere level,
and the proportion of bad points was <1%. The consistency of the array chip was high,
which meets the requirements of light detection at the receiving end of LiDAR. This work
laid the foundation for our subsequent development of a LiDAR prototype system.
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