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Abstract: In recent years, Japan’s agricultural industry has faced a number of challenges, including a
decline in production due to a decrease in farmland area, a shortage of labor due to a decrease in the
number of producers, and an aging population. Therefore, in recent years, smart agriculture using
robots and IoT has been studied. A caliper is often used to analyze the growth of tomatoes in a plant
factory, but this method may damage the stems and is also hard on the measurer. We developed a
system that detects them through image analysis and measures the thickness of stems and the length
between flower clusters and growing points. The camera device developed in this study costs about
USD 150 and once installed, it does not need to be moved unless it malfunctions. The camera device
reduces the effort required to analyze crop growth by about 80%.

Keywords: smart agriculture; tomato; image processing; IoT; deep learning

1. Introduction

In recent years, Japan’s agricultural industry has faced a number of challenges, includ-
ing a decline in production due to a decrease in farmland area, a shortage of labor due
to a decrease in the number of producers, and an aging population [1]. In 2015, 64.9% of
agricultural workers were aged 65 years old or above; however, by 2020, this percentage
had increased to 69.8%. In addition, the arable land area in Japan has been decreasing,
as shown in Figure 1. The total area of arable land as of July 2020 was approximately
4.37 million hectares. Therefore, in recent years, smart agriculture using robots and IoT has
been studied. Smart agriculture aims to solve the shortage of human labor by automating
tasks that are normally performed by humans. It also aims to improve the efficiency of
work by using computers to manage and analyze data on crops and the environment,
thereby increasing production per unit area and improving quality.

The purpose of this research was to automatically analyze the growth status of toma-
toes using camera images. To achieve that, farmers measured the thickness of the stems
near the flower clusters, and the length of flower clusters and growing points. In fact,
a caliper is often used to analyze the growth of tomatoes in a plant factory, but this method
may damage the stems and also put strain on the person conducting the measurement [2].
We believe that this required time can be reduced by using cameras installed on farms and
image analysis techniques. In this study, we aimed to create a system to perform such
analysis. This system should be inexpensive and easy to use so that farmers who are not
familiar with computers can easily adopt it. Therefore, our goal is to obtain sufficient mea-
surement data with a small number of cameras by using cameras with a pan-tilt function
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that can capture multiple plants. Additionally, another objective of this work is to reduce
the cost of the hardware used in this system as much as possible, and to create a system
that is easy to use and does not require complicated operations by the user.

400

450

500

550

600

650

1960 1970 1980 1990 2000 2010 2020

cu
lt

iv
at

ed
ac

re
ag

e(
1

0
,0

0
0

 h
a)

(year)

Figure 1. Trends in arable land area in Japan.

2. Related Work

Previously, Suma presented the challenges of integrating farmers’ experience and
knowledge with state-of-the-art technology in traditional agriculture and proposed a
model that utilizes cameras and various sensors to detect features of the farm environment
to solve these challenges [3].

Deep neural networks have also been used for plant cultivation. In 1999, Zaidi et al.
used a small neural network to detect plant growth [4]. In their experiments, the number
of units of the network was only seven in the input layer, eight in the hidden layer, and five
in the output layer.

Nagano et al. employed a plant growth detection method based on leaf movements [5].
In their study, the changes in the movement of lettuce leaves over time were extracted as
features. These features were analyzed using a growth prediction neural network model to
predict the growth state.

Huang et al. proposed a region-based convolutional neural network (R-CNN) model
for tomato cultivation that uses images to determine whether the fruit is ripe and automati-
cally determines when to harvest in real time [6].

In 2019, Trung-Tin et al. used 571 tomato images to train and provide a CNN model
to recognize the nutrient deficiency status of tomatoes [7]. The model was able to predict
calcium (Ca), potassium (K), and nitrogen (N) deficiency states with accuracies as high
as 91%.

In 2021, Mubashiru Olarewaju Lawal proposed a model called YOLO-Tomato, a modi-
fication of YOLOv3 [8]. It allowed tomato detection in complex environments and achieved
99.5% AP in the best model. This was more accurate than the SOTA model at the time.

In 2022, Arunabha et al. proposed a real-time object detection framework Dense-
YOLOv4 based on an improved version of the YOLOv4 algorithm introducing DenseNet [9].
In orchards, it is important to detect the growth stage of leaves based on their quantity, size,
and color in order to increase the yield. By applying DenseNet-fused YOLOv4, we were
able to detect growth stages with high accuracy. This framework can be extended to detect
various crops, diseases, etc.

3. System Design

The network architecture and data flow of the system are shown in Figure 2. First,
each camera device is placed in the field. It takes an image of the area to be photographed
and uploads the image to Google Drive. The PC downloads the images uploaded to
Google Drive, performs image analysis, and outputs the measurement data. Finally,
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the measurement data are uploaded in CSV format to a specific shared folder on Google
Drive, and the irrigation system can access the measurement data.

Figure 2. The network architecture and data flow of the image analysis system.

3.1. Camera Device

The exterior and interior of the camera device are shown in Figures 3 and 4, respectively.
The device is a small camera with a Raspberry Pi, a 3-axis pan-tilt camera mount, and can
move the viewpoint. The Raspberry Pi, pulse-width modulation (PWM) servo driver board,
and other components are housed in a 3D-printed case, and a 3-axis pan-tilt camera mount
is attached to the top of the case. In order to prevent the Raspberry Pi from overheating
during field use, it is necessary to use a case with a cooling fan to cover the Raspberry Pi.
There were no cases with cooling fans on the market, so we used a 3D printer to make our
own case, which consists of two parts: a base to hold the Raspberry Pi and a lid to cover it.
The specifications of the camera device used are shown in Table 1.

The servomotor and camera can be controlled using a Raspberry Pi. In addition,
images can be uploaded to a shared file environment, such as Google Drive, by connecting
to the Internet using a Wi-Fi environment in the field. A 3-axis pan-tilt camera mount using
servomotors is created to enable a wide range of imaging with a single camera device.
The servomotors are connected to Raspberry Pi via a PWM servo driver equipped with
a PCA9685 controller; this controlled multiple servomotors by sending commands to the
PWM servo driver via I2C communication to control their angle. For the camera, we used a
dedicated camera module for Raspberry Pi. The camera has a resolution of 8 megapixels,
which is sufficient for image analysis. In addition, the small size and weight of the board
allows it to be moved by a low-torque motor when installed in the camera mount. The
camera device can be connected to a network via Wi-Fi or wired cables, and the image data
can be sent to a PC for image analysis via Google Drive.
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Table 1. List of the specifications of the camera [10].

Name Raspberry Pi Camera V2
Still picture resolution 3280 × 2464

Image sensor Sony IMX 219 PQ CMOS image sensor in a
fixed-focus module.

Lens size 1/4”
Dimensions 23.86 × 25 × 9 mm

Image format JPEG

Figure 3. Camera device exterior.

Figure 4. Camera device interior.

Software Design

The camera device is programmed to run on a Raspberry Pi; specifically, on a Raspberry
Pi OS using Python 3.7. The ‘crontab’ command is used to set the program to run at startup.
This allows the system to run automatically when Raspberry Pi is turned on. The three
functions of this program are: (1) change the viewing direction of the camera by controlling
the servomotors, (2) capture images, and (3) upload the captured images to Google Drive.
The shooting time to capture images is predetermined by the program, and images are
captured at regular intervals during the day. The camera angle is changed slightly at
each shooting time to capture images in all possible directions. All captured images are
saved in a specific folder on Google Drive. To operate Google Drive using Python, we
used the PyDrive module that manipulates the Google Drive application programming
interface (API).

3.2. Image Analysis System

In the system shown in Figure 2, an image analysis program runs on a PC. The
execution environment is Windows 10 and the language used is Python 3.7. To run this
program regularly, we need to set it to run automatically at midnight every day using the
Windows task scheduler. The system downloads all images taken by the camera device
on the previous day from Google Drive at 00:00 every day, executes the image analysis
program, converts the output measurement data into a CSV file, and uploads it to the
folder where the measurement data is stored in Google Drive. The steps of the process
from downloading the images to uploading the measurement data are described in the
list below.
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1. Download images from Google Drive.
2. Correct image distortion.
3. Detect stem, target part of stem diameter measurement (target stem), and growing

point (seichouten in Japanese) using YOLO.
4. Determine the same plant from the label of each detected part.
5. Detect circles by Hough transform of reference balls.
6. Extract the contour part of the stem by segmentation of the ‘target stem’ part of the

image.
7. Measure the thickness of the stem in pixels.
8. Convert pixels to actual stem diameter length using neighboring reference balls.
9. Measure the distance between the ‘target stem’ and the growing point using a refer-

ence ball.
10. Summarize measurement data and convert them to CSV format.
11. Upload the CSV file to Google Drive.

Google Drive file download upload operations use PyDrive as well as a camera device.

3.2.1. Image Distortion Correction

Image distortion correction by camera calibration is done using the OpenCV image
processing library. OpenCV includes functions for calculating the parameters required
for calibration using a chessboard and for calibrating the image with those parameters.
Using the former function, we estimate the parameters from the images taken by the
camera module of Raspberry Pi. The system’s program uses these parameters to calibrate
all images.

3.2.2. Object Detection with YOLO

Transfer learning is performed using YOLOv5 to detect tomato plant units. We trained
on a pre-trained model using the Coco 2017 dataset (apple detection) [11]. Approximately
1100 images of tomatoes taken in the field were used for training. The object detection
targets were stems, ‘target stem’, and growing point, and each part was labeled by sur-
rounding the training image with a rectangle, as shown in Table 2. The images labeled
using these criteria are shown in Figure 5. The training on YOLOv5 was performed with
a batch size of 12 and an epoch count of 140 using Mosaic data augmentation and SGD.
The trained model used for training was YOLOv5x. Hyperparameters are defaults unless
otherwise noted.

Figure 5. Example of YOLO labeling.
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Table 2. Labels and description.

Label Description

stem The entire stem including the top of the plant
target stem The stem connected to the flower

seichouten (growing point) The point where the plant grows

YOLO [12] is widely used for real-time object detection such as face recognition and
multi-target tracking. Since its release in 2016, YOLO has been updated several times,
with the latest version being YOLOv5, which has improved accuracy and performance [13].
The benefits of YOLO are widely applied to the object detection domain, and its perfor-
mance has been optimized. It is also possible to perform object detection on Raspberry Pi.
In addition, YOLO models have been pre-trained on various datasets, allowing for transfer
learning of datasets. Hence, YOLO has been optimized for object recognition and highly
evaluated for its accuracy and performance. We considered deep learning segmentation of
the entire image, but found that generating a dataset for this purpose was challenging and
required significant time and resources. Therefore, we decided to use YOLOv5, a bounding
box-based object detection method that is easier to create datasets. YOLO has also been
used for plant detection [8,9] and is suitable for this system.

3.2.3. Identification of Same Strain from Each Detected Label

The next step is to determine the same strain based on the labels of each detected region.
This step alternates between the following two processes: the first one is to determine if
the labels are for the same plant from images taken at different times, and the second one
is to determine whether the labels ‘stem’, ‘target stem’, and ‘seichouten’ are for the same
plant from a single image. These processes are necessary because the labels of multiple
strains can be detected in a single image. The first process is to determine the degree of
overlap of labels of the same type for each label detected in images taken at different times
and at the same shooting angle and to determine whether the labels are of the same plant
if they are above a certain threshold value. If the overlap is greater than the threshold
value, the labels are considered to be from the same plant. This is based on the fact that
the position of labels does not change significantly even if the plant is growing, unless the
shooting time to capture images is far apart. In this process, if the attracting string is
pulled down, the position of the plant is shifted significantly, and the same plant cannot
be tracked. The second process is to determine the overlap between ‘stems’ and ‘target
stem’, and between the ‘stem’ and ‘seichouten’ labels; if there is even a small overlap, it is
determined to be the same plant. If there are multiple flower clusters in the bloom, multiple
‘target stems’ are detected for a single stem. In this case, the label added above is given
priority in the image analysis. In addition, multiple ‘seichouten’ may be detected for a
single stem when the side shoots are not processed and extended. However, if the side
shoots are not processed for a long time, they often grow higher than the main stem; in this
case, accurate measurement is not possible.

3.2.4. Reference Ball Detection

Next, we estimate the diameter of the reference ball in the image by detecting the
circle using Hough transform. First, the pink pixels in the image are extracted by setting a
threshold value, and a binary image is generated. The image is then smoothed to remove
noise and circle detection is performed using the function of OpenCV. The Hough transform
can detect circles even if leaves hide a part of the circle. However, false positives are likely
to occur. Therefore, to determine whether the detected circle is valid, we checked the
number of pink pixels included in the circle and eliminated them if they were below the
threshold. OpenCV’s image calibration process can correct the distortion of a flat surface in
3D space, but a sphere such as a ping pong ball will be distorted into an ellipse as it moves
away from the center of the image. Therefore, the reference ball may not be accurately
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detected by circle detection using Hough transform. Therefore, by using contour extraction
and ellipse fitting functions of OpenCV, we can detect the elliptical reference sphere. The
detected circles and ellipses are circled in green in Figure 6. In this experiment, a pink
reference ball was used; nevertheless, red tomatoes and red markers hanging above the
field were detected incorrectly.

Figure 6. Reference ball detection results.

3.2.5. Stem Contour Detection Using Segmentation

The next step is to extract the contour of the stem using DeepLabv3+, a deep learning
segmentation. DeepLabv3+ is an extension of the existing DeepLabv3 called semantic
segmentation which labels all pixels in an image [14]. It performs better than traditional
methods such as U-Net, achieving 89% performance on the test set. We created the training
data for this process. An example of an image with training data in a polygon format is
shown in Figure 7. The training of DeepLabv3+ was performed with a batch size of 10 and
an epoch count of 200 using Adam. No data augmentation was performed. The learning
rate was set to 1 × 10−3 initially and changed to 1 × 10−4 after 120 epochs.

Figure 7. Example of teacher data in segmentation.
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The extraction results of segmentation using DeepLabv3+ are shown in Figure 8. The
black areas in the right image are the extracted stems.

Figure 8. Image of the ‘target stem’ part (left) and contour extraction result by DeepLabv3+ (right).

Due to the complexity of measuring stem diameter from stem images obtained by
YOLOv5 using traditional image processing techniques, we chose to utilize deep learning-
based segmentation for obtaining stem contours. After testing and evaluating various
models, we found that DeepLabv3+ offered superior detection performance in comparison
to alternatives such as R-CNN and was both lightweight and suitable for our system.

3.2.6. Measurement of Stem Diameter in Pixels

We proposed a novel method for measuring stem diameter. It involves measuring the
distance between a line segment on one side edge of the stem and a line segment on the
opposite side edge. We use line-to-line distance measurement instead of point-to-point
distance measurement. This increases accuracy and reduces the number of inaccurate
results. The process aims to obtain a set of pairs of opposite sides suitable for stem
diameter measurement. The process for measuring stem diameter in pixels is outlined in
the following steps:

1. Apply a Gaussian filter to the binary image to suppress noise, then detect stem
contours using a Laplacian filter.

2. Find the contours of the stem as a continuous line connected in eight neighborhoods
and list them in pixels.

3. Divide the contour into two parts on both sides of the stem.
4. Extract feature points using two methods to vectorize the contour.
5. Vectorize feature points as endpoints and obtain contour segments of a certain length

or longer as line segments.
6. Calculate the stem diameters by corresponding the stem contour segments with the

stem contour segments on the opposite side.
7. Cluster the stem diameters of the corresponding contour segments.
8. Take a weighted average and calculate the stem diameter with the length of the

overlap for each cluster.
9. Calculate the correctness score of the stem diameter for each cluster, and the stem

diameter of the cluster with the highest score is the measured stem diameter.

In step 3, if a single contour is obtained, the contour is divided by the point farthest
from the starting point of the list. Additionally, in the case of obtaining two or more
contours, the longest two are obtained in terms of length (number of pixels), and the ratio
of the length is taken from the one with the larger ratio to the other one when the ratio is
greater than 0.7. This is because the lengths of both sides of the stem are generally similar
values, and if the ratio is greatly different, there is a possibility of measuring the wrong
location and it is necessary to eliminate it.

In step 4, feature points are placed at points of high curvature. Specifically, the entire
stem contour is scanned, and feature points are assigned when the angle between the
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midpoint of the interval and the endpoints of the interval is less than a certain angle in
a certain short interval. Feature points of the other type are placed at points that divide
loose curves longer than a certain length. Specifically, the entire stem contour is scanned,
and when the average distance between a point between two points and the line connecting
the two points exceeds a certain distance, the point farthest from the line is assigned as the
feature point. Together with operation in step 5, the former feature point is used to extract
the appropriate stem contour by excluding parts that do not look like the stem contour.
The latter feature point is intended to improve the accuracy of stem diameter measurement
in the presence of loose curves.

In step 5, contour segments of greater than a certain length are vectorized by projecting
the endpoints on the line with the smallest sum of the squared distances.

In step 6, a distance between the line segments is calculated by a unique method and
used as the stem diameter. Two segments of the stem contour are taken from each side and
normalized to obtain two direction vectors. From the two direction vectors, we calculate the
mean vector and the vector orthogonal to it. The segments of the stem contour are projected
onto the mean vector, and when there is overlap and the angle formed by the two original
vectors is less than a certain angle (the segments of the two contours are almost parallel), it
is considered that the segments of the stem contour correspond to each other. One segment
of the stem contour is taken from each side and normalized to obtain two direction vectors
and their mean vector. If the two stem contour segments overlap when projected onto the
mean vector and the angle formed by the two original vectors is smaller than a certain angle
(the two contour segments are nearly parallel), the stem contour segments are considered to
correspond to each other. A straight line passes through the center of the region where the
two projected contour segments overlap and, perpendicular to the mean vector, intersects
the two stem contour segments, which have two intersections each.

The distance between the two intersecting points is calculated as the stem diameter of
the corresponding two contour segments.

In step 7, we cluster the obtained multiple stem diameters by using the fact that the
stem diameter does not change significantly (within ± about 17%). This separates clusters
of correct stem diameter and incorrect stem diameter.

In step 8, the weighted average of the stem diameter is taken for each cluster, with the
length of the overlap when projected as a weight.

In step 9, correct stem contours have longer overlaps and are often calculated shorter
than in the case of errors. The stem diameter correctness score is calculated as (overlap
length)/(stem contour length), and the stem diameter of the cluster with the highest score
is considered the measured stem diameter.

The process for extracting the stem diameter is shown in Figure 9.

Figure 9. Extraction of feature points from the contour of the original image (left) by vectorization
(middle) and measurement results of stem diameter (white line) (right).

3.2.7. Calculation of Measurement with Reference Ball

The next step is to calculate the stem diameter and length from the base of the flower
cluster to the growing point from nearby reference balls. We use the reference ball with the
closest Euclidean distance on the image from the labels ‘target stem’ and ‘seichouten’.

To calculate the actual stem diameter dmm mm from the stem diameter dpx px on
the image and the diameter of the reference ball rpx px, we use Formula (1). rmm mm is



Appl. Sci. 2023, 13, 6880 10 of 14

the diameter of the reference ball, which is 40 mm in our experiment. The α is the value
calculated by the experiment, which is 1.2 in our system.

dmm = α
rmm

rpx
dpx (1)

To find the distance between the vegetative part and stem at the base of the flower
cluster, we first calculate the Euclidean distance dpx px between the ‘target stem’ and
‘seichouten’ in the image. Then, we calculate the angle θ between the ‘target stem’, camera,
and ‘seichouten’ in 3D coordinates from the image using Formula (2), where W is the
number of pixels in the width of the captured image and VW is the angle of view of
the camera.

θ =
dpx

W
VW (2)

Then, using the reference ball, we calculate the distance l mm between the camera and
target using Formula (3).

l =
rmm

rpx

W

2 tan VW
2

(3)

From Equation (3), we calculate distances lt and ls from the camera using the reference
balls corresponding to ‘target stem’ and ‘seichouten’. Finally, we calculate the distance
between the growing point and stem at the base of the flower cluster, Smm mm, using the
cosine theorem and Equation (4).

Smm =
√

l2
t + l2

s − 2ltls cos θ (4)

From these equations, the stem diameter and distance between the vegetative part
and stem at the base of the flowering cluster can be calculated from the image.

3.2.8. Conversion of Measurement Data to CSV Format

Finally, the calculated stem diameters and distances between the vegetative part and
stem at the base of the flower cluster are summarized in the CSV format. In this process,
four pieces of information are included: the time of shooting, the ID assigned to the plant,
the stem diameter, and the distance between the vegetative part and the base of the flower
cluster. The ID assigned to a plant is the number assigned to the stem when determining
the identity of the plant, and the same ID is assigned to plants that are determined to be
the same in images taken at different locations, times, and angles.

3.3. Output of Image Analysis

A camera device is installed in the field, image analysis is performed on the captured
images, and the data are compiled in CSV format. The CSV file contains data measured
from the plants detected by a single camera on a single day. Therefore, CSV files are created
for the number of cameras uploaded to Google Drive within a day. If the stem diameter can
be measured even when the vegetative part cannot be detected, the measurement result
of the distance between the vegetative part and stem at the base of the flower cluster is
output as −1. The reason for this is that it is difficult to detect the growing point, and some
growth analysis is possible only with stem diameter information.

4. Experimental Evaluation
4.1. Evaluation Method

Using this system, pictures were captured in a plastic greenhouse. The stem contour
and size of the reference ball were obtained from the image. The relative error was calcu-
lated by comparing the result of the stem thickness calculation with the value measured
by a measuring instrument, such as a caliper. The stems to be evaluated were only those
to which the reference ball was attached and the stem diameter was calculated by this
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system. We also evaluated the detection results of YOLOv5, YOLOv4, Scaled-YOLOv4, and
DeepLabv3+ and compared YOLOv5 with YOLOv4 and Scaled-YOLOv4 [15]

4.2. Results

Tables 3–5 show the results of detecting each label by the YOLOv5, YOLOv4, and
Scaled-YOLOv4, respectively, from the collected image data. This includes the same tomato
plants taken at different times and from different angles.

Table 3. Detection results of each label by YOLOv5.

Label Precision Recall F-Measure

stem 0.720 0.454 0.557
target stem 0.676 0.333 0.446

growing point 0.387 0.257 0.309
mean 0.594 0.348 0.437

Table 4. Detection results of each label by YOLOv4.

Label Precision Recall F-Measure

stem 0.559 0.410 0.464
target stem 0.591 0.333 0.426

growing point 0.326 0.203 0.250
mean 0.492 0.315 0.38

Table 5. Detection results of each label by Scaled-YOLOv4.

Label Precision Recall F-Measure

stem 0.629 0.513 0.565
target stem 0.750 0.308 0.436

growing point 0.455 0.203 0.280
mean 0.611 0.457 0.427

These detection results indicated that YOLOv4 was inferior to YOLOv5 on all indica-
tors. Although Scaled-YOLOv4 is superior to YOLOv5 in the precision and recall averages,
it is inferior to YOLOv5 in the F-measure, which is an overall index.

Table 6 shows the results of calculating the relative error from the values measured by
the measuring instruments based on the results of successfully detecting the reference ball
and extracting the stem contour from the images taken from the plant.

Table 6. Evaluation of errors in stem diameter.

Stem Measured Value [mm] Calculation Result [mm] Relative Error [%]

1 9.7 8.93 7.9
2 8.3 8.08 2.7
3 8.7 9.19 5.6

The images from which the stem diameter could be calculated, the image extracted
by YOLOv5, and the image of the stem contour discriminated by DeepLabv3+ are shown
in Figures 10–12. The detection result of stems by YOLO is indicated by a red bounding
box, the detection result of the target stem is indicated by a green bounding box, and the
detection result of the growing point is indicated by a blue bounding box.
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Figure 10. Measurement results of stem 1.

Figure 11. Measurement results of stem 2.

Figure 12. Measurement results of stem 3.

The system was able to detect stems and stem outlines using YOLOv5 and a reference
ball around the stem. The number of tomato plants included in the images taken over three
days was 31, of which 7 were measurable stems. Therefore, the detection rate of measurable
plants was 23%.

5. Discussion

In this research, it was found that if the plant to be measured and the ball attached
to it can be detected correctly in the image, the stem diameter can be calculated with an
error of less than 10%. Owing to the characteristics of the camera lens, it was difficult to
measure the stem diameter correctly when the stem is detected at the edge of the image
due to image distortion. After changing the orientation of the camera so that the detected
stem is in the center of the image, the measurement can be performed with less error.

The camera device developed in this study cost about USD 150 each, and once installed,
it does not need to be moved unless they malfunction. This is a significant cost saving
as commercially available stem diameter change sensors cost USD 780 to USD 3900 per
plant [16]. The reference balls need to be attached to each plant, one on each stem near the
tomato flower cluster and one near the growing point, and the tomatoes grow so fast that
they need to be moved once every two weeks. The work involved in this system requires
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only moving the reference balls once every two weeks, and can be done in less time than
measuring tomato stems with calipers. This work can also be done at the same time if the
plants are being cultivated with attractant cords. In this experiment, it took about 5 min
per 10 plants to change the position of the reference ball. This method takes about 80% less
time than the method using calipers, and there is no possibility of damaging the stems.
This method can greatly reduce the user’s labor.

However, the system developed in this research has difficulty in detecting tomato
plants by machine learning when the distance between the camera and the target tomatoes
is large, or when the angle of the camera changes. Therefore, the number of plants that
could be detected was reduced. Future issues include improving the detection performance
of machine learning. We also believe that the use of a camera with an autofocus function as
a hardware improvement will make it possible to measure plants at greater distances.
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