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Abstract: The devastating consequences of successful security breaches that have been observed
recently have forced more and more software development enterprises to shift their focus towards
building software products that are highly secure (i.e., vulnerability-free) from the ground up. In order
to produce secure software applications, appropriate mechanisms are required for enabling project
managers and developers to monitor the security level of their products during their development
and identify and eliminate vulnerabilities prior to their release. A large number of such mechanisms
have been proposed in the literature over the years, but limited attempts with respect to their
industrial applicability, relevance, and practicality can be found. To this end, in the present paper,
we demonstrate an integrated security platform, the VM4SEC platform, which exhibits cutting-edge
solutions for software security monitoring and optimization, based on static and textual source code
analysis. The platform was built in a way to satisfy the actual security needs of a real software
development company. For this purpose, an industrial case study was conducted in order to identify
the current security state of the company and its security needs in order for the employed security
mechanisms to be adapted to the specific needs of the company. Based on this analysis, the overall
architecture of the platform and the parameters of the selected models and mechanisms were properly
defined and demonstrated in the present paper. The purpose of this paper is to showcase how cutting-
edge security monitoring and optimization mechanisms can be adapted to the needs of a dedicated
company and to be used as a blueprint for constructing similar security monitoring platforms
and pipelines.

Keywords: software security; security by design; security monitoring; verification and validation;
vulnerability prediction; experience report

1. Introduction

In the traditional software development lifecycle (SDLC), security is treated as an
afterthought. In particular, software products are built without having security in mind,
and is added during their deployment phase through the addition of external protection
mechanisms, such as attack detection, firewalls, etc., in an attempt to prevent malicious
individuals from exploiting existing vulnerabilities [1,2]. Although this approach was con-
sidered sufficient for common offline software applications, the observed transition to the
cloud and the software-as-a-service (SaaS) paradigm that makes the software applications
accessible via the Internet, along with the fact that external protection mechanisms can be
bypassed regardless of their strength, showcase the need for a more careful consideration
of security aspects during the overall SDLC. The above reasons, along with the numerous
real-world examples of software vulnerabilities that led to devastating financial and rep-
utation damages (e.g., Equifax Breach [3], HeartBleed [4], WannaCry [5], Log4j [6], etc.),
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forced software companies to shift their focus towards the security-by-design paradigm,
that is, on adopting a secure SDLC that leads to the construction of software applications
that are highly secure (i.e., vulnerability-free) from their ground up.

The vast majority of software vulnerabilities are introduced during the coding phase
of the SDLC through coding mistakes that are made by the developers [2,7,8], either due
to their lack of security expertise or due to strict production deadlines that force them
to make compromises on the quality of their produced code [9,10]. Hence, appropriate
tools are required to help developers avoid the introduction of such issues during the
development and project managers better monitor the security of developed source code.
Static analysis is considered one of the most effective mechanisms for detecting potential
vulnerabilities during the overall development, and therefore it is a must-have feature for all
of the popular Secure SDLCs, including Microsoft’s SDL [11], Cigital’s Touchpoints [1], and
OWASP OpenSAAM (http://www.opensamm.org/). However, the main problem of static
analysis tools is that they produce long lists of raw warnings that, while encapsulating
important security information for the analyzed software, are difficult to comprehend
by technical and non-technical stakeholders. Therefore, there is a need for knowledge
extraction tools that are able to post-process these results in order to extract useful security-
relevant information and present it in a more attractive and easy-to-understand way.

Several mechanisms have been proposed in the literature over the years for enabling
the security monitoring of software products during their development, by leveraging
security-related results produced by static analysis. Two such mechanisms that have
attracted the attention of the research community are (i) the security assessment models,
which are models that provide high-level metrics that reflect important security aspects of
the analyzed software that are computed by aggregating the results of static analysis, and
(ii) the vulnerability prediction models, which are models that are able to detect security
hotspots, i.e., software components that are likely to contain vulnerabilities. Both models
can be leveraged by project managers for facilitating their decision-making activities during
the SDLC. In fact, they allow them to better monitor the security of the developed software
and identify those security aspects or components that require immediate attention by
the development team. However, the main shortcoming of these mechanisms, which also
explains their limited adoption in practice, is that they are difficult to set up and to be
tailored to the needs of a specific software company. There is a need for a close collaboration
between security experts/researchers and the interested software companies in order to
properly configure such security monitoring models, so that the companies can leverage
their benefits. There is also a need for defining an approach that can be followed for
properly adapting these novelties to the pipelines of software development companies.

To this end, in the present paper, we conduct an industrial case study that demonstrates
how novel security monitoring mechanisms can be turned into a unified practical solution
properly configured to satisfy the needs of a specific software development company, in
order to be used in practice for monitoring the security of its developed software products,
towards its transition to a more secure SDLC. In particular, in the present paper, we
demonstrate an integrated security monitoring platform, the VM4SEC platform, which
exhibits cutting-edge security assessment and vulnerability prediction mechanisms that
have been developed in order to meet the needs of a software development house. As a
first step towards building the platform, a case study was conducted based on a survey
and a focus group with key employees of the company, in order to identify the current
security state of the company, its security needs, the most suitable security monitoring
mechanisms that need to be deployed, and the desired functionalities. Subsequently,
based on the retrieved feedback, the functional and non-functional requirements of the
platform were extracted, as well as the main parameters of the mechanisms were defined
in order to be tailored to the company needs. Finally, the final architecture and deployment
diagrams were defined, and the proposed solutions were deployed and started being used
by the company.

http://www.opensamm.org/
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The present paper, apart from showcasing the VM4SEC security monitoring platform,
can be also used as an example on how similar novel security monitoring solutions can
be made operational in the form of practical tools that are properly configured, in order
to satisfy the needs of a given company. This is considered important, since the lack of
customizability, configurability, and adaptability are some of the main reasons that prevent
software companies from utilizing security monitoring mechanisms in practice [12,13],
despite the acknowledged benefits that they can provide in improving the security of their
produced software.

At this point, it should be noted that although several static analysis platforms exist
on the market that are able to detect security issues, none of them provide high-level
quantitative security measures that reflect important internal security aspects of the an-
alyzed software, nor its overall security level, even though novel security assessment
models have been proposed lately [14–18] . In addition to this, no operationalized vul-
nerability prediction model (VPM) exists in the literature that can be used directly in
practice for identifying the existence of potentially vulnerable components in software
products under development, despite the recent advancements in the field of vulnerability
prediction [19–29]. To the best of our knowledge, the VM4SEC platform is the only plat-
form that provides novel quantitative security assessment and vulnerability prediction
models that can be used directly in practice for monitoring and optimizing the security
of software products. Most importantly, this is the first research attempt that presents a
formal approach for adapting and tailoring such novel security monitoring solutions to
fit the needs of a specific company or application domain. This is considered important
since such novel security monitoring solutions require proper configuration and adaptation
before being used in practice by actual companies, which is a tedious process that often
distracts companies from using such mechanisms in practice.

To facilitate the readability and the understandability of the present paper, a road
map of the overall methodology that was employed for building the VM4SEC platform is
illustrated in Figure 1. As can be seen by Figure 1, the overall methodology consists of five
sequential steps. Initially, a two-step survey and a focus group were conducted in order to
understand the current security state of the company and its security needs. Subsequently,
the requirements of the platform were elicited from the survey and formally expressed
using tables and diagrams. Then, the cutting-edge security monitoring mechanisms were
built and configured properly in order to satisfy the needs of the company, as expressed in
their requirements. Finally, a plan for the implementation and deployment of the VM4SEC
platform was devised. A detailed description of these five steps is provided in Section 3.

Figure 1. The high-level overview of the overall methodology.

The rest of the paper is structured as follows: Section 2 discusses the related work in
the field. Section 3 discusses in detail the methodology that was followed for the present
study. In particular, it gives an overview of (i) the survey and the focus group that have been
conducted for gathering information from the company, (ii) the process that was followed
for eliciting the requirements of the VM4SEC platform and designing its overall architecture,
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(iii) the core security monitoring mechanisms that were deployed and how their parameters
were computed, and (iv) the final implementation and deployment diagram of the VM4SEC
platform that was derived through this process. Finally, Section 4 concludes the paper and
discusses directions for future work.

2. Related Work

White box testing techniques, and particularly static code analysis, have been found
effective in identifying security issues (i.e., vulnerabilities) that reside in the source code
of software products [30–32]. Several individual static analysis tools and broader static
analysis platforms have been proposed over the years, which are able to detect specific
types of security issues among other bugs (e.g., [33]). Static analysis tools process the
source code of the analyzed software in an attempt to find predefined patterns that indicate
the existence of vulnerabilities. In order to identify potential security weaknesses, they
apply a wide range of analysis techniques ranging from simple text processing and pattern
matching with the use of regular expressions, to more advanced graph-based techniques
such as Abstract Syntax Trees (ASTs), Data-Flow Graphs (DFGs), Control-Flow Graphs
(CFGs), and Code-Property Graphs (CPGs), in which they traverse the graphs searching
for violations of specific rules or the existence of known vulnerability patterns. The output
of these tools is a list of warnings (i.e., alerts) that indicate a potential security issue,
providing relevant information about the issue, including its type, severity, and location in
the source code.

A known shortcoming of existing static code analyzers, which is known to hinder their
wider adoption in practice, is the generation of long lists of raw warnings [34–36]. These
warnings, although they contain important information for the security of the analyzed
software, are in a raw form that is highly difficult to be comprehended by non-technical
experts such as project managers [31,34]. Hence, appropriate techniques are required on
top of the results of static analysis, in order to facilitate decision-making during software
development [13,37]. Particularly, the results of static analysis could be leveraged for
conducting quantitative security evaluation, providing high-level security metrics, which
are easier to understand than the low-level warnings and can reflect important security
aspects of the analyzed software. Several models and techniques have been proposed in
the past years for providing quantitative security evaluation of software products based on
the results of static analysis, demonstrating promising results [14–18]. However, none of
the existing and widely used static analysis tools and platforms provide such quantitative
evaluation models and techniques. They use only visualization techniques in order to
provide more intuitive summaries of the identified security issues, but they do not provide
high-level security metrics that reflect important aspects of the security of the analyzed
software (e.g., Confidentiality, Integrity, Availability, etc.).

Apart from quantitative security assessment, the results of the white box testing of
a software product’s source code can be leveraged for providing other advanced security
monitoring mechanisms. One such mechanism that has recently attracted the attention of
the research community is vulnerability prediction. Vulnerability prediction focuses on
predicting the existence of vulnerabilities in software applications, and in fact, software
components. It is based on the construction of vulnerability prediction models (VPMs),
which are machine learning (ML) models that are able to predict whether a given software
component may contain vulnerabilities or not [19,38,39]. Several models have been pro-
posed over the years, utilizing various software-related attributes as input features (i.e.,
predictors), including software metrics [19–21] and text features [22–29]. Among them, the
text-mining-based VPMs have demonstrated the most promising results (i.e., highest pre-
dictive performance). Initially, text-mining-based VPMs were based on simple ML models
text mining techniques such as Bag of Words (BoW) [22], whereas recently, more advanced
techniques have been utilized, including Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) models that use sequences of tokens along with their
word embedding numerical representation as input [23–25]. Recently, emphasis has been
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given to transformer-based pre-trained models, such as GPT and BERT [26–28], in which
we have provided some contribution which will be integrated into the broader VM4SEC
platform [29]. Despite their importance in security monitoring, no operationalized VPMs
can be found neither in the literature nor on the market, either standalone or as part of
existing security analysis tools and platforms.

For better understanding of the main novelty of the VM4SEC platform, in Table 1,
a comparison between existing widely used static analysis platforms and our VM4SEC
platform is provided. In particular, we compare the VM4SEC platform with SonarQube
(https://www.sonarsource.com/products/sonarqube/, accessed on 5 June 2023), Cover-
ity (https://scan.coverity.com/, accessed on 5 June 2023), and Fortify (https://www.
microfocus.com/en-us/cyberres/application-security, accessed on 5 June 2023), which are
popular static code analyzers known to be able to detect security issues.

Table 1. Comparison between existing popular static analysis tools and platforms and the VM4SEC
platform.

Requirements SonarQube Coverity Fortify VM4SEC

Identification of Security Issues 3 3 3 3

Visualization of Analysis Results 3 3 3 3

Quantitative Security Metrics 3

Vulnerability Prediction 3

As can be seen by Table 1, existing ASA platforms provide identification of security-
related bugs and visualization of the analysis results in a more meaningful and easy-to-
understand way. However, none of the ASA platforms provide high-level security metrics,
nor a quantitative estimation of the overall security of a given software application, which
is important for security monitoring and decision-making during the overall software
development lifecycle of a given software product. In addition to this, none of the existing
platforms provide vulnerability prediction models, and, to the best of our knowledge, no
operational VPM exists on the market which can be used directly for analyzing a given
software application. To the best of our knowledge, VM4SEC is the only platform available
that provides a high-level quantification of the security level of a given software product
based on state-of-the-art software security evaluation models, as well as the only platform
that provides ready-to-use text-mining-based VPMs. It should be noted that since the VM4SEC
is based on static analysis, the other three platforms could be used as input for the VM4SEC platform
for providing its high-level security metrics, as well as for the VPMs. Hence, it can be also viewed as
an extension of existing ASA platforms, providing additional and high-level functionality. In other
words, the VM4SEC can be used complementarily with these static analysis platforms, in order to
leverage their security issue identification capabilities and enhance their functionality by providing
high-level security measures and vulnerability predictions.

Finally, it should be noted that novel security monitoring solutions such as quantitative
security assessment mechanisms and vulnerability prediction models require being prop-
erly configured and adapted in order to be utilized in practice. For instance, quantitative
security assessment mechanisms should be calibrated properly in order to identify specific
types of security issues and compute security metrics that are more relevant and of high
importance for a specific company and/or application domain. Similarly, dedicated VPMs
need to be built for the software projects on which they should be applied for monitoring
their security level. This is a tedious process that prevents companies from using such
solutions in practice. To the best of our knowledge, no other research work exists in the
literature that presents how novel security solutions can be adapted to fit into the pipelines
of specific companies and the workflows of specific development teams.

3. Methodology

In this section, a detailed description of the overall methodology that was followed
for setting up a security monitoring platform tailored to the needs of a specific company is

https://www.sonarsource.com/products/sonarqube/
https://scan.coverity.com/
https://www.microfocus.com/en-us/cyberres/application-security
https://www.microfocus.com/en-us/cyberres/application-security
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provided. The overall methodology is illustrated in Figure 1. As can be seen by Figure 1,
the adopted approach consists of the following major steps:

1. Survey: Initially, a 2-step survey was conducted for identifying (i) the current state of
the company with respect to employed security monitoring techniques, (ii) the most
suitable security monitoring mechanisms that should be added to the workflows of
its software engineers, and (iii) the most common security issues and most critical
security aspects faced during the development of its software applications. The first
two points are important for eliciting the requirements of the envisaged platform,
whereas the latter is crucial for properly configuring the parameters of the platform’s
mechanisms, so as to be tailored to the company’s needs. Online questionnaires
were utilized as the main instruments for gathering the required feedback from the
participants.

2. Focus group: Subsequently, an open discussion was conducted with the software
engineers and project managers of the company, based on the topics discussed in the
questionnaire, through a dedicated focus group. The open discussion provided addi-
tional insights about the current security state of the company, its security monitoring
needs, and the most suitable security mechanisms to be deployed, along with their
required configuration. The focus group was also vital for defining the requirements,
the use cases, and, eventually, the final architecture of the VM4SEC platform.

3. Requirements Elicitation and Architecture Design: The feedback collected through
the 2-step survey and the focus group was utilized as the basis for eliciting the
functional and non-functional requirements of the platform, along with its main use
cases. A formal requirements elicitation process was followed in order to ensure
transparency and clear specification. Apart from the information collected through
the survey and the focus group, several iterations of question and feedback sessions
were conducted with the software engineers and the project managers of the company,
in order to ensure the completeness of the requirements list. Based on the extracted
requirements, the overall architecture of the platform was defined following the Data
Flow Diagram (DFD) architectural design paradigm.

4. Model/Mechanisms Configuration/Tuning: The selected security monitoring mech-
anisms, i.e., the quantitative security assessment (QSA) and vulnerability prediction
models (VPMs), were calibrated in order to adapt to the specific needs of the company.
More specifically, as will be explained later, the VPMs were constructed based on
a vulnerability dataset that was curated with the aid of the company’s developers,
comprising real-world vulnerability examples that are commonly found in the com-
pany’s projects. Moreover, the QSA model was built is such a way so that it will
be able to identify security issues that are considered more relevant and important
for the applications of the company, as well as compute high-level metrics that are
of interest to the company. For this purpose, information that was gathered by the
questionnaire was leveraged and statistically analyzed, whereas advanced multi-
criteria decision-making (MCDM) techniques were employed for deriving the models’
parameters.

5. Implementation and Deployment: Following the microservices architectural paradigm,
the mechanisms were implemented as standalone tools, while a unified user-friendly
user interface (UI) is currently under development, aiming to enable the easy invo-
cation of the security monitoring mechanisms and the visualization of the security
evaluation results. Once the integrated VM4SEC platform reaches a fully functional
level, it will be deployed on the premises of the company, in order to be evaluated in
practice through its utilization during the company’s development workflows.

3.1. Industrial Case Study
3.1.1. Survey and Focus Group

The first step towards building a security monitoring platform tailored to the needs
of a specific software company is to identify and report its actual needs. This can be
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achieved by consulting the employees of the actual targeted company in order to retrieve
information about the security monitoring activities that they already employ during
their SDLC, which security monitoring activities are considered more important to them,
and what novel security monitoring mechanisms are more suitable to be added to their
pipelines/workflows. This can be achieved through dedicated surveys, focus groups, and
active communication with the company on a consultation basis.

In the present work, we have selected an actual company, namely Onelity, as a case
study for demonstrating our approach. Onelity is an IT Services Provider working actively
for leading Automotive, Telecommunications, Financial and e-Commerce organizations in
Europe. It collaborates with its customers to turn their digital visions into results through
its regional offices in Germany, Greece, and Cyprus. It was founded in 2020 by a team of
highly qualified professionals, having more than 20 years of international experience in the
field of Information Technology. It supports and provides customized turnkey solutions in
mid- and long-scale projects all around Europe by using the latest technologies, and a full
toolbox of frameworks and systems. It also provides the most advanced and up-to-date
training programs in the market. At the time of writing, Onelity (hereafter referred to as
Company) employs more than 50 highly skilled professionals.

In order to gather the required information, a survey and a focus group were conducted
with employees of the Company. In particular, 16 key employees of the Company were used
as subjects of the study, acting as the participants both in our survey and in the focus
group. We ensured that all of the selected participants are involved in the SDLC of the core
software products that are developed by the Company from various roles, ranging from
software developers to project managers. We also ensured that multiple people from each
role would be involved in our study in order to further avoid potential bias.

As already stated, the information-gathering process was based on a survey and a
focus group. These two information-gathering mechanisms are described in detail in what
follows. In fact, we have followed the guidelines for empirical case studies provided
by [40,41], in order to properly construct our survey and quantitatively analyze its results.

Two-Step Survey

Initially, a 2-step survey was conducted with the 16 participants of the Company, in
order to gather the required information. The division of the survey into two sequential
steps was necessary, as we first needed to understand the actual needs of the Company, i.e.,
which novel security monitoring mechanisms should be deployed into their pipelines, and
based on the identified needs to gather dedicated information that is necessary for properly
tuning/configuring the selected mechanisms to better fit into the Company’s pipelines.

Step 1: The purpose of the first step of the survey was to (i) identify the current state
of the Company with respect to security monitoring, (ii) identify their needs with respect
to further security monitoring activities that should be applied during their SDLC, and
(iii) chose the most suitable security monitoring mechanisms that should be added to their
pipelines/workflows. To gather this information, as will be explained later in more detail,
a dedicated questionnaire was constructed and shared with the participants, as presented
in Table 2. Initially, the first two parts of the questionnaire (i.e., Part 1 and Part 2 in Table 2)
were constructed and shared with the participants. In brief, the following broader questions
(which were mapped into more concrete questions in the actual questionnaire) had to be
answered by the participants:

• What is your role in the company and how many years of experience do you have?
• Does your company employ a secure SDLC in the projects that you are involved?
• What pro-active and re-active security testing and monitoring activities do you employ during

the SDLC?
• Which is the most important security activity in which your company needs to invest more in

the future?

The responses to these questions were based on multiple choice answers in order to
give the option to the participants to select among predefined answers. Since we wanted
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to provide freedom to the participants and gather as much useful information as possible
from their side, most of these questions also provided the “Other” option to allow the
participants to give a different answer from those provided, if they considered it necessary.
This was decided because we did not want to risk limiting (or potentially directing) the
participants’ responses to specific answers. In addition to this, it should be noted that the
increased freedom in the responses was necessary for this step, as it allowed us to better
design the rest of our survey and collect useful information for the requirements elicitation
process in the next steps.

Step 2: The purpose of the second step of the survey was to gather information that is
necessary for properly tuning/configuring the most suitable security monitoring mecha-
nisms (as identified based on the answers of the first step), in order to be tailored to the
pipelines/workflows and needs of the Company. In particular, the responses of the first step
of the survey were analyzed and the main security monitoring mechanisms were detected.
As will be discussed later in the text, the participants showed great interest in security
monitoring solutions that are based on static analysis, particularly on quantitative security
assessment (QSA) and vulnerability prediction models (VPMs). Hence, the questionnaire
(see Table 2) was updated by adding two additional parts (i.e., Part 3 and Part 4) with
questions necessary for tuning these models in the future. The broader questions that were
asked in these two sections are presented below:

• How important is the characteristic of �Security_Characteristic� for a software application
(compared to the other characteristics)?

• According to your expertise, which Security Characteristics are significantly affected by
�Security_Issue�?

The purpose of these questions is (i) to identify the main security aspects (i.e., char-
acteristics) that are of high interest for the projects that are developed by the Company,
as well as their relative importance, and (ii) to identify the main security issues that they
face in these projects along with their impacts on important security aspects. In contrast
to the answers to the questions of Step 1, which offered much freedom to the participants,
the answers to the questions of Step 2 were provided either on a 5-point Likert Scale or
based on a list of predefined choices. The answers in this step had to be strictly defined
since (i) we are referring to official security terms, and (ii) the responses will be used for
configuring the parameters of the models (see Section 3.3). Therefore, the consistency and
correctness of the responses need to be ensured. The selected security characteristics are
retrieved from ISO/IEC 25010 [42], whereas the Security Issues are retrieved from NIST’s
Common Weakness Enumeration (CWE) (https://cwe.mitre.org/top25/) database. The
values of the �Security_Characteristic� and �Security_Issue� that were selected are
shown in Table 2, along with the summary of the final questionnaire.

Questionnaire: As already stated, as an instrument for gathering the required infor-
mation from the 2-step survey, we opted for a questionnaire. The most important part of
developing a questionnaire is the selection of questions. In our survey, this process was
governed by the guidelines provided by Kitchenham and Pfleeger [43]: (a) keep the number
of questions low, (b) questions should be purposeful and concrete, (c) answer categories
should be mutually exclusive, and (d) the number, the order, and the wording of questions
should avoid biasing the respondent. To this end, we constructed a questionnaire with
25 questions, organized into four parts (see Table 2).

As already stated, the first two parts were used in the first step of the survey, whereas
the latter two were used in the second step of the survey. The questionnaire containing
only the first two parts was initially distributed to the participants, who were asked
to provide their answers. An initial analysis of their answers was conducted and the
main security monitoring mechanisms that should be deployed regarding the SDLC of
the Company product were identified. Then, the questionnaire was updated by adding
the remaining two parts (i.e., Part 3 and Part 4), including questions specifically crafted
for collecting information that is required for configuring/tuning the selected security
monitoring mechanisms (see Section 3.3). The updated questionnaire was distributed to

https://cwe.mitre.org/top25/


Appl. Sci. 2023, 13, 6872 9 of 34

the participants, who were asked to provide answers to the questions of the remaining
two sections. It should be noted that in the beginning of each section, the questionnaire
introduced the participant to the involved security terms, in order to ensure that the
participants had a clear understanding of the included terms and the questions.

Table 2. The questionnaire that was utilized for collecting data from the 2-step survey.

ID Question

Part 1—Demographics

Q1.1 What is your role in the company?

Q1.2 How many years of experience do you have in this position?

Part 2—Adopted Security Activities and Further Needs

Q2.1 What type of security activities do you utilize during the development of software products within your company?

Q2.2 What re-active security countermeasures do you apply during the development of software products in your company?

Q2.3 What pro-active security countermeasures do you apply during the development of software products in your company?

Q2.4 Which of the following security countermeasures do you consider critical and that the company should invest more on
them in the future?

Q2.5 Which of the following novel security monitoring activities do you consider interesting and with practical value in order
to be included in their pipelines?

Part 3—Important Security Aspects

Q3.1 How important is the characteristic of Confidentiality for a Software application (compared to the other characteristics)?

Q3.2 How important is the characteristic of Integrity for a Software application (compared to the other characteristics)?

Q3.3 How important is the characteristic of Availability for a Software application (compared to the other characteristics)?

Q3.4 How important is the characteristic of Authentication for a Software application (compared to the other characteristics)?

Q3.5 How important is the characteristic of Authorization for a Software application (compared to the other characteristics)?

Q3.6 How important is the characteristic of Security Compliance for a Software application (compared to the other characteris-
tics)?

Part 4—Critical Security Issues

Q4.1 According to your expertise, which Security Characteristics are significantly affected by Injection Issues?

Q4.2 According to your expertise, which Security Characteristics are significantly affected by Integer/Buffer Overflow Issues?

Q4.3 According to your expertise, which Security Characteristics are significantly affected by Cross-site Scripting (XSS)?

Q4.4 According to your expertise, which Security Characteristics are significantly affected by Null Pointer Dereference?

Q4.5 According to your expertise, which Security Characteristics are significantly affected by Weak Cryptography Issues?

Q4.6 According to your expertise, which Security Characteristics are significantly affected by Security Misconfiguration Issues?

Q4.7 According to your expertise, which Security Characteristics are significantly affected by Insufficient Logging?

Q4.8 According to your expertise, which Security Characteristics are significantly affected by the utilization of Vulnerable and
Outdated Components?

Q4.9 According to your expertise, which Security Characteristics are significantly affected by Server-side Request Forgery
(SSRF)?

Q4.10 According to your expertise, which Security Characteristics are significantly affected by Broken Authentication Issues?

Q4.11 According to your expertise, which Security Characteristics are significantly affected by Insecure Deserialization Issues?

Focus Group

After gathering information from the participants through the 2-step survey, a focus
group was organized. The purpose of the focus group was to initiate an open discussion
with the participants, based mainly on the contents of the questionnaire and their responses,
in order to gain a better understanding of their view with respect to the discussed topics
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and further insights that could not be gathered from a single questionnaire. It also enabled
us to ask follow-up questions, driven by the discussion, which could lead to additional
information that may be highly useful for understanding the actual needs of the Company
and for better defining the envisaged security monitoring platform. Hence, the 2-step
survey was crucial for the effective design and organization of the focus group.

Similarly to the 2-step survey, we followed the guidelines of [41,43] for conducting
industrial case studies and analyzing their results. In particular, the formal approach that
we followed for planning, designing, and conducting the focus group is summarized below:

• During the planning of the focus group we defined four major goals, “to discuss (a) the
current state of the Company with respect to security monitoring; (b) the security monitoring
needs of the Company; (c) the desired functionalities and qualities that a security monitoring
platform must exhibit; and (d) the most important security aspects and the most critical
security issues of their developed software projects”.

• Regarding the design, as can be seen in Table 3, the focus group was divided into five
blocks (i.e., parts), each one focusing on a separate topic. Each one of the first four
blocks (Block 1–Block 4) was dedicated to each one of the four main goals of the focus
group, whereas the last block (Block 5) was defined so as to satisfy the communication
protocol. The focus group was intended to last for 1 h in total and to be conducted
using a teleconference platform. Each one of the main blocks (i.e., Blocks 1 to 4) was
expected to last approximately 14 min, whereas the last block, which was about closing
the focus group, was expected to last 4 min.

• While conducting the focus group, the discussion was focused on the aforementioned
discussion axes, which are reflected by the blocks presented in Table 3. It should be
noted that in many cases when there was an agreement among the participants, we
asked the remaining participants to only provide complementary or contradictory
claims. With respect to Blocks 1–4, we asked the participants to consider the core
software products in which they are actively involved during their development when
providing their answers. This would lead us to more representative results and better
tuning of the security monitoring mechanisms.

It should be noted that the focus group, apart from additional insights on the topics
and questions asked in the dedicated questionnaire, provides vital information that is
necessary for eliciting the requirements and designing the architecture of the envisaged
security monitoring platform (see Section 3.2). As can be seen in Table 3, the third block of
the focus group allowed us to have an open discussion about the main functionalities and
the quality attributes that the envisaged platform should exhibit, in order to be considered
useful and practical by the participants. Hence, as will be discussed in Section 3.2, this
information was important for the overall design of the VM4SEC platform.

Core Findings

In the present section, we provide the core findings of the previously described
two-step survey and focus group. For reasons of brevity, only the main findings that
were considered important for the design and development of the VM4SEC platform are
presented and summarized.

In Figures 2 and 3, we provide the demographics of the participants that were involved
both in the two-step survey and in the focus group, as gathered by the questionnaire. As can
be seen in Figure 2, the vast majority of the participants (i.e., 50%) were actual developers,
followed by Quality Assurance (QA) Engineers (i.e., 19%), 13% were project managers,
and the remaining percentage (i.e., 6%) was equally distributed among software engineers,
software architects, and DevOps engineers. Hence, we have representatives from the whole
SDLC, whereas the main body of the responses stems from people that are actively involved
in the actual development of the software projects. In addition to this, as can be seen in
Figure 3, 56.3% of the participants have less than 5 years of working experience, while
12.5% have more than 10 years of working experience.
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Table 3. Focus Group Topics.

Focus Group Structure

Block 1: Current state of security of the company

• Do you use re-active security countermeasures in your software projects? If yes, which are
the most commonly used?

• Do you used pro-active security testing/monitoring mechanisms? If yes, which are the most
commonly used?

• Do you prefer static or dynamic security testing and why? Are there any shortcomings with
those techniques that you would like to improve?

Block 2: Security Monitoring Needs

• Are you aware of any novel security monitoring and optimization solution that you believe
that it would be worth being added to your pipeline?

• Do you think that having quantitative security metrics is useful?
• Do you think that having vulnerability prediction is useful?
• Do you think that having ML-based fuzz testing is useful?
• Do you think that having ML-based penetration testing is useful?

Block 3: Security Monitoring Platform Functionality and Usability

• What functionalities should a security monitoring platform have?
• What additional features should be provided in order to improve the usability and the

practicality of the security monitoring platform?
• What qualities should the platform exhibit? (e.g., number of concurent users, acceptable

down time)
• What are the most useful scenarios that you can think of?

Block 4: Parameterization of the selected monitoring mechanisms

• Which security characteristics are more important for your projects?
• Which security issues are more critical and commonly found in your software projects?
• Which of these issues affect each one of the security characteristics of interest?

Block 5: Conclusion

• Thank you for your time
• Explain next steps (. . .)
• Ask if they would like to receive results by email.

Figure 2. Industrial Case Study Demographics—Participants’ Role in the Company.
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Figure 3. Industrial Case Study Demographics—Participants’ Years of Experience.

SURVEY: Figure 4 presents the results of Q2.1 regarding the type of security testing
(i.e., pro-active or re-active) the participants use during their SDLC. As can be seen, the
vast majority of the participants stated that they use security testing approaches in their
projects in order to enhance security. Among the re-active approaches (Q2.2), vulnerability
patching and installation of firewall are the most widely used, followed by attack detection
techniques and honeypots, as shown in Figure 5. An interesting observation is that around
31% of the respondents said that they do not normally apply re-active approaches in their
projects. This was an engaging finding that was marked as a point for discussion in the
focus group, in order to better understand the reasons why in some projects no re-active
approaches are adopted. As will be discussed later in the focus group, these participants
stated that they did not use re-active security approaches, as the software products that
were working on did not have security concerns, and therefore the installation of security
countermeasures was not considered necessary.

Figure 4. Adoption of Security Mechanisms by the Company.
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Figure 5. Adoption of Re-active Security Mechanisms by the Company.

In Figure 6, the results of Q2.3 with respect to the kind of pro-active approaches used
by the Company during the SDLC are presented. As can be seen, around 69% of the
participants stated that they employ dynamic security testing, followed by static testing,
which was selected by around 31% of the participants. Around 19% of the participants
stated that they do not utilize any pro-active security testing approach, either static or
dynamic, during the overall development process. Similarly to Q2.2, as revealed during
the focus group, the reason for not using pro-active security testing approaches was that
the referred software products were not security-critical.

Figure 6. Adoption of Pro-active Security Mechanisms by the Company.

In Q2.4, the participants were asked to declare which one of the pro-active security
approaches they consider useful, and therefore should receive more attention from the
development team. As can be seen in Figure 7, around 75% of the participants stated
that static analysis is considered the most promising security testing technique during the
coding phase and therefore, deserves more attention from the Company. This contradicts
the low utilization of static analysis for security purposes by the Company, which was
observed in the responses of Q2.3. An interesting topic for discussion, which was left for the
focus group, was to understand whether the participants selected static analysis because
they find it indeed useful and helpful for adding security to their systems, or because they
recognize that it is not widely used during their pipelines.
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Figure 7. Pro-active Security Mechanisms of High Interest for the Company.

In Q2.5, the participants were asked which novel security monitoring mechanisms
(from a given set) they consider to be interesting and with practical value, in order to
be included in their pipelines. A summary of their responses is illustrated in Figure 8.
As can be seen, the static-analysis-based security monitoring mechanisms, namely the
quantitative security assessment (QSA) and the vulnerability prediction models (VPMs),
were recognized as the most valuable ones, taking up around 88% and 94% of the votes,
respectively.

Figure 8. Novel Security Monitoring Solutions that are of High Interest for the Company.

By analyzing the responses presented above, we reached the conclusion that the
participants are more interested in security monitoring mechanisms that are based on
static code analysis, and particularly on the QSA and VPMs mechanisms. Based on this
observation, as already discussed in “Two-Step Survey”, the questions of Part 3 and Part
4 of the questionnaire were properly defined (see Table 2), in order to collect information
necessary for configuring/tuning those mechanisms.

For reasons of brevity, we provide the main findings of these questions. According to
the participants’ responses, the security characteristics of Confidentiality, Availability, and
Integrity were considered the most important security aspects of their software products. In
addition to this, the security issues that greatly affect each one of these security character-



Appl. Sci. 2023, 13, 6872 15 of 34

istics was identified. The most critical security issues that were identified were the Null
Pointer references.

More information on how these results were leveraged is provided in Section 3.3,
where the models are constructed. As can be seen also by inspecting Table 2, the questions
of Part 3 and Part 4 of the questionnaire are meant for gathering statistics, which would
be further processed by us in order to configure the core security monitoring mechanisms
that were selected and described in Section 3.3. Illustrating the “raw” charts would take up
much space without providing any added value to the discussion.

FOCUS GROUP: As already stated, the survey was followed by a focus group. As
made clear by the above description, many interesting observations were made during the
analysis of the responses of the questionnaire that led to additional questions that had to be
further discussed in order to gain more insight. Based on the process described previously,
the focus group was conducted. The main observations from each block of the focus group
are presented in what follows.

Block 1: The vast majority of the participants stated that they prefer static analysis
over dynamic analysis for security testing. This is in line with the results of the first step of
the survey, in which static code analysis was recognized by the participants as one of the
most interesting security testing activities that they should employ during the SDLC (see
Figure 7). When asked why they prefer static analysis, the most common reason was its
ability to highlight a security issue along with its location in the source code, followed by
the high automation of the approach and its ability to be applied even before the code can
be executed or even compiled. This is in line with the results of other popular surveys on
the usefulness of ASA [3]. When asked about the shortcomings of static analysis, the main
shortcoming that was reported was the large volume of alerts that it produces, which is
often difficult to manage. Equally important was the lack of interpretation of the results.
The participants, especially the project managers, expressed the difficulty that they face in
understanding the security information that resides in these alerts, due to the fact that they
are in a raw format. This is the main reason for the limited adoption of such approaches
in practice, despite their acknowledged benefits. All the participants agreed that post-
processing tools able to extract useful information from the raw alerts produced by static
analysis are highly useful and of practical importance.

It should also be noted that the results of the focus group were in line with the results
of the survey with respect to the applied re-active and pro-active approaches. In fact,
security patching and firewalls were the most widely used re-active approaches; whereas,
with respect to the pro-active approaches, dynamic testing was more frequently used than
static testing. Those participants that said that they do not use security testing approaches,
were actually working on software applications with no security considerations.

Block 2: None of the participants were fully aware of the discussed trends in the field
of software security monitoring. Hence, the discussion was then directed to the four highly
popular novel security monitoring/testing techniques, two from dynamic and two from
static analysis (see Table 3). A brief description of each one of those four mechanisms
was provided in order to ensure that the participants had a sufficient understanding of its
purpose and functionality. The vast majority of the participants expressed their interest
in the quantitative security assessment and vulnerability prediction models, since they
do not have similar tools in their pipeline and they think that they provide useful insight
during the development. In addition to this, the majority of the participants did not consider
the utilization of ML-based fuzzing and penetration testing useful for their pipelines, since
they already apply common fuzzing and penetration testing tools and they consider them
already accurate and sufficient. These outcomes are in line with the answers that they
provided during the survey through the questionnaires. However, the focus group allowed
us to realize the reasoning behind this selection. In particular, this explains the reason
why in Q2.4 the participants ranked dynamic security testing so low, as they consider it a
traditional approach that is already part of the process, without additional interest.
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Block 3: Apart from the core functionalities, the platform should also provide addi-
tional features that are considered to be important and useful by the software engineers.
The questions of the third block of the focus group helped us in identifying these require-
ments. In brief, the participants (in fact, the software engineers that are involved in the
development of the Company’s software) commonly expressed the need for the platform
to access the source code directly from version control systems such as GitHub, Bitbucket,
and GitLab, as these are the repositories in which their projects reside. In addition to
this, there was a consensus on the need for a GUI able to visualize the results. To this
end, several non-functional requirements were determined, such as acceptable downtime,
analysis speed, etc. The information collected through the focus group was highly useful
for the requirements elicitation and use case definition of the VM4SEC platform, a process
described in the next section.

Block 4: In the fourth part of the focus group, emphasis was given to the main security
aspects/characteristics of the software applications that are actively developed by the
company, the security issues that they normally face, and how these issues affect the
various security characteristics. All of the participants agreed that the characteristics of
Confidentiality, Integrity, and Availability are the most critical security aspects that should
be satisfied at minimum by any software project under development. This is in line with
what was observed in the third part of the questionnaire. Then, for each one of these three
security aspects, the most critical security issues that may affect them were identified. The
identified critical issues are in line with what was retrieved by the questionnaire, further
enhancing our confidence with respect to the reliability of the responses, and, in turn, to
the correctness of the final model parameters. Minor inconsistencies were discussed and
appropriate updates were made to the ranked list when necessary.

Main Takeaways: In summary, through the discussion carried out during the focus
group and the responses that were provided through the questionnaires, we observed that
the employees of the Company consider static analysis as an important mechanism for
identifying security issues during the development process. We also identified a need for
novel mechanisms able to post-process the static analysis results in order to extract security-
related information that is encapsulated in them. Finally, the participants believe that they
sufficiently cover dynamic security testing through penetration testing and fuzzing, and
that the utilization of ML to further improve them is not critical. Among the presented
novel security mechanisms, static-analysis-based quantitative security assessment and
vulnerability prediction were found to be the most interesting mechanisms that they would
like to add to their pipelines.

To this end, we decided to build a static-analysis-based security monitoring platform,
namely the VM4SEC platform, being able to post-process the results of static analysis in
order to conduct quantitative security assessment and vulnerability prediction.

At this point, a remark about the importance of the focus group is considered necessary.
From the above analysis, it is clear that the focus group helped us to better understand
the reasoning behind the responses of the participants, and gain better insights into the
current state and needs of the Company. For instance, we were able to understand how
important static analysis is considered by the employees of the Company, along with
their willingness to utilize it more actively in their workflows via mechanisms that will
improve their experience with static analysis tools and help them gain deeper insight
from the raw static analysis results. We also realized that the low interest in investing in
dynamic security testing techniques that were reported in the questionnaires was not due
to the fact that they consider them less important, but because they have already deployed
such tools in their pipeline, they consider them mature enough and there is no need for
further investing in dynamic testing. Making these observations would not be possible by
simply analyzing the responses of the questionnaires, which could have led us to wrong
conclusions. Hence, we consider a follow-up focus group a necessity for gaining correct
feedback from the employees.
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3.2. Requirements Elicitation and Architecture Design

From the survey and the focus group presented in Section 3.1.1, we collected valuable
feedback from the Company with respect to its actual needs in terms of security monitoring.
This feedback formed the basis for eliciting the requirements (i.e., both functional and
non-functional) and the use cases of the VM4SEC platform, and, in turn, for defining its
overall architecture and technical specifications. It should be noted that in addition to the
survey and focus group, a close communication channel was established with the software
engineers and project managers of the Company, and several bilateral discussions were
conducted during the requirements elicitation and architectural design process, in order
to ensure that the elicited requirements, the defined use cases, and the final architecture
accurately reflect the needs of the Company. In the present section, we provide a description
of the approach that was followed for eliciting the requirements of the platform and deriving
its final architecture based on these requirements.

3.2.1. Requirements Elicitation and Use Case Definition

For eliciting the requirements of the envisaged VM4SEC security monitoring platform
and defining its main use cases, we followed a formal software engineering methodology,
which is based on the results of empirical/industrial studies. It is a methodology that we
have widely used in past EU and nationally funded research projects (e.g., SDK4ED and
IoTAC) for requirements elicitation, based on formal principles and mature techniques
from the software engineering community. The whole requirements elicitation and use case
definition methodology that we followed is illustrated in Figure 9.

Figure 9. The high-level overview of the adopted requirements elicitation and use cases defini-
tion process.

As can be seen in Figure 9, the whole process consists of three main phases. In the
first phase, the industrial study that was described in detail in Section 3.1.1 was conducted,
which retrieved information from the subject Company through a two-step survey and a
focus group. It allowed us to identify the main security monitoring needs of the Company,
the core functionalities that the platform should provide, and the additional features that it
should exhibit in order to be useful and practical. In the second phase, we analyzed the main
outcomes that were collected by the empirical study and extracted a set of requirements
that reflect the expressed needs and their corresponding use cases. In the third phase, the
participants that took part in the case study performed a peer review of the produced list
of the defined requirements and use cases, verified the correctness and completeness of the
list, and proposed corrections and additions. Based on their feedback, the initially defined
requirements and use cases were finalized. This led to the final list of requirements and use
cases that the envisaged platform should satisfy. In particular, the aforementioned process
led to 20 requirements and 5 use cases.

More specifically, based on the information collected from the empirical case study
described in Section 3.1.1 and the process presented in Figure 9, 20 requirements (8 func-
tional and 12 non-functional) were defined. The requirements were defined using common
and widely used formal templates. Based on our experience, enforcing the utilization
of templates for the formal representation of the requirements allows the finally defined
requirements to be (i) more understandable; (ii) easy to follow and inspect, as a unified
approach is used for their description; and (iii) less error-prone. For the construction of the
requirements, we adopted the guidelines of the ideal functional requirement construction
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enunciated in the standard IEEE 29148-2011. According to this standard, the definition of
the functional requirements should have the following attributes (as a minimum):

• An ID for uniquely identifying the requirement, allowing it to be referenced without
having to use its complete name.

• A Priority for declaring how important is the defined requirement for the overall
system, in order to be given higher priority during the development. For defining
the priority of the requirements, the Moscow method [44] was used. The priority
field takes an integer value between 1 and 4, with 1 corresponding to the highest
priority (i.e., declares a must-have feature) and 4 to the lowest priority (i.e., declares a
secondary/optional feature).

• A Category that classifies the requirement to a specific group. This is important for
grouping the requirements into closely related categories that should be considered
together.

• A Dependency field for denoting whether the defined requirement depends on other
requirements of the system. In this field, the IDs of the requirements on which it
depends should be provided.

• A Short Description field that contains a very brief description of the defined require-
ment. This description should be clear and concise. At minimum it can be the name of
the defined requirement.

• A Long Description field that contains an extended description of the defined require-
ment. The long description should supplement the information that is provided in
the Short Description field, in order to facilitate the understanding of the defined
requirement.

• A Rationale field that contains an explanation of why the defined requirement is
necessary and important for the broader system.

• A Condition field that contains a description of the pre-conditions that should be
satisfied in order for the defined requirement to be valid.

• An Expected Input field that contains a description of the inputs (if any) that are
required by the defined requirement.

• An Expected Output field that contains a description of the outputs (if any) that are
produced by the system and are relevant to the defined requirement.

• An Expected User Interface field that contains a description of the desired format in
which the outputs of the requirements should be presented to the user.

Based on the above template, the requirements were defined in a tabular form, which
makes them more readable and understandable. In Tables 4–6 we provide three core
functional requirements that we derived based on the process defined in Figure 9 by
utilizing the aforementioned template.

After eliciting the requirements of the VM4SEC platform, we defined the main use
cases, which actually correspond to the main usage scenarios of the envisaged platform.
Again, based on the industrial case study presented in Section 3.1.1 and the overall process
illustrated in Figure 9, we defined six use cases. Similarly to the requirements definition
step, we decided to use a formal template for the definition of the use cases, in order to
enhance their clarity and ensure their understandability both by the participants and by
the developers of the VM4SEC platform. The template that can be used to present the use
cases is based on the guidelines introduced by Cockburn [45]. The template provides the
following entries for each use case:

• An ID to identify univocally the use case. The format of the ID could be similar to the
one of the functional requirements, in order for the overall requirements and use case
management to be easier.

• A Short Description to shortly and uniquely describe the use case with a verb phrase
(the goal of the primary actor).

• The Frequency at which the use case is expected to happen.
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• The Scope that reports what system considers black-box. It could be one of the follow-
ing:

– System: the use case refers to the system as a whole.
– System functionality: the use case refers to an individual functionality of the

system.

• The Priority of the use case, in terms of criticality, to the envisioned platform.
• A Long Description to further describe the use case, if needed.
• A Related Functional Requirements field containing the IDs of the Functional Require-

ments (FRs) that specify the detailed functionality involved in the use case.

Table 4. Functional requirements for identification of software security issues.

ID FR 1

Priority 1

Category Software Security Monitoring

Dependence None

Brief Description Identification of software security issues

Detailed Description The system must detect security issues (i.e., potential vulnerabilities) that reside in the source code of the
analyzed software application and report the identified issues to the user.

Rationale
Vulnerabilities usually stem from mistakes that are made by the developers during the coding phase of the
SDLC. The ability to identify such security issues is critical for the optimization of the security level of the
produced source code.

Condition Access must be granted to the source code of the software application that should be analyzed.

Expected Input The source code files of the selected software application.

Expected Output A complete list of all the potential security issues that were identified, along with recommendations and
examples of potential fixes (where possible).

Expected Interface Integration to the broader platform and presentation of the results through visualization entities (e.g.,
charts and tables).

Table 5. Functional requirements for assessment of the security level of the software.

ID FR 3

Priority 1

Category Software Security Assurance

Dependence FR 1

Brief Description Assessment of the security level of the software

Detailed Description The system should assess the level of internal security of a software application whose code has been
analyzed for potential vulnerabilities, providing quantitative security indicators.

Rationale This is expected to facilitate decision-making during the implementation of software applications by the
development team by providing a quantitative measurement of their security level.

Condition To have successfully performed static code analysis.

Expected Input The source code files of the software application.

Expected Output A report containing both the overall security score of the analyzed software application and the individual
lower-level security property scores, as well as the category in which the problem is classified.

Expected Interface A table reporting the overall security index, as well as various graphs illustrating security properties at
lower levels of a software product.
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Table 6. Functional requirements for software vulnerability prediction.

ID FR 4

Priority 1

Category Software Security Assurance

Dependence FR 5

Brief Description Software vulnerability prediction

Detailed Description

The system must identify the vulnerable components (i.e., classes, methods, etc.) in a software product
based on the existing code and the results of the machine learning model that is trained on the knowledge
base. It should provide a categorization so that the software development team can focus on the software
components that have an increased likelihood of being vulnerable.

Rationale
The information provided by implemented vulnerability prediction models can be used by developers
to prioritize their efforts to address security-related issues in software, thus allocating the limited testing
resources to higher risk areas (i.e., vulnerable components).

Condition To have access to the source code of the software under analysis.

Expected Input The source code files of the software application.

Expected Output List of software components that are likely to be vulnerable.

Expected Interface AA graphical representation of the identified components, along with detailed information generated by
the analysis.

Based on the above template, the use cases of the VM4SEC platform were formally
defined. In Tables 7 and 8 are presented the two core use cases of the platform, which
correspond to the two main security monitoring mechanisms that the platform should
provide according to the Company’s feedback, namely quantitative security assessment
and vulnerability prediction.

Table 7. Use case about performing quantitative software security assessment.

ID Use Case 2

Brief Description Performing quantitative software security assessment

Frequency Several times a day upon user request.

Main User User

Scope System Functionality

Priority 1

Detailed Description This use case describes how a user can assess the overall security level of a selected software
application.

Related Functional Requirements FR 1, FR 2, FR 3, FR 5

Basic Flow

Step 1 (Actor: User)
The user declares that he/she wishes to assess the security level of a selected software
application. The user also declares (optionally) whether he/she wishes to see the criticality of
the identified security issues.

Step 2 (Actor: System) The system statically analyzes the source code of the selected software application and runs
the implemented Security Assessment model to calculate the overall security score.

Step 3 (Actor: System) Finally, the system displays a report to the user with the detailed results of the security
assessment.
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Table 8. Use case about executing the software vulnerability prediction model.

ID Use Case 3

Brief Description Executing the software vulnerability prediction model

Frequency Several times a day upon user request.

Main User User

Scope System Functionality

Priority 1

Detailed Description This use case describes how a user can identify potentially vulnerable software components
of a selected application.

Related Functional Requirements FR 1, FR 2, FR 4, FR 5

Basic Flow

Step 1 (Actor: User) The user declares that he/she wishes to be informed about the components of the selected
software application that may be vulnerable.

Step 2 (Actor: System)
The system analyzes the source code of the selected software product and runs the imple-
mented vulnerability prediction model to categorize the software components as vulnerable
or not.

Step 3 (Actor: System)
Finally, the system displays to the user a report of the software components that have been
predicted to be vulnerable, together with a score reflecting the likelihood that they are
vulnerable.

3.2.2. Architectural Design

After devising the requirements and the use cases of the VM4SEC platform, we
proceeded with the design of its overall architecture. For the architectural design of the
VM4SEC platform, we followed the guidelines of the IEEE 1471 international standard.
According to this standard, starting from the functional requirements and the use cases of a
system, three main viewpoints of its architectures can be defined, which are the logical, the
functional, and the deployment viewpoints.

As our main architectural design technique, we have selected the Data Flow Diagram
(DFD) technique, which provides a convenient graphical means for analyzing the structure
of the system at different levels of abstraction, focusing on the flow of data among internal
and external entities [46]. According to Avison et al. [47], the DFD technique is one of
the most effective techniques for visualizing the flows and the processing of data within
a software system. The DFD technique is based on the hierarchical decomposition of
the system following a top-down approach [46], providing in that way several levels of
abstractions for the given system.

In the highest level of abstraction, which is known as the context diagram or the
Level-0 DFD, the system is represented as a black box, showcasing its interconnection with
external entities (e.g., users and third-party systems). In fact, the context diagram showcases
the boundaries of the system, separating it from external entities and highlighting its input
and output flows. The context diagram of the envisaged VM4SEC platform, as specified
based on the collected information (see Section 3.1.1) and the guidelines of the IEEE 1471
standard is illustrated in Figure 10.

As can be seen in Figure 10, the context diagram is useful to (i) visualize the scope of the
system, (ii) highlight the external entities that interact with the system, and (iii) summarize
the input and output flows of the system. More specifically, as can be seen in Figure 10,
the VM4SEC platform has five external entities, one of them being the actual user of the
system, and the other four being external tools that are required for retrieving the source
code of the selected software application (i.e., Version Control System) and analyzing it in
an attempt to detect security issues and vulnerability patterns (i.e., Static Code Analyzers,
Text mining tools, and Software Metrics Tools).
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Figure 10. The context diagram of the VM4SEC security monitoring platform

As already stated, the DFD technique is based on the hierarchical decomposition of the
system. Hence, the context diagram was further elaborated and decomposed into Level-1
and Level-2 diagrams, which were useful for the VM4SEC component identification and
specification. These diagrams provided an overview of the main entities of each feature
of the VM4SEC platform, their main inputs and outputs, and their main data processing
activities that are performed. In Figure 11, the Level-1 DFD of the VM4SEC platform is
illustrated, which showcases the core features of the overall platform, namely “Quantitative
Security Assessment”, “Vulnerability Prediction”, and “Report Generation”.

As can be seen in Figure 11, the Level-1 DFD allows the user to understand which
external entities must be invoked for performing the associated functionality, what data are
produced, and which data are displayed to the user. For instance, as shown in Figure 11,
the quantitative security assessment entity receives the source code of the selected software
application from a version control system, requests the source code to be analyzed by
external static code analyzers and software metrics tools, and, based on a pre-stored
security assessment model, performs a security analysis, the results of which are stored
into a dedicated data store named security analysis results. Then, a report generation entity
takes those assessment results and turns them into visual reports, which are displayed
to the user. A similar procedure is followed for the vulnerability prediction entity that is
shown in Figure 11.

For reasons of brevity, the deeper deconstruction of the VM4SEC platform in Level-2
DFDs is not provided in the present paper. In addition to this, detailed sequence diagrams
have been derived following the common UML notation for all the main functionalities
of the VM4SEC platform. Since this information is too technical, we decided to exclude it
from the present report.
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Figure 11. The Level-1 data flow diagram (DFD) of the VM4SEC security monitoring platform

The DFDs were highly useful for deriving the component diagrams of the VM4SEC
platform, which are necessary for its final development and deployment. A component is
an individual functional unit that is integrated into the broader system. Each component
has its own interface, which enables its interaction with other components. In contrast
to the DFDs, the component diagrams focus on providing a high-level representation of
the system, avoiding technical details, and giving emphasis to the interaction between the
components of the system. For defining the component diagram, we utilized the common
UML notation. The overall component diagram of the VM4SEC Platform is illustrated in
Figure 12.

Figure 12. The Component Diagram of the VM4SEC security monitoring platform.

As can be seen in Figure 12, the VM4SEC platform consists of four (4) main compo-
nents, which have either a provided or a requested Application Programming Interface
(API). The two core components of the VM4SEC platform are the quantitative security
assessment (QSA) and the vulnerability prediction (VP) components, which constitute the
back-end of the platform and represent the two core security monitoring features that it
provides (see Sections 3.3 for more details). The component named security monitoring
interface corresponds to a graphical user interface (GUI) that will enable the user to use
the security assessment and vulnerability prediction components and retrieve a visual
representation of their outputs. Finally, the security monitoring database component is
responsible for storing the results of the analysis that are produced by the quantitative
security assessment and vulnerability prediction components. As will be discussed in
Section 3.4, the core components of the VM4SEC platform will be implemented as microser-
vices, which will provide their functionalities through RESTfull APIs. These microservices
will be deployed utilizing the Docker Engine.
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3.3. Configuration of the Core Security Monitoring Mechanisms

As described in the previous section, the two core elements of the VM4SEC platform
will be the quantitative security assessment and the vulnerability prediction models, as they
were found to be the most interesting and appealing novel solutions according to the
Company (as reported by the industrial study presented in Section 3.1.1). However, these
models need to be adapted to the specific needs of the Company, and particularly they
should be appropriately calibrated in order to satisfy the unique characteristics of the
software applications on which they will be employed. In the present section, we give a
brief description of these two security monitoring mechanisms that we have proposed in
the past and we describe how we calibrated these parameters in order to be in line with the
needs of the subject Company.

3.3.1. Quantitative Security Assessment

As part of the VM4SEC platform, we will deploy a novel mechanism able to compute
high-level measures that reflect important security aspects of the analyzed software based
on the results of security-related static analysis. In particular, we will utilize a state-of-the-
art hierarchical security assessment model that was proposed by Siavvas et al. [17], which,
based on the guidelines of the ISO/IEC 25010 [42] security standard and a set of thresholds
and weights systematically aggregates the results of static analysis in order to compute
high-level security scores, including the security index, which is a score that reflects the
security level of the software product under analysis. The general structure of the model is
illustrated in Figure 13.

Figure 13. The general structure of the selected security assessment model.

As can be seen by inspecting Figure 13, the model hierarchically decomposes the
notion of security into a set of security characteristics (e.g., Confidentiality, Integrity, etc.),
which are further decomposed into a set of low-level security properties (e.g., Null Pointer,
Buffer Overflow, etc.). The security properties correspond to categories of security issues
that the software application may exhibit, and are quantified through dedicated metrics,
which are, in fact, the densities of static analysis alerts that correspond to these categories.
In brief, initially, static analysis is applied to a given software application and the densities
of each one of the selected vulnerability categories are computed. Subsequently, based
on a set of thresholds, a score between 0 and 1 is assigned to their corresponding security
properties, indicating how well the application avoids the associated vulnerability category.
Then, based on a set of weights, the scores of the security properties are aggregated in
order to compute the scores of the security characteristics of the model. Finally, the overall
Security Index of the system is computed by taking the average of the scores of the security
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characteristics of the model. For more information about the security model, we refer the
reader to the original paper [17].

From the above analysis, it is clear that the security characteristics, the security proper-
ties, the weights, and the thresholds of the model constitute its main design parameters that
need to be defined properly in order to fit the needs of the company. This information was
derived from the industrial case study that was presented in Section 3.1.1, and particularly,
from the second step of the survey and the fourth block of the focus group. More specifi-
cally, it was decided that the final model would have three security characteristics, namely
Confidentiality, Availability, and Integrity, as these were recognized as the most important
security aspects of the software projects that are developed by the company. In addition to
this, based on the information gathered from the participants of the industrial case study,
those three characteristics were considered equally important for the overall security of the
developed systems, indicating that they should receive equal weight in the model.

The most important vulnerability categories according to the company (which act as
the security properties of the model) were found to be: Null Pointer, Weak Cryptography,
Insufficient/Incorrect Logging, Security Misconfiguration, and Non-optimum Resource
Allocation. The thresholds of the model were calibrated utilizing a popular benchmarking
approach [48,49] based on a set of reference software projects that were selected by the
software engineers of the company, as representative examples of the software applications
that they build for their clients. Finally, the weights of the model were determined based on
the popular SMARTS/SMARTER approach [50], by using the responses of the participants
in the second step of the survey described in Section 3.1.1 in order to rank the vulnerability
categories and identify their relative importance to the selected security characteristics. In
fact, the rankings were devised based on the responses of the second step of the survey,
which were then presented to the participants during the focus group for final verification
and revision. This relative importance was reflected by the SMARTS/SMARTER approach
to numerical values, in the form of weights.

3.3.2. Vulnerability Prediction

As the second core security monitoring mechanism of the VM4SEC platform, we will
deploy a novel mechanism that enables the early identification of security vulnerabilities in
software systems. In particular, we will utilize the models that were initially examined by
Kalouptsoglou et al. [51] and were extended in [52]. These deep learning models are based
on text mining methods and use textual software attributes extracted from the source code
in order to predict which software components of an analyzed application are most likely
to contain vulnerabilities. An overview of the utilized vulnerability prediction model is
illustrated in Figure 14.

As can be seen in Figure 14, the source code of the analyzed software component is
provided as input to the system. First, the tool applies text mining to extract the software
attributes of the software component and then it tokenizes it to produce sequences of tokens.
Then the token sequences are encoded in numerical vectors, which are called embedding
vectors, through a sophisticated external algorithm entitled word2vec [53]. Subsequently,
the embedding vectors are passed to the embedding layer of the neural network and then
to the hidden layers of a convolutional neural network (CNN). Through hyperparameter
tuning, the optimal prediction model is generated. Hence, when a new software component
is analyzed, the vulnerability predictor can classify it as vulnerable or not based on what it
has learned.

In order to construct a vulnerability prediction model that could satisfy the Company’s
security needs (as reported by the industrial study presented in Section 3.1.1), we created,
with the collaboration of a group of Company’s developers, a vulnerability dataset and
then we trained and validated our model on this dataset. For the dataset construction, we
followed the approach of searching those commits that fix a vulnerability in Company’s
projects [54–56] that are stored in GitHub repositories. To be precise, Company’s GitHub
projects were collected and then the history of commits to each of them was searched. The
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search was based on finding certain combinations of keywords within the message accom-
panying each commit, e.g., “vulnerability repair”, “dos repair”, “dos prevention”, “exploit
prevention”, “fix CWE”, etc. In Figure 15, we provide an overview of the implemented tool.

Figure 14. An overview of the text-mining-based VM4SEC vulnerability prediction model.

Figure 15. Overview of the construction of the VM4SEC knowledge base.

As can be seen in Figure 15, the source of the dataset is the GitHub software repository.
The tool consists of three main functionalities:

• GitHubCrawler: Collects software projects from GitHub for a selected programming
language (i.e., Java in our case).

• CommitCrawler: Receives the list of software projects and obtains for each project the
history of commits. Each commit is accompanied by a message where the developer
states the reason for making the particular commit. CommitCrawler searches these
messages for specific predefined combinations of keywords indicating changes in
order to fix vulnerabilities.

• CommitCloner: Downloads the source code of the parent version of the files that
underwent changes in each selected commit, and downloads also the latest version of
the software projects (where no vulnerability has been found yet).
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These two sets of Java files that are downloaded by the CommitCloner constitute the
VM4SEC Vulnerability Knowledge Base. The tokenized code of these Java files can be
formatted into two different ways: (1) bag of words and (2) sequences of tokens. In the
former, code is represented as a set of words/tokens along with their number of occurrences
in the code, whereas in the latter, code is represented as sequences of words/tokens in the
same order that they appear in the actual source code.

During the developing of our vulnerability prediction model, we employed and
compared both source code representation methods: Bag of Words (BoW) and sequences of
tokens. We used these two forms of the constructed dataset to train and evaluate machine
learning (ML) models capable of identifying vulnerabilities in the source code. As depicted
in Figure 15, BoW is a numerical representation of each source code file putting particular
emphasis on the existing tokens and the frequency in which they appear in the code. In
particular, in the BoW method each source code file is represented by a numerical vector,
the cells of which correspond to the frequency of each token (i.e., instruction/keyword),
i.e., the number of its occurrences in the corresponding source code file. On the other
hand, sequences of tokens is a way of representing software components (e.g., files) as
sequences of the words that exist in the specific component, taking into consideration the
words’ position in each sequence. In this case, for the numerical representation of the
tokens, word embedding techniques are applied. In particular, we examined the capacity
of the word2vec [53] and fastText algorithms [57], and we compared each by conducting an
empirical evaluation.

More specifically, word2vec is a ML model proposed by Mikolov et al. [53] that can
learn word embedding vectors by predicting the context of the words within a given
text corpus. The generated vectors, which are numerical representations of the words, are
positioned in such a way that similar words are closer together in the vector space. This way,
word embedding representations enhance the attempt of the text-mining-based models to
capture syntactic and semantic patterns through the text (i.e., through the source code in VP
case). An extension of word2vec is fastText, proposed by Bojanowski et al. [57]. It introduces
sub-word information into the word embeddings. In other words, it considers tokens as
smaller sub-word units and produces embedding vectors for them. This way, in contrast
with word2vec, fastText can handle out-of-vocabulary words, since it can represent unseen
words based on the embeddings of the sub-words that reside in these unknown words.

Regarding the ML models that we employed for the construction of our VPM, we
focused on deep learning architectures such as Recurrent Neural Networks (RNNs), Long
Short-Term Memory (LSTM) units which is an RNN variant, and Convolutional Neu-
ral Networks (CNNs). The aforementioned architectures are able to receive and learn
sequential data as the sequences of the tokens that exist in the source code. In partic-
ular, LSTM is specifically designed for learning sequential data, capturing long-term
dependencies by employing memory units and gates [58]. CNNs are commonly uti-
lized in image processing tasks, but one-dimension (1-D) convolutional layers can be
easily utilized for learning sequences. To find the optimal model of each examined deep
learning architecture, during the prediction model generator phase (see Figure 14), we
applied hyperparameter tuning using a grid search process [59]. To develop the models,
we utilized the Keras (https://keras.io/api/models/sequential/, accessed on 27 April
2023) library of the TensorFlow framework (https://www.tensorflow.org/, accessed on
27 April 2023). The training and evaluation processes took place on the CUDA plat-
form (https://developer.nvidia.com/cuda-toolkit, accessed on 27 April 2023) installed on
an NVIDIA 3060 RTX GPU.

For the empirical evaluation of the aforementioned models and techniques, we em-
ployed an evaluation scheme based on the process of cross-validation. The k-fold cross-
validation process is a method of dividing the whole training dataset into k folds re-
cursively considering, each time, one different fold as the testing one. We compute the
predictive accuracy of the models for k folds, and after the process is completed, we
compute the average accuracy. This way, we avoid putting data bias on the model. For

https://keras.io/api/models/sequential/
https://www.tensorflow.org/
https://developer.nvidia.com/cuda-toolkit
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the evaluation of the efficiency of the models, we do not use only the accuracy met-
ric but also precision, recall, F1-score, and F2-score in order to obtain a complete es-
timation of the predictive power of the produced models, considering True Positives
(TPs), True Negatives (TNs), False Positives (FPs), and False Negatives (FNs). The for-
mulas of the evaluation metrics, which were computed using the scikit-learn (https:
//scikit-learn.org/stable/modules/model_evaluation.html, accessed on 27 April 2023)
python library, are provided in the equations below:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 × precision × recall

precision + recall
(4)

F2 =
5 × precision × recall
4 × precision + recall

(5)

The architecture of the best model is presented in Table 9. Table 10 contains the values
of the utilized evaluation metrics of our best model, which is based on the combination of
CNN and word2vec algorithms. For reasons of completeness, we provide also the results
of the BoW method, which uses an ensemble ML algorithm called Random Forest [60]. As
can be seen by Table 10, the representation method of sequences of tokens seems to be
superior from the BoW method. Although BoW achieves a higher precision, sequences
of tokens succeed higher scores in all the other evaluation metrics. Hence, the sequences
of tokens method, which uses CNN and word2vec, proved to be much more efficient
in identifying vulnerabilities, even if it produces slightly more FPs. In fact, the F2-score,
which is considered more important for the case of vulnerability prediction as it considers
both Recall and Precision, but puts more emphasis on Recall, of the CNN with word2vec
model was found to be much higher compared to the score of the model that utilized the
BoW approach.

Table 9. The selected hyperparameters of the CNN model.

Hyperparameter Name Value

Number of Layers 3 (Embedding–Convolutional–Dense)
Number of Convolutional Layers 1
Embedding Size 300
Number of Filters 128
Kernel Size 5
Pooling global max pooling
Weight Initialization Technique glorot uniform (Xavier)
Learning Rate 0.01
Gradient Descent Optimizer Adam
Batch Size 64
Activation Function relu
Output Activation Function sigmoid
Loss Function binary cross-entropy

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
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Table 10. The evaluation metrics of the vulnerability prediction model.

Evaluation Metric Sequences BoW

Accuracy 85.87 83.06
Precision 81.20 85.70
Recall 91.25 79.50
F1-score 85.83 82.43
F2-score 88.98 80.63

3.4. Implementation and Deployment of the VM4SEC Platform

As depicted in Figure 1, the final step of our process is the actual implementation
and deployment of the VM4SEC security monitoring platform. We decided to build the
VM4SEC platform as a cloud-based web application. The reasoning behind this choice
was the fact that the Cloud provides (i) increased visibility, (ii) high accessibility (via the
Internet), and (iii) ease of use (since the tedious part of installing the application is avoided).
In addition to this, the final application is independent of the final platform and operating
system on which the end users work, thus providing a cross-platform experience that
would be difficult to achieve in the case of offline applications.

Among the various architectural patterns for building cloud-based applications [46,61,62],
we decided to use the Microservice Architecture (MOA) pattern [63] over the traditional
Service-oriented Architecture (SOA) pattern. Both patterns are based on the concept of
implementing the main functionalities of the application as individual services. The main
difference between the two patterns is that while SOA requires all the services to be centrally
implemented in the form of a monolithic application, in MOA, similar functionalities are
grouped into components (i.e., microservices) with their own lifecycles, which can then be
distributed over a network. These services can then collaborate together in order to form a
broader application. Some of the main advantages of MOA over SOA (which helped us
reach our final decision) are listed below [63]:

• Microservices can be deployed independently;
• Microservices can be implemented using different technologies;
• Microservices can be developed quickly, and deployed and maintained by a small,

independent team;
• Microservices offer modular maintenance.

A high-level view of the VM4SEC platform following the MOA pattern is provided
in Figure 16. As can be seen in Figure 16, each one of the main modules of the overall
platform, namely the quantitative security assessment and the vulnerability prediction
modules, is implemented as an individual microservice. These microservices expose their
functionalities through RESTfull APIs, in order to facilitate their utilization by third-party
applications. A web user interface (UI) is also provided in order to facilitate the utilization
of the security monitoring services by non-technical stakeholders and provide inference
through proper visualization of their results. The overview presented in Figure 16 is in line
with the component diagram presented in Figure 12.

For the actual deployment of the microservices, the Docker Engine was used. Docker
is an Enterprise Container Platform that allows applications to be packaged as individual
containers along with their required parts (e.g., tools, configuration, dependencies, etc.)
and communicate with each other through dedicated channels. In fact, the microservices
of the VM4SEC Platform are implemented as individual Docker Images, which are then
deployed as independent Docker Containers.

Docker encompasses a set of key features that played an important role in our final
selection. First of all, each microservice (i.e., Docker Image) can be developed independently
of one another, adopting different tools, frameworks, configurations, etc., without posing
any restrictions to the other microservices. Hence, Docker provides flexibility in the sense
that it allows individual applications to be implemented using highly different languages
and technologies, encouraging in this way agile software development. In addition, the
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implemented Docker Images can be deployed and executed as Docker Containers either
on the same machine or distributed over different locations. The execution of one Docker
Container does not affect the execution of the others, increasing, in that way, the reliability
of the overall platform. Finally, the installation of the final integrated toolbox becomes an
easy process, as it is reduced to the deployment of the individual Docker Containers that
correspond to the microservices of the platform, which can be performed automatically
based on a description provided as a compose file.

Figure 16. The overview of the VM4SEC security monitoring platform utilizing the Microservice-
oriented Architectural (MOA) pattern.

The final deployment diagram of the VM4SEC security monitoring platform is de-
picted in Figure 17. As can be seen, the client–server approach is adopted, and therefore the
VM4SEC platform consists of an Application Server, which corresponds to the back-end
of the system, and a Client, which corresponds to the front-end (i.e., user interface) of the
system. With respect to the back-end, as already stated, the two core security monitoring
mechanisms are implemented as individual services, which are deployed as independent
Docker containers. In each container, a dedicated lightweight database (i.e., a MongoDB) is
provided for storing the results of the analysis performed by each service. Those Docker
containers are deployed on a Docker Engine environment, which acts as an orchestrator
of the services, mapping the incoming requests to the corresponding service. The Client
(i.e., front-end) of the VM4SEC platform, since it is a cloud-based web application, is a
web page that can be accessed through an Internet Browser (e.g., Google Chrome, Mozilla
Firefox, etc.). The implementation of the Web UI was implemented utilizing cutting-edge
technologies, in order to be up-to-date and ensure its longevity. In particular, it has been
implemented in JavaScript, utilizing the React.js framework, which is one of the most pop-
ular frameworks for building cloud-based applications, in conjunction with MD- Bootstrap,
ASP.NET Core, and PostgreSQL5.

Figure 17. The Deployment Diagram of the VM4SEC security monitoring platform.

4. Conclusions and Future Work

In the present paper, we demonstrated how novel security monitoring mechanisms
can be turned into a practical solution properly configured to satisfy custom security needs,
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through an industrial case study based on a real software development company. Initially,
we conducted an empirical study in order to collect information from the subject company
about (i) the current state of their security monitoring activities, (ii) their actual needs for
security monitoring during the development process, and (iii) the most suitable security
monitoring techniques to be deployed into their pipelines along with the appropriate
configuration. This was achieved through a 2-step survey and a focus group conducted
with 16 participants from the subject company. Subsequently, we elicited the requirements
and defined the main use cases of the envisaged platform, and based on this information we
designed its overall architecture. This led to the implementation of the VM4SEC platform, a
security monitoring platform that provides cutting-edge security monitoring mechanisms,
tailored to the needs of the company that was used as the subject of our case study. The
present paper can be used as an example of how similar novel security monitoring solutions
can be made operational in the form of practical tools that are properly configured in order
to satisfy the needs of a given company.

To the best of our knowledge, the VM4SEC platform is the only static-analysis-based
platform that is available in the literature that provides quantitative security assessment
of software products based on cutting-edge security assessment models. It is also the
first platform that provides fully operational text-mining-based VPMs, which can be used
directly for identifying potentially vulnerable components in software products under
development. Finally, an important contribution of the present work is the presentation of
a formal approach for building similar security monitoring platforms, i.e., for configuring
and adapting novel security monitoring solutions to meet the needs of a specific company
and/or application domain, and for integrating them into a unified monitoring platform.

Several directions for future work can be identified. First of all, after building the
VM4SEC platform, we are planning to evaluate its usefulness and practicality through
its pilot usage by the subject company. More specifically, the VM4SEC platform will be
deployed on the premises of Onelity (i.e., the subject company of the present study) and
will be utilized as part of their SDLC to monitor the security level of actual software
products that are being developed. After a sufficient period of hands-on experience with
the platform, a qualitative evaluation will be conducted, by retrieving feedback from its
actual users with respect to its usability, usefulness, and practicality, as well as with respect
to how well it reflects their original needs, as expressed during the survey and focus group
that were conducted at the beginning of the project and reported in the present paper.

Secondly, the potential integration of additional features will be also considered, based
on the active feedback that we will receive from its actual users, in order to further improve
the usability and practicality of the platform. More specifically, from a technical viewpoint
we are planning to extend the VM4SEC platform, by integrating additional static code
analyzers such as SonarQube, Coverity, and Fortify. This will allow the platform to detect
additional types of security issues and compute new security metrics. Finally, with respect
to vulnerability prediction, we are planning to integrate text mining VPMs that are based on
pre-trained large language models such as GPT and BERT, since our latest work showcased
their potential in being used as the basis for vulnerability prediction [29].
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Abbreviations

API Application Programming Interface
ASA Automatic Static Analysis
AST Abstract Syntax Tree
BERT Bidirectional Encoder Representations from Transformers
BoW Bag of Words
CFG Control-flow Graph
CNN Convolutional Neural Network
CPG Code Property Graph
CWE Common Weakness Enumeration
DFD Data Flow Diagram
DFG Data-Flow Graph
FN False Negative
FP False Positive
FR Functional Requirement
GPT Generative Pre-trained Transformer
GUI Graphical User Interface
IT Information Technology
LSTM Long Short-Term Memory
MCDM Multi-Criteria Decision-Making
ML Machine Learning
MOA Microservice-Oriented Architecture
QA Quality Assurance
QSA Quantitative Security Assessment
REST REpresentational State Transfer
RNN Recurrent Neural Network
SaaS Software-as-a-Service
SDLC Software Development Lifecycle
SOA Service-Oriented Architecture
SSRF Server-Side Request Forgery
TN True Negative
TP True Positive
UI User Interface
UML Unified Modeling Language
VPM Vulnerability Prediction Model
VP Vulnerability Prediction
XSS Cross-Site Scripting
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