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Abstract: With the proliferation of Knowledge Graphs (KGs), knowledge graph completion (KGC)
has attracted much attention. Previous KGC methods focus on extracting shallow structural infor-
mation from KGs or in combination with external knowledge, especially in commonsense concepts
(generally, commonsense concepts refer to the basic concepts in related fields that are required
for various tasks and academic research, for example, in the general domain, “Country” can be
considered as a commonsense concept owned by “China”), to predict missing links. However, the
technology of extracting commonsense concepts from the limited database is immature, and the
scarce commonsense database is also bound to specific verticals (commonsense concepts vary greatly
across verticals, verticals refer to a small field subdivided vertically under a large field). Furthermore,
most existing KGC models refine performance on public KGs, leading to inapplicability to actual
KGs. To address these limitations, we proposed a novel Scalable Formal Concept-driven Architecture
(SFCA) to automatically encode factual triples into formal concepts as a superior structural feature,
to support rich information to KGE. Specifically, we generate dense formal concepts first, then yield
a handful of entity-related formal concepts by sampling and delimiting the appropriate candidate
entity range via the filtered formal concepts to improve the inference of KGC. Compared with com-
monsense concepts, KGC benefits from more valuable information from the formal concepts, and
our self-supervision extraction method can be applied to any KGs. Comprehensive experiments on
five public datasets demonstrate the effectiveness and scalability of SFCA. Besides, the proposed
architecture also achieves the SOTA performance on the industry dataset. This method provides a
new idea in the promotion and application of knowledge graphs in AI downstream tasks in general
and industrial fields.

Keywords: formal concept; knowledge graph embedding; machine learning; knowledge graph completion

1. Introduction

Knowledge Graphs(KGs), as a structured representation of interlinked descriptions
of concepts, entities, relations and events, provide effective support for question answer-
ing [1], recommendation systems [2,3], information retrieval [4,5], and natural language
processing [6]. By analyzing the public KGs (Freebase [7], YAGO [8], and DBPedia [9]),
the incompleteness of KGs is the inevitable problem limited by existing KGs construction
technology, requiring KGC to infer new facts. Among all available Knowledge Graph Com-
pletion (KGC) research, the knowledge graph embedding (KGE) model shows efficiency
and significant performance, which embeds KGs components (entities and relations) into a
latent space to learn topological structure information.

Existing KGE-based KGC methods can be divided into two streams: (1) Structure
information-driven methods [10–16]. This stream focuses on learning the embedding of
entities and relations from KG structural information to score the plausibility of triples for
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link prediction. (2) External information fusion method [17–22]. This stream augments the
training or inference process by fusing additional information with structural information
to improve the link prediction performance.

1.1. Limitations

Judging by the results of recent methods, combining external information performed
better than the structure information-driven method. Among various external informa-
tion, commonsense concepts are recognized as more appropriate and effective by many
researchers in enhancing the KGE model. However, there are still several challenges to
catching commonsense concepts from data or a knowledge base.

(1) For the DBpedia-related KGs, only some famous KGs have their commonsense knowl-
edge base, and the number of including commonsense concepts is not large. In
general, the commonsense concepts from the DBpedia KGs are hard to share with
other verticals KGs because commonsense concepts are mainly appropriate for the
corresponding KGs (The greater the difference between common sense concepts in
the more specialized fields, the more difficult it is to reuse).

(2) For the specific KGs, such as industrial KGs, do not even have a commonsense
knowledge base. Meanwhile, the commonsense concepts of specific KGs are hard
to collect since they are commonly defined by corresponding researchers or experts.
For the same reason, the previous models or algorithms [23,24] performed poorly
on automatic commonsense extraction (The more specialized domains rely more on
human-defined commonsense concepts).

1.2. Motivation

After analyzing the dilemmas involved in fetching external information, we meet
three puzzles. What kind of concept can be defined as commonsense concepts? Which
part of the commonsense concept provides valuable information in the KGC model? Is it
possible to refine a concept from data to instead commonsense concept? The essence of
the commonsense concept is summarized in many instances by human cognition. Thus,
we try to explore new metaphysical ‘concepts’ from the latent space of KGs. Inspired by
data mining theories, we argue that formal concepts with lattice structures are similar to
ontologies with tree structures and can guide instance knowledge in KGC tasks. Thus, we
use formal concepts to represent a concept, including entities and relations subset of KG.
Figure 1a shows a schematic diagram of the ontology and concept lattice structure.

In light of the definition of formal concept analysis in data mining, a formal concept is
an idea or category defined by a concrete or specific set of rules, guidelines, or properties.
Extending to KGs, formal concepts can be treated as an ensemble of two sets. One is its
extension to denote entity sets. The other is its intention to represent latent relations of
entities. For the first set, our identification of instance membership in formal concepts relies
on the formal concept’s instance set. By comparing the source instances and instances in
the formal concept instances collection to judge whether this instance belongs to the formal
concept. As shown in Figure 1b, In the lower part of the figure, diamonds represent formal
concepts, and the squares and the rectangles to the right of the diamond, respectively,
represent the objects and properties that make up the formal concept. The source of formal
concepts is shown in the upper part of the figure. Specifically, huskies can be recognized
as an instance in the formal concept of the “Dog” and an instance in the formal concept
of the “Sled Dog” since it is contained in the instances collection of “Dog” and “Sled
Dog” in formal concepts (The three names of “Dog”, “Herding Dog” and “Sled Dog” are
matched by ourselves according to the instance set an attribute set of formal concept,
formal concepts themselves have no names, but the individual elements of instance sets
and property sets have their names). For the second set, formal concepts involve potential
information of instances concepts, including possible properties (According to the different
attributes of the instance, we can find the different formal concepts corresponding to the
instance that are more focused on a certain attribute in meaning). For example, Border
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Collies, in this instance, hide the attribute of “Hunting” and the attribute of “Herding”,
which are respectively contained in the formal concept of “Dog” and the formal concept of
“Herding Dog”.
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This sparked our interest in exploring the role of formal concepts in KGC research.
Formal concepts can be found from the binary relations between known instances and
attributes and exactly corresponds to the entity and relation in KG. For example, in a triplet
SPO, P can be regarded as an attribute of S, and S can be regarded as an instance with the P
property, from which we can naturally mine the formal concept in KG. In this work, we
apply formal concepts, such as metaphysical structural information, to enhance the KGE
model for the KGC task. Compared with commonsense concepts, formal concepts have the
following advantages:

(1) Formal concepts can be efficient and automatically generated, while commonsense
concepts require expensive manual annotation. The formal concept is derived from the
KG itself and belongs to the information of the KGs. On the contrary, the commonsense
concept must be manually annotated for information outside the KG.

(2) Formal concepts are not subject to KGs, while commonsense concepts are limited to
the corresponding KGs. To be detailed, the formal concept can be applied to any KG,
including a commonsense KG, while the commonsense concept is only applicable to
the KG that has corresponding commonsense in theory and has artificially annotated
commonsense concepts.

1.3. Architecture for KGC

Based on this, we proposed a Scalable Formal Concepts driven Architecture (SFCA)
to extract formal concepts from the KGs to improve the performance of KGE. The SFCA
conidia of three modules:

(1) Formal concept extraction module (FCE) extracts the formal concepts in triples and
links the formal concepts with the entities.

(2) Formal concept sampling module (FCS) sifting streamlined formal concepts from
redundant formal concepts.

(3) Formal concept-driven link prediction module (FCLP)leverages sampled formal con-
cepts to improve KGC performance.

This framework applies to all knowledge graphs and fully benefits from the self-
supervision of the data itself. The contributions of the proposed method are summarized
as follows:

(1) We propose a scalable KGC architecture based on formal concept analysis to generate
formal concepts from KG. In comparison, existing methods either perform poorly or
require commonsense concepts of manual extraction. To our knowledge, we are the
first to apply formal concepts to KGC.

(2) We design a coarser-to-fine formal concept extraction strategy to choose streamlined
formal concepts of entities in the KG that can be used to improve the computational
efficiency of the model.

(3) Comprehensive experiments on four public datasets demonstrate the effectiveness and
robustness of the proposed architecture with each module. Furthermore, the results
show that SFCA helps generate KG’s formal concepts, which greatly supplements the
existing methods.

(4) Extensive experiments on real data of industrial proving the practicality of the pro-
posed model. The results show that SFCA is effective and robust in various fields of
KGC tasks.

2. Related Works
2.1. KGE Models

According to KGE models’ input data, the KGE models currently in use can be broadly
split into two main streams:

(1) The KG structural information-based methods include translation-based and semantic
matching models. Translation-based models [10,12,15] are models that utilize entity
and relation embeddings to compute translation scores, where relations represent
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the translation operations between entities. Translating embeddings for modeling
multi-relational data (TransE) [10] is the pioneer of the translation-based model, which
embeds entities and relations into the space with the same dimension, and regards
relations as translation operations between entity vectors. The advantage of TransE is
that it is simple and efficient, while it cannot model various relation patterns. Knowl-
edge graph embedding by relational rotation in complex space (RotatE) [15] embeds
entities and relations in a complex vector space, treats relations as rotation operations
between entity vectors, effectively models and infers various relational patterns, and
refreshes the best results of the KGC task. Learning hierarchy-aware knowledge graph
embeddings for link prediction (HAKE) [12] effectively embeds the semantic hierarchy
by mapping the entity to the polar coordinate system, achieving the STOA result of
the KGC task. Semantic matching models [11,13,14,16] compute semantic matching
scores for entity and relation embeddings in the latent space. A three-way model for
collective learning on multi-relational data (RESCAL) [16] treats entities as vectors and
relations as matrices and calculates scores with bilinear functions. Embedding entities
and relations for learning and inference in knowledge bases (DistMult) [13] simplifies
RESCAL by restricting the relation matrix to be a diagonal matrix. Complex embed-
dings for simple link prediction (ComplEx) [14] extend DistMult to embed entities and
relations into complex space. Quaternion knowledge graph embeddings (QuatE) [11]
embed a hypercomplex value with three imaginary components to represent entities
and model the relation as a rotation on a 4-dimensional space (hypercomplex space),
thus unifying ComplEx [14] and RotatE [15].

(2) External information-based methods focus on adding extra information to enrich the
KGE models. Most models that add external information [18,20,21] utilize the logic
rules mined from the knowledge graph to improve the link prediction results. Fast
rule mining in ontological knowledge bases with AMIE + + (AMIE+) [20], End-to-end
differentiable rule mining on knowledge graphs (DRUM) [21], and Knowledge graph
embedding with iterative guidance from soft rules (RUGE) [18] automatically mine
the logic rules in KG and apply the logic rules to KGC tasks. A considerable part of the
models that add internal information [17,19,22] use the known concept information
corresponding to the entity to improve the link prediction outcomes. Representation
learning of knowledge graphs with hierarchical types (TKRL) [17] uses the type
information of the entity to design a scoring function with a hierarchical projection
matrix for the entity, which improves the performance of the KGC task, Type-based
multiple embedding representations for knowledge graph completion (TransT) [22]
adopts entity types to construct relation types and takes the similarity between relative
entities and relations as prior knowledge, and utilizes prior knowledge to improve
the KGC task results. A scalable commonsense-aware framework for multi-view
knowledge graph completion (CAKE) [19] leverages commonsense concepts of entities
to improve the quality of negative sampling and the accuracy of link prediction
candidate entities. Ontology-guided Entity Alignment via Joint Knowledge Graph
Embedding (OntoEA) [25] embeds ontology and knowledge graphs together to get
better entity embedding.

2.2. KG Embedding with Ontology

At present, many scholars are studying KG embedding with ontology. Semantically
smooth embedding for knowledge graphs (SSE) [26] models the intrinsic geometry of KG
based on the assumption that entities belonging to the same semantic category are close
to each other in the embedding space (semantically smooth). SSE [26] uses two manifold
learning algorithms, Laplacian Eigenmap and Local Linear Embedding, as regularization
terms to model the smoothness hypothesis. Differentiating concepts and instances for
knowledge graph embedding (TransC) [27] models concept embeddings as a sphere and
assumes that the embedding vectors corresponding to instances of categories belonging
to concepts should lie in this sphere. TKRL [17] focuses on the Type hierarchy of KG and



Appl. Sci. 2023, 13, 6851 6 of 17

believes that entities have different representations under different categories. And use the
layered type as a mapping matrix and use type encoders to design. A knowledge-driven
representation learning method with ontology information constraints (TransO) [28] model
considers the limitations of the three types of ontology information, type information,
relation constraint information, and hierarchical structure information, and maps entities
and relationships to the ontology information-limited space. Based on the TransE model,
loss functions are defined in the basic space and ontology information-limited space and
combine the two for representation learning. Knowledge graph embedding with hierar-
chical relation structure (HRS) [29] learns representations of Relation clusters, Relations,
and Sub-relations separately. It sums the three as the embedding vector of the relationship,
thus modeling the hierarchical structure of the relationship. A representation learning
method for knowledge graphs with relation hierarchical structure (TransRHS) [30] builds
on HRS [29]. It encodes each relation as a vector and relation-specific spheres in the same
space. TransRHS [30] uses the relative positions between vectors and spheres to model sub-
relationships, which embodies the inherent generalization relationship between relations.
The Universal representation learning of knowledge bases by jointly embedding instances
and ontological concepts (JOIE) [31] model proposes a method that considers that KG and
ontology use different embedding spaces and enables cross-space interaction between the
two embeddings. A Modified Joint Knowledge Graph Embedding Model for Concepts
and Instances (JECI++) [32] simplifies hierarchical concepts and links instances to them,
making identifying cases based on neighboring instances and simplified concepts easier. It
uses circular convolution to locate instances in the embedding space and employs CBOW
and Skip-Gram strategies to embed simplified concepts and instances jointly.

2.3. Formal Concept Analysis

Formal Concept Analysis (FCA) [33] is a powerful and widely used method in infor-
mation science that enables the creation of a concept hierarchy or formal ontology from a
given set of objects and their properties. This approach is based on the mathematical theory
of lattices and ordered sets, which allows for the identification of shared properties and
relationships between objects in a structured and systematic way.

The resulting hierarchy of concepts represents a logical and intuitive organization
of the objects and their properties, with each concept capturing a group of objects that
share a set of common attributes. Moreover, the sub-concepts in the hierarchy represent a
more specific grouping of the objects and a superset of the attributes from the abovemen-
tioned concepts.

Introduced by Rudolf Wille in 1981, Formal Concept Analysis (FCA) [33] has become
a fundamental tool in various fields, including data mining, text mining, machine learning,
knowledge management, semantic web, software development, chemistry, and biology. Its
practical applications are diverse and numerous, ranging from discovering hidden patterns
and relationships in data sets to developing more effective search algorithms and enhancing
the quality of knowledge representation in various domains.

3. Methodology

We will introduce the SFCA framework in this section. As shown in Figure 2, the
whole architecture includes three modules. The FCE module realizes the conversion of
KG to formal context and formal context to formal concepts. The FCS module realizes the
conversion of the whole formal concepts to the partial formal concepts. Finally, the FCLP
module implements partial formal concepts supervision for link prediction.

As shown in Figure 2, In the Vertical field KG, points of different colors correspond to
different types of real-world things (type information is not included in this KG). In the
formal context of the FCE module, the various entities and relations are denoted by name
abbreviations and the color of the type to which they belong. The FCE module’s concept
lattice’s formal concept is depicted as a diamond, and the colored rectangle on the right
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side of the diamond identifies the different kinds of entities and relations that make up the
formal concept’s entity set and relation set, respectively.
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As shown in Figure 2, In the formal concept sampling module in the lower right
corner, the initial input is the natural mapping relationship between the formal concept
and the entity. First, the natural mapping between the formal concept and the relationship
is considered to find the relationship between each triple “head entity-relationship” and
the formal concept. And then consider the natural mapping of formal concepts and entities
again to find the correspondence between each triplet and the “formal concept triplet”.
Finally, in the link prediction module driven by the formal concept in the lower left corner,
whether the new triplet combined with the triplet of the missing head entity or the missing
tail entity and the candidate entity can correspond to the known “formal concept triplet” is
initially carried out a filter, and then enter the ranking stage to output scores.

3.1. Notations and Problem Formalization
3.1.1. Preliminary Knowledge of FCA

For better understanding, we first provide a brief introduction to Formal Concept
Analysis [19] (FCA). FCA is a method for knowledge representation, information manage-
ment and data analysis. Generally, we regarded FCA as a conceptual clustering method
used to determine implicit associations between objects and attributes. Formal context,
formal concept, and concept lattice are three central notions in FCA. The following are the
key definitions:
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Definition 1. Let G be the set of objects, M be the set of attributes, and I be the binary relationship
between object set G and attribute set M. Then, the triple (G, M, I) is a formal context.

Definition 2. Given a formal context K = (G, M, I), for A⊆ G, B⊆M, the following operations
are defined:

A′ = {m ∈ M|gIm, ∀g ∈ A} (1)

B′ = {g ∈ G|gIm, ∀m ∈ B} (2)

A′ is the set of attributes shared by all objects in A; B′ is the set of objects corresponding to all
attributes in B.

If A′ = B, B′ = A , then the binary (A, B) is a concept in the formal context, where A is the
intent of the concept (A, B) and B is the extent of the concept (A, B).

Example 1. A formal context K = (G, M, I) is shown in Table 1, where the object set G = {1, 2, 3, 4,
5} and the attribute set M = {a, b, c, d, e}.

Table 1. A formal context.

a b c d e

1 1 1 0 0 0
2 0 1 0 1 1
3 0 1 1 1 0
4 0 0 1 0 1
5 0 0 0 1 1

According to Definition 2, We can get all the concepts in the formal context K: (G, Ø),
(1, ab), (2, bde), (3, bcd), (4, ce), (23, bd), (245, e), (235, d), (135, b), (Ø,M).

Definition 3. Let (A1, B1) and (A2, B2) be two concepts on the formal context K = (G, M, I), and
A1 ⊆ A2 (equivalent to B1 ⊇ B2), then we call (A1, B1) the subconcept of (A2, B2) and (A2, B2) the
parent concept of (A1, B1), denoted as (A1, B1) ≤ (A2, B2).

The concept lattice can be visualized by a Hasse diagram. For example, the corre-
sponding concept lattice in Example 1 is shown in Figure 3.
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3.1.2. KGE Score Function

Inspired by the CAKE [12], we adopt a scalable architecture design that takes any
KGE model as a plugin module for SFCA direct usage. The KGE model plays the role of
extracting the entity and relation embeddings in architecture. Here, we give a uniform
symbol E (h, r, t) to clearly describe the score function of any KGE model for assessing the
plausibility of a triple (h, r, t). Table 2 shows the definitions of various KGE models.

Table 2. Details of several knowledge graph embedding models.

Model Score Function Parameters

TransE −‖h + r− t‖1/2
h, r, t ∈ Rk

DistMult h>diag(Mr)t h, r, t ∈ Rk

ComplEx Re(h>diag(Mr)t) h, r, t ∈ Ck

RotatE −‖h ◦ r− t‖2
h, r, t ∈ Ck,

∣∣∣ri
∣∣∣ = 1

HAKE −‖hm ◦ rm − tm‖2 − λ
∥∥sin((hp + rp − tp)/2)

∥∥
1

hm, tm ∈ Rk,

rm ∈ Rk
+,

hp, rp, tp ∈ [0, 2π)k, λ ∈ R

3.1.3. KGC

KGC is commonly divided into three subtasks: triple classification, link prediction
and relation prediction. In this work, we only concern about link prediction, not involving
other KGC tasks. The link prediction task refers to finding the missing entity when the
head or tail entity in the triple is missing. Specifically, we treat link prediction as an entity
prediction task that searches for the reasonable entity when the triple’s a head entity or tail
entity is missing. Every entity in KGs will be considered a candidate when encountering a
missing entity or in a triple query. We choose the top n (n = 1, 3, 10) hits of correct entities
as predicted results by ranking the scores of the candidate entities.

3.2. Formal Concept Extraction Module

According to the formal concepts definition (see in Section 3.1.1), SFCA automatically
generate formal concepts from arbitrary KGs without external annotated knowledge. To
get high-quality formal concepts, we developed a FCE module to generate massive corre-
sponding formal concepts from KGs in mining valuable information. All generated formal
concepts contain corresponding entity set and relation set.

Each fact triple set will first be encoded into a two-dimensional tabular as the formal
context. Then, we produce formal concepts by the entity and relation binary relations in
these formal contexts. The formal representation of KG:

KG =
{
(ei, rj, ek)|ei ∈ E, ek ∈ E, rj ∈ R

}
(3)

where E is the set of entities, R is the set of relations from E to E.
In this paper, entity ei is regarded as the object and relation rj as the attribute of ei. The

formal context can be obtained by a KG and then the concept lattice K can be induced by
the formal context.

For every ei ∈ E, let Ctemp
ei = {(Al , Bl)|ei ∈ Al }. Where (Al , Bl) is the concept in the

concept lattice K.
The mapping from the formal concepts to the entity is formulated as:

f : Ctemp
ei → {ei}

for every (Al , Bl) ∈ Ctemp
ei , f ((Al , Bl)) =ei.

(4)
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3.3. Formal Concept Sampling Module

An obvious problem with dense formal concepts produced by the FCE module: Not all
formal concepts are requisite. Similar semantic information and negative gain information
consist of dense formal concepts (Not all formal concepts can have corresponding real
concepts in the real world, so formal concepts need to be screened before using them).
Thus, we proposed an FCS module to reduce complexity and improve the quality of
formal concepts.

An entity can be mapped into many formal concepts in a sizable KG. Formal concepts,
including the same entity, can be considered a hierarchy. Among all formal concepts, we
argue that those located in the top-most node formal concepts involve the most valuable
information, and relation in factual triples is sufficient to filter out them (Here, the topmost
formal concept refers to the formal concept that has a non-zero and minimum number of
elements in the relationship set, and the number of elements in the entity set owned by this
formal concept is closest to all entities). As shown in Figure 4, our FCS module is designed
by a rough-to-fine sampling strategy in the usage of instance relations and partial order
relations. Specifically, the formal concepts mapped by Entity 2 are marked by the blue
dots in the concept lattice on the left top. The formal concepts mapped by Entity 2 and
relation e after the first sampling are marked by the blue dots in the left middle concept
lattice. The formal concept mapped by entity 2 and relation e after the second sampling is
marked by the blue dots in the concept lattice on the lower left. The blue dots in the green
parallelogram on top of the figure are the sampled formal concepts.

(1) Sampling with instance relations: In the first stage, we only use the instance
relations for sampling by inferring that formal concepts mapped by the same entity under
different relations should differ. Given an instance triplet, if a formal concept in the set
is mapped to the head entity of the instance triplet and the relation of the instance triplet
belongs to the relation set of the formal concept, the formal concept will be mapped to the
entity-relation pair composed of the head entity and the relation of the instance triple:

For every (ei, rj, ek) ∈ KG, let Ctemp
eirj =

{
(Al , Bl)

∣∣∣(Al , Bl) ∈ Ctemp
ei , rj ∈ Bl

}
. Where

(Al , Bl) is the concept in the concept lattice K.
We can get the following mapping:

g : Ctemp
eirj →

{
(ei, rj)

}
,

for every (Al , Bl) ∈ Ctemp
eirj , g

(
(Al , Bl)) =(ei, rj).

(5)

(2) Sampling with partial order relations: After the first sampling stage, the selected
formal concept set mapped to the head entity-relation pair still contains some formal
concepts, and the formal concepts in this set can form a partial order relation between
formal concepts. Thus, to simplify the mapping, we select the formal concept with the same
link position for all formal concept links. Here, we select the most valuable formal concept
in the formal concept set. Substitute formal concept set as a mapping formal concept of
head entity-relation pair.

Given an instance triplet, if a formal concept in the set mapped to the head entity-
relation pair of the instance triplet and the relation set of the formal concept is included
in the relation set of all formal concepts in the formal concept set, then the formal concept
is selected to be mapped to the entity-relation pair composed of the instance triple head
entity and relation, according to Definition 3, there exists a maximum concept in the Ctemp

eirj .

For every (ei, rj, ek) ∈ KG, let C f inal
eirj =

{
(Al , Bl)

∣∣∣(Al , Bl) ∈ Ctemp
eirj , ∀(Am, Bm) ∈ Ctemp

eirj ,

(Am, Bm) ≤ (Al , Bl)
}

.
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We can get the following mapping:

h : C f inal
eirj →

{
(ei, rj)

}
,

for every (Al , Bl) ∈ C f inal
eirj , h

(
(Al , Bl)) =(ei, rj).

(6)
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After sampling twice, the mapping from formal concepts to instance entities and the
formal concept triples can be obtained—the mapping of entity-relation pairs from formal
concepts to instance triples after sampling twice.

For every ei ∈ E, let C f inal
ei =

{
(Al , Bl)

∣∣∣(Al , Bl) ∈ C f inal
eirj , (ei, rj, ek) ∈ KG

}
.

We can get the following mapping:

l : C f inal
ei → {ei},

for every (Al , Bl) ∈ C f inal
ei , l((Al , Bl)) =ei.

(7)

A collection of formal concept triples is denoted as FC, where each triple consists of a
head entity’s formal concept set C f inal

hr and a tail entity’s formal concept set C f inal
t associated

with their instance-level relation r, defined as:

FC =
{
(C f inal

hr , r, C f inal
t )|(h, r, t) ∈ KG

}
(8)

3.4. Formal Concept-Driven Link Prediction Module

To find better candidate entities and improve prediction outcomes, we propose a novel
two-stage formal concept supervised link prediction mechanism. In the first stage, candi-
date entities are selected from the perspective of formal concepts; specifically, accepting
a query (h, r, ?) to filter plausible formal concepts of tail entities using the set of formal
concept triples FC, the set of candidate formal concepts of tail entity t is C f inal

t , and then
determine the entity belonging to the formal concept set as the candidate entity.

In the second stage, for each candidate entity ei that has been screened, the score is
calculated by the scoring function. The candidate triplet that finally calculates the score is:

score(ei) = E(h, r, ei) (9)

Among them, E(h, r, ei) is the scoring function used to train the KGE model, and then
the prediction results will arrange the scores of the candidate entities in ascending order
and output the top n hits of the correct entities.

4. Experiments

For a comprehensive comparison, we evaluate our SFCA on five real-world datasets
and one industry dataset. In this section, the detail of the setting of the experiment will be
introduced. First, the performance of SFCA on four public datasets will be shown. Second,
the comparison with common sense concepts will be discussed third, and the effectiveness
of real data will be proved finally.

4.1. Experiment Settings
4.1.1. Datasets

Our evaluation is based on five public datasets (FB15K237 [34], YAGO3-10 [35],
WN18RR [36], NELL-995 [37], DBpedia-242 [19]) and an industrial KG datasets collecting from
the workshop of actual factory. Table 3 shows the statistics of public and industry datasets.

Table 3. Statistics of datasets.

Dataset #Rel #Ent #Train #Valid #Test

FB15K237 237 14,541 272,115 17,535 20,466
YAGO3-10 37 123,182 1,079,040 5000 5000
WN18RR 11 40,943 86,835 3034 3134
NELL-995 200 75,492 123,370 15,000 15,843

Dbpedia-242 298 99,744 529,654 35,850 30,000
Industrial KG 15 57,373 78,787 3000 3000
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FB15K237 is a link prediction dataset created from FB15k. FB15k-237 was created
by Toutanova and Chen to ensure that the test and evaluation datasets do not have an
inverse relation with test leakage. YAGO3-10 is a benchmark dataset for knowledge base
completion. It is a subset of YAGO3 (YAGO3 is an extension of YAGO) and contains entities
associated with at least ten different relations. WN18RR is a link prediction dataset created
by WN18, a subset of WordNet. However, many text triples are obtained by inversely
finding triples from the training set. The WN18RR dataset was therefore created to ensure
that the evaluation dataset does not have an inverse relation with test leaks. NELL-995
is a subset of NELL suitable for multi-hop inference proposed from the 995th iteration
of the NELL system. Useless triples are first removed using relations that occur more
than 2 M times in the NELL dataset. After this step, the triples with Top-200 relations
are selected, and the dataset is obtained after adding the inverse triples. DBpedia-242 is
extracted from DBpedia [6], which contains 242 concepts. It is worth mentioning that the
entities in FB15K237, YAGO3-10 and NELL-995 have a corresponding ontology, while in
WN18RR, The entity does not have a corresponding ontology.

4.1.2. Baselines

We compare our SFCA model with five baseline models, including TransE [10], Dist-
Mult [13], ComplEx [14], RotatE [15], and HAKE [12], and we also integrate these baseline
models into our framework. All baseline models are KG-structured models. As a result, our
framework does not require the input of external data, and we show through experiments
that our model can be applied to most models without the input of external expert data.

4.1.3. Implementation Details

We use the Adam optimizer for training, and all models adopt the self-adversarial
negative sampling method. In terms of the parameters, under the same dataset, we use
the same parameters of different baseline models, including embedding size, batch size,
negative sampling size, learning rate, margin, and sampling temperature. All experiments
are performed on Pytorch and NVIDIA Quadro RTX 5000 GPU.

4.1.4. Evaluation Protocol

We choose three recognized evaluation metrics for comparison, including mean rank
(MR), mean reciprocal rank (MRR), and the proportion of top-N rankings of correct entities
(Hits@N). Notably, we filtered out all candidate triples in the datasets. The detailed
computing formulas and notation definition as shown in Table 4.

Table 4. Detailed computing formulas of evaluation metrics for KGC.

Metrics Computing Formula Notation Definition

MRR MRR = 1
|Q|∑

i=1
|Q|

1
ranki

Q : query sets; |Q| : queries numbers;
ranki : the rank of the first correct answer for the ith query

MR MR = 1
|Q|∑

i=1
|Q| ranki

Q : query sets; |Q| : queries numbers;
ranki : the rank of the first correct answer for the ith query

Hits@n Hits@n = 1
|Q|Count(ranki ≤ n),

0 < i ≤ |Q|

Count() : the hit test number in the top n rankings
among test examples;
Q : query sets; |Q| : queries numbers;
ranki : the rank of the first correct answer for the ith query

4.2. Evaluation of Public KGs

Table 5 shows the link prediction performance of SFCA on the four public datasets.
The formal concepts-driven KGE module improved significantly, which has an average
increase of 11.83% (3.78 points), 16.53% (4.12 points), and 19.13% (5.82 points) in the
MRR indicators of different baselines on the three datasets of FB15K237, YAGO3-10 and
NELL-995, respectively. On WN18RR, the Hit@10 indicator of different baselines improved
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by an average of 2.63% (1.34 points). These results prove formal concepts, as metaphysical
features of KG-structured information, are more splendid and effective for link prediction.

Table 5. Link prediction results on four datasets. Bold numbers are the best results for each type of
model. * denotes SFCA is used.

Model
FB15K237 YAGO3-10

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE 175 0.331 0.234 0.369 0.526 1124 0.504 0.411 0.563 0.672
TransE * 110 0.371 0.275 0.410 0.563 648 0.535 0.452 0.583 0.688
DistMult 216 0.284 0.223 0.310 0.447 1723 0.130 0.084 0.135 0.219
DistMult * 145 0.320 0.240 0.346 0.482 1110 0.174 0.116 0.185 0.287
ComplEx 181 0.308 0.220 0.337 0.486 1118 0.198 0.131 0.214 0.325
ComplEx * 119 0.344 0.258 0.372 0.518 660 0.253 0.181 0.276 0.393
RotatE 177 0.336 0.240 0.374 0.530 1859 0.497 0.406 0.553 0.665
RotatE * 108 0.376 0.280 0.413 0.567 795 0.542 0.469 0.591 0.694
HAKE 184 0.343 0.246 0.380 0.537 1384 0.531 0.444 0.586 0.687
HAKE * 112 0.380 0.285 0.417 0.572 613 0.562 0.485 0.605 0.703

Model
WN18RR NELL-995

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE 5081 0.191 0.004 0.343 0.478 2238 0.239 0.079 0.348 0.508
TransE * 4209 0.221 0.029 0.382 0.500 353 0.325 0.202 0.394 0.548
DistMult 6043 0.406 0.358 0.437 0.490 2523 0.348 0.268 0.385 0.500
DistMult * 4935 0.414 0.364 0.444 0.503 472 0.398 0.311 0.435 0.564
ComplEx 6394 0.457 0.416 0.481 0.526 3664 0.369 0.289 0.405 0.518
ComplEx * 5274 0.463 0.421 0.488 0.535 727 0.417 0.331 0.453 0.582
RotatE 5648 0.466 0.435 0.480 0.527 2327 0.358 0.269 0.404 0.526
RotatE * 4597 0.473 0.440 0.488 0.539 337 0.405 0.313 0.450 0.580
HAKE 4132 0.492 0.450 0.509 0.574 2419 0.313 0.205 0.374 0.514
HAKE * 3325 0.504 0.463 0.519 0.585 348 0.373 0.270 0.427 0.567

4.3. Common Sense Concepts vs. Formal Concepts

We also compare our SFCA with an external information-based method: Commonsense-
Aware Knowledge Embedding (CAKE) [19] framework. The comparison results are ob-
tained by combining uniform sampling [10] and self-adversarial sampling [15] with the
KGE model TransE [10] and RotatE [15]. Table 6 presents the link prediction evaluation
results on the three datasets. By comparison, our SFCA has an average increase of 147.54%
(45.13 points) and 9.34% (3.33 points) higher than CAKE in the MRR indicators of different
baselines on the two datasets of FB15K237 and NELL-995, respectively. On DBpedia-242,
in the best effect on each indicator of different baselines, the highest is 14.47% (2.3 points)
higher than CAKE, and the lowest is 3.36% (1.5 points) lower than CAKE. These results
prove formal concepts are more effective in most cases than common sense concepts for the
KGC task.

4.4. Evaluation of Actual Industrial KGs

Table 7 shows the link prediction evaluation results on the industrial KG dataset. By
comparison, we can see that our SFCA framework has improved by more than 13.11%
(7.3 points) in the MRR indicators of different baselines on the fault diagnosis industrial
dataset. Our SFCA achieves remarkable performance in industrial filed KGs. With this
result, we believe our SFCA can play well in multi-field KGs.
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Table 6. Link prediction results on three datasets. Bold numbers are the best results for each type
of model. * Denotes SFCA is used. +U denotes uniform sampling strategies are used. +S denotes
self-adversarial negative sampling strategies used. +C denotes Commonsense-Aware Knowledge
Embedding framework used.

Model
FB15K237 NELL-995 Dbpedia-242

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE + U 167 0.309 0.215 0.340 0.496 1261 0.249 0.153 0.288 0.428 1332 0.281 0.123 0.393 0.538
TransE + S 172 0.303 0.208 0.337 0.494 1212 0.255 0.156 0.295 0.436 1302 0.302 0.132 0.427 0.573
TransE + C 177 0.295 0.199 0.330 0.484 485 0.310 0.187 0.374 0.532 901 0.331 0.159 0.461 0.596

TransE + U * 29 0.756 0.709 0.779 0.850 232 0.344 0.248 0.386 0.527 635 0.316 0.170 0.415 0.557
TransE + S * 28 0.754 0.704 0.780 0.849 226 0.351 0.253 0.392 0.536 606 0.336 0.182 0.446 0.586
RotatE + U 188 0.316 0.221 0.351 0.507 1389 0.342 0.249 0.379 0.522 1935 0.337 0.197 0.434 0.560
RotatE + S 190 0.324 0.230 0.357 0.514 1357 0.351 0.260 0.385 0.533 1788 0.372 0.239 0.464 0.592
RotatE + C 192 0.318 0.226 0.348 0.503 503 0.404 0.305 0.455 0.593 1049 0.419 0.310 0.486 0.605

RotatE + U * 34 0.761 0.712 0.784 0.853 223 0.433 0.343 0.469 0.611 772 0.366 0.236 0.454 0.576
RotatE + S * 32 0.760 0.711 0.784 0.855 220 0.433 0.341 0.470 0.611 718 0.413 0.299 0.485 0.607

Table 7. Link prediction results on Industrial datasets. Bold numbers are the best results for each
type of model. * denotes SFCA is used.

Model
Industrial KG

MR MRR Hits@1 Hits@3 Hits@10

TransE 5949 0.353 0.143 0.505 0.758
TransE * 1000 0.681 0.609 0.741 0.796
DistMult 6811 0.545 0.492 0.572 0.671
DistMult * 847 0.636 0.574 0.680 0.744
ComplEx 6246 0.557 0.498 0.591 0.685
ComplEx * 835 0.630 0.562 0.678 0.752
RotatE 7086 0.588 0.510 0.634 0.760
RotatE * 1061 0.672 0.602 0.726 0.788
HAKE 3538 0.584 0.521 0.610 0.728
HAKE * 448 0.699 0.629 0.756 0.819

5. Conclusions

Motivated by the formal concept analysis theory, we propose a novel scalable formal
concept-driven knowledge graph completion framework (SFCA) applying to multiple
verticals. SFCA can automatically generate formal concepts from KG with a coarse-to-
fine extraction strategy and a formal concept-supervised link prediction module to filter
candidate entities from the perspective of formal concepts. Experiments on five public
datasets demonstrate the effectiveness and scalability of SFCA. In addition, our model is
also experimentally performed on real industrial datasets to demonstrate that the model
has high performance in both general and industrial domains.

Despite the performance of SFCA, it is still some areas for improvement. First, the
application of our method on the KGC task is based on the closed-world hypothesis, which
considers any triplet not explicitly present in the graph as a negative triplet. Second, our
method only applies to the KGC task and does not extend to other knowledge-related tasks.
Thus, our further work is to study the application of formal concept analysis on KGC tasks
under the open-world hypothesis and explore the application of formal concept analysis on
various concept-related KG tasks, such as life-long learning. Third, this paper’s knowledge
graph embedding-related tasks only involve knowledge graph completion. Future work
can consider other knowledge map-related tasks such as named entity recognition and
relationship extraction, that is, using formal concept analysis to assist tasks such as named
entity recognition and relationship extraction.
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