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Abstract: We present a straightforward approach for reconstructing 3D celadon models from a single
2D image. The celadon is a historical example of the surface of revolution. Our approach uses a
surface of revolution technique to generate the basic shape of the celadon and then applies texture
mapping to create a realistic appearance. The process involves detecting the contour and corners
of the celadon image, determining an axis of revolution, generating a profile curve, and finally
constructing a 3D celadon model. Additionally, we create models as triangular meshes at multiple
resolutions, employing a B-spline curve as the profile curve. It enhances the adaptability of the
models for various purposes. We render various scenes using a path tracer to assess the suitability of
the generated 3D celadon models and generate a VR celadon museum with the models. Overall, our
approach offers a simple and efficient solution for reconstructing a 3D celadon model, generating VR
content, and demonstrating extensive applicability across numerous disciplines.
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1. Introduction

Computer graphics technology allows for the effective visualization of digital data
and can be used to create digital twins of physical objects for preservation, learning, and
research purposes. In particular, 3D digitalized cultural artifacts can provide valuable
insights into various fields, such as history, culture, and art. The representative cultural
artifact is a celadon [1–3], which is a form of ceramic pottery that originated in medieval
East Asia. The celadon helps to understand past cultures, lifestyles, and art styles from
when the celadon was originally made. Nevertheless, the celadon is a fragile artifact
affected by environmental factors, such as humidity, temperature, and light. These factors
can also cause patterns on the celadon to be lost over time, resulting in the decline of its
cultural value.

Because of these characteristics of the celadon, researchers have actively focused on
3D reconstruction techniques for its preservation [4–8]. Nowadays, a virtual reality (VR)
museum offers immersive experiences that allow users to explore and interact with 3D
digitalized artifacts, including celadon pottery [9–11]. Through the VR environment, users
can virtually examine celadons from various angles, gaining a deeper understanding of
their intricate details and cultural significance [12]. Although sharing and accessing 3D
digital models of celadons online is convenient, many people still need help digitizing these
valuable cultural artifacts into 3D [11]. To address this challenge, we propose a general
guideline that simplifies generating a 3D model and texture from a single 2D input celadon
image, making it easier and more accessible. Figure 1 shows the eight 3D models generated
by our method from the 2D images, placed on pedestals and encased in glasses as if they
were on display in a museum.

Appl. Sci. 2023, 13, 6848. https://doi.org/10.3390/app13116848 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116848
https://doi.org/10.3390/app13116848
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0009-4708-6108
https://orcid.org/0000-0002-3893-5421
https://doi.org/10.3390/app13116848
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116848?type=check_update&version=2


Appl. Sci. 2023, 13, 6848 2 of 12

Figure 1. The scene Sshowcase rendered in 4K resolution with a value of samples per pixel σ = 512.
Our generated 3D celadon models are placed on pedestals and encased in glasses.

From a geometric perspective, the celadon is shaped like a surface of revolution. This
unique characteristic simplifies the creation of 3D data compared to other complex 3D
objects. Surfaces of revolution can be defined using only two parameters: a profile curve
C and an axis of revolution A. Accurately representing the profile curve is the key to
successful 3D reconstructions. We first extract a profile polyline using image processing
techniques that consider the celadon in the input image as a surface of revolution. The
profile polyline can be converted to the B-spline profile curve C by curve fitting [13,14].

B-spline curves are locally defined splines representing various geometry types by
adjusting degrees, knots, and control points [15,16]. This property represents the profile
curve at different resolutions with fewer data, maintaining the shape of the celadon. Fitting
the profile polyline to the B-spline profile curve offers several advantages over other
algorithms [17–21] in that the B-spline can offer superior curve representation and accuracy
compared to these algorithms. Based on the process, we generate 3D celadon models by
rotating the curve around the axis.

The final step is to generate textures that include the colors and patterns of the celadon
and apply these to the 3D models. To do so, we first separate a celadon region from
a background in the input image. Then, we automatically generate rectangular-shaped
texture images using linear interpolation. Applying the generated textures to the celadons
will help to analyze and understand them.

There are several ways to represent 3D data, such as triangular mesh, point clouds,
voxels, and implicit surfaces. We construct 3D celadon models in the triangular mesh,
put the generated textures on them, and render in various scenes using a path tracer [22].
When rendering a scene using a path tracer, selecting a value of samples per pixel (SPP) σ
is crucial because it is a trade-off between image quality and rendering speed.

The main contributions of this work can be summarized as follows:
• We propose a general guideline for obtaining a 3D celadon model from one single 2D

image without requiring any additional inputs.
• Our method considers the celadon in the input images as a surface of revolution and

extracts a profile polyline and an axis of revolution from it.
• Using the fitted B-spline profile curve, we can generate 3D models at various resolu-

tions we want.
• We automatically generate a texture image of the celadon by separating a region of

the celadon from a background in the input image and applying linear interpolation.
• We produce various scenes with our 3D celadon models using a path tracer [22] and

assess their suitability.
• We also generated a VR celadon museum with the models using Unreal Engine 5,

which shows that valuable cultural artifacts can be easily used as VR content and
viewed by anyone interested.
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2. Related Works
2.1. 2D Image Processing

Suzuki–Abe’s algorithm [23] has been widely used for contour detection due to its su-
perior performance compared to an earlier method [24]. They introduced new procedures
for border labeling and identifying the parent border of the currently traced border, im-
proving the algorithm’s overall accuracy and speed. Moreover, they proposed a method for
extracting only an object’s the outermost border, which enhances the algorithm’s usefulness
in various applications, such as object detection, image segmentation, feature extraction,
and so on.

Corners are distinct features that can be distinguished from other parts of an image.
They are robust to deformations and provide valuable information about the shape and
structure of objects. Moravec’s method [25] is a classic corner detection algorithm that cal-
culates the intensity variation in small windows shifted in four diagonal directions around
a pixel. While the method is suitable for real-time applications due to its simplicity, it is
sensitive to noise and may generate false positives when detecting corners in noisy regions.

Harris’s method [26] improved the method [25] by looking for regions with significant
changes in intensity in multiple directions. The algorithm utilizes the second-moment ma-
trix to compute the corner response, improving noise robustness and offering more reliable
corner detection. Shi–Tomasi’s method [27] was introduced as an extension of Harris’s
method [26] that changes the scoring function used to detect corners. It is considered more
robust and performs better.

Reducing points in a curve while preserving its shape is crucial in image processing.
Various algorithms for polyline simplification have been proposed in the literature [17–21].
For example, the algorithms of Douglas–Pecuker [17] and Visvalingam–Whyatt [21] are
threshold-based. Additionally, alternative methods based on B-spline curves have been
proposed [13,28,29]. Dierckx [13] proposed a B-spline curve construction method by finding
the coefficient of the basis functions that minimize the least-squares error between a given
polyline data and the B-spline curve. Hall [28] used a B-spline curve to generate a profile
curve for a surface of revolution and generated a 3D model by rotating the B-spline curve
around the axis of revolution. Badiu et al. [29] proposed an efficient and accurate technique
that generates a B-spline profile curve through photogrammetry and automatically creates
the shapes of pottery using CAD.

2.2. 3D Rendering of Surfaces of Revolution (SORs)

Wong et al. [30] proposed a method for reconstructing SORs from a single uncalibrated
perspective view by utilizing the characteristics of SORs. Colombo et al. [31] presented a
projective geometry technique that utilizes the symmetry properties of SORs for camera
self-calibration, 3D reconstruction, and texture extraction from a single uncalibrated image,
including SORs.

SORs are common in everyday objects such as bottles, glasses, cans, jars, and pottery.
Among these objects, pottery has significant archaeological and cultural value, and the
3D reconstruction of pottery and pottery fragments has been an active research topic.
Kampel and Sablatnig [6] proposed an automatic 3D reconstruction method for pottery
fragments using point cloud data obtained from 3D scanning. Karasik and Smilansky [7,8]
emphasized the usefulness of 3D scanning technology in archeology and proposed a pottery
processing automation pipeline for pottery documentation and analysis.

Their approach also involves scanning pottery fragments and restoring the whole
pottery into a 3D model using point cloud data. Banterle et al. [4] proposed an automated
pipeline for digitizing catalog drawings of pottery types. They segmented the drawings
into regions of interest and extracted features from each region. The extracted features are
then used to match the drawing with a set of 3D models of pottery types. Dashti et al. [5]
presented a virtual pottery system for ceramic artists. The system combines virtual reality
and haptic technology to provide a realistic simulation of the pottery-making process. In
ray tracing, Kajiya [32] introduced a simplified ray tracing algorithm for SORs that changes
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the 3D ray–surface intersection problem into a 2D curve–curve intersection problem, which
is solved by a strip tree. Baciu et al. [33] suggested hybrid bounding volumes that further
developed the strip tree [32] with monotonic interval partitioning.

3. 3D Reconstruction from a 2D Celadon Image

This section comprehensively explains our method for reconstructing a celadon, a
representative example of SORs. First, a profile polyline of the celadon can be extracted
from a 2D input image. This polyline can be further refined by fitting it to a B-spline curve,
allowing for resolution adjustments as necessary. A 3D celadon model can be generated
by rotating the curve around the axis of revolution. The following subsections provide
detailed explanations of each step in this process.

3.1. Extract a Profile Curve

Extracting a profile polyline from a 2D celadon image is a crucial stage in the process
of 3D reconstruction. The contour of the celadon outlines its shape, while its corners help
identify distinct features. Furthermore, the axis of revolution is essential in ensuring proper
alignment while generating a 3D celadon model. A profile polyline is extracted using the
features then fitted to a B-spline curve around the axis to generate the model. Figure 2
illustrates the flow of the proposed method.

(a) (b) (c) (d) (e)

Figure 2. The flow from 2D celadon image to a 3D model: (a) input 2D image; (b) detected contour
and corners; (c) the axis of revolution A; (d) profile curve C with A; (e) generated 3D celadon model.

Contour detection. Before extracting the contour of the celadon in the input image,
we first distinguish it from the background. The binary thresholding method leads us to
move a region of interest (ROI) from the whole image to the celadon, so we convert it to a
grayscale image and apply the method. After that, we apply Suzuki–Abe’s method [23] to
the thresholded image to extract an outermost contour from the image and apply Douglas–
Peucker’s [17] method to approximate the original contour, which enables us to detect
referential corners while preserving its shape considerably. The detected contour of the
celadon is shown in black in Figure 2b.

Corner detection. A non-flawed celadon always has a rim and a base, with four
corners in total, two on the rim and the other two on the base. It is essential to accurately
identify the corners of the celadon as they help determine the endpoints of the profile
polylines in the contour polyline. However, detecting these corners directly from the
original data is challenging. We smooth the contour polyline using a 7 × 7 Gaussian
filter and apply the Shi–Tomasi’s [27] method to find its top and bottom corners. These
are referential corners used to determine the original contour’s corners accurately. The
detected corners of the celadon are shown in pink in Figure 2b.
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Axis of revolution. The next step is to determine the axis of revolution A of the
celadon using the four corners. The Principal Component Analysis (PCA) creates two
eigenvectors that best describe the original contour. We employ this feature to determine
the A. Specifically, we select one eigenvector closest to the vertical axis, as it is crucial to
align the A with the vertical axis. To achieve this, we divide the corners into relatively
left and right corners and select any set of them. We can find a direction vector of the A
using the selected corners and the two eigenvectors. It is important to note that the axis of
revolution should pass through the average point of the original contour. If the A slightly
deviates from the vertical axis, we adjust the A and the contour to align with the vertical
axis, reducing errors. Figure 2c shows the eigenvectors produced by the PCA in the green
and red arrows and the A in the blue line.

Profile polylines. The contour, corners, and A derived in the previous steps extract
the profile polylines. The corners serve as endpoints of them. Selecting one profile polyline
between them for generating a 3D celadon model is necessary for the following B-spline
curve fitting. Figure 2d shows only the A and the celadon’s right profile curve. Algorithm 1
summarises extracting a profile polyline from an input celadon image.

Algorithm 1: Extract a profile polyline.
Input : I - an input celadon image
Output : Pp - a profile polyline of the celadon

# Contour detection
GI ← convertToBinaryThreshold(I, threshold)
Pc ← findContour(GI)

# Corner detection
Ga ← approximateContour(Pc)
Gb ← gaussianFilter(Ga, (7, 7))
F ← findCorners(Gb, Pc)

# Derive an axis of revolution
e1, e2, m← PCA(Pc)
d← getAxisDirection(e1, e2, C)
A← makeAxisOfRevolution(d, m)

# Select a profile polyline
Pp ← getProfilePolyline(Pc, C, A)

3.2. Texture Generation

There are limited patterns and colors present in the input image of the celadon, but it
is possible to extract them to create a 2D texture image T(u, v), 0 ≤ u, v ≤ 1 to be mapped
onto the 3D celadon model. In Section 3.1, we isolated the ROI from the whole image to
focus on the celadon. With the ROI, we can generate a rectangular texture image with the
same dimensions as the ROI using the scanline method. Non-white color pixels in the ROI
are mapped to the texture image while scanning from the celadon’s top to bottom. Note
that each scanline has a different number of pixels with non-white color pixels. Therefore,
we perform linear interpolation on any scanline with a smaller number of pixels than the
width of the ROI while mapping.

Figure 3 describes the simplified process of generating a texture image for a sim-
ple image, where pixels are shown as circles. Figure 3a shows the input image, while
Figure 3b,c highlight a specific scanline with a red border to show the linear interpolation
of it. Figure 3d shows the interpolated resulting texture image. Algorithm 2 summarises
generating a texture image from an input celadon image.
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(a) (b) (c) (d)

Figure 3. Simplified representation of the texture generation procedure: (a) input scanlines; (b) se-
lecting one scanline; (c) filling the missing data with linear interpolation; (d) the final result of
texture generation.

Algorithm 2: Generate a texture.
Input : I - a input celadon image
Output : T(u, v) - a texture image of the celadon
ROI ← extractROI(I)
T(u, v)← makeBlankImage(ROI.dimension)
scanlines← makeScanlinesOf(ROI)
foreach scanline in scanlines do

scanline.map(ROI, T(u, v))
if scanline.width < ROI.width then

scanline.interpolate(ROI, T(u, v))
end if

end foreach

3.3. Curve Fitting with a B-Spline Curve

The profile polyline obtained from image processing is a discrete polyline on a 2D
image. However, such a polyline has resolution limitations in representing a profile curve.
To address this issue, it is necessary to transform the profile polyline into a mathemat-
ically defined curve, such as a spline. Therefore, we fit the polyline with a third-order
B-spline curve by obtaining control points and knot vectors using Dierckx’s method [13].
Subsequently, we split the resulting B-spline curve non-uniformly based on the curvature
variation to generate a final profile curve C. The profile curve C is then used to generate a
corresponding 3D celadon model.

3.4. Construct a Triangular Mesh

The triangular mesh comprises a set of vertices representing the points in R3 and
triangles formed by connecting these vertices with edges. We uniformly sample 360° at
a fixed interval and rotate the profile curve C around the axis A to generate vertices of
the celadon model. Then, we connect the vertices with horizontally adjacent vertices in
triangles to create edges and faces.

In addition to generating the 3D model, we should create texture coordinates while
connecting the adjacent vertices. The texture coordinates are computed by mapping the
angles to the u and the vertical range of the profile curve C to the v. When it comes to
mapping for u, we use a linear mapping method, which maps [0°, 180°] to [1, 0] ∈ u and
[180°, 360°] to [0, 1] ∈ u. Finally, we can apply the generated texture image to the 3D
celadon model, as shown in Figure 4.
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Figure 4. The rendered images of a P0 model by rotating it 360° in a 60° interval.

4. Experimental Results

Our approach was implemented on a Windows PC with an Intel Core i7-11700
2.5 GHz processor, 32 GB of RAM, and an NVIDIA GeForce RTX 3070 graphics card,
using Python 3.11.1. We experimented with eight celadon examples [34] by processing their
2D input images to generate corresponding 3D models. In order to simplify data acquisi-
tion, we limited ourselves to using one image per celadon. For rendering the 3D celadon
models in various scenes and evaluating their suitability in different environments [35],
we employed the Mitsuba 3 renderer [22]. Furthermore, we used Unreal Engine 5 [36] to
construct a VR celadon museum exhibiting the models. Figure 5 shows the results of the
3D reconstruction for the celadons, from P0 to P7. The first row of Figure 5 shows input
2D celadon images. The second row shows each image’s axis of revolution A and profile
curve C, shown in blue and black, and the third row shows their texture images. The last
row shows the generated 3D celadon models for each input image based on their A, C, and
texture images.

Figure 5. Geometric data generated by our 3D reconstruction algorithm from input image: axis of
revolution A, profile curve C, generated texture image, and generated 3D model with texture.
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Table 1 presents numerical information, such as the computing time for each step of the
3D reconstruction process. Image processing took a similar time for all examples. However,
the non-uniformly splitting B-spline curve can impact the resulting 3D model’s generation
time. As the number of divided domains increases, the number of points and faces in the
corresponding 3D model also increases, resulting in slower 3D model generation. The
number of divided domains depends on the curvature variations of each profile curve
of the celadon, so it has a unique value according to the celadon examples. Meanwhile,
we computed the approximation error of the B-spline profile curve C by measuring the
one-sided Hausdorff distance to the profile polyline curve with Filip’s approximation
technique [14]. As shown in Table 1, the B-spline profile curve C approximations are
considered to be accurate since their approximation errors are at most 2.33 pixels.

Table 1. Details of 3D reconstruction for each celadon, where the computing times are all measured
in milliseconds.

Celadon

Image Processing B-Spline 3D Model Approx.
Error

(Pixels)Time (ms) # Contour
Points

# Control
Points # Domains Time (ms) # Vertices # Faces

P0 64.06 688 15 261 982.62 94,320 187,920 2.27

P1 70.12 830 17 298 1076.89 107,640 214,560 2.17

P2 78.04 835 20 327 1176.80 118,080 235,440 1.38

P3 68.07 813 18 369 1375.21 133,200 265,680 2.33

P4 70.03 783 14 382 1469.63 137,880 275,040 1.85

P5 68.03 699 18 396 1462.05 142,920 285,120 1.45

P6 69.00 701 24 467 1779.77 168,480 336,240 1.26

P7 71.01 755 27 554 2082.57 199,800 398,880 1.46

Through several rendering tests, we decided to set the SPP value σ to 64 for low
quality and 1024 for high quality and selected HD (1280× 720), FHD (1920× 1080), and
4K (3840× 2160) as the image resolutions to experiment. The scenes were rendered using
these two σ values and three image resolutions. Since our GPU hardware does not support
σ to 1024 in 4K, we selected 512 for high quality in 4K. The rendering times for each scene
at different resolutions and σ values are displayed in Table 2, with each scene represented
by a subscript. The results show that the rendering time for each scene is proportional to
the image resolution and σ. In particular, the scene Sshowcase, as shown in Figure 1 with a
celadon encased in glasses, is rendered slowly as brighter scenes Sliving, Skitchen, and Slounge
because path tracing the glass material requires high computational costs. Figure 6a shows
the scenes without our 3D reconstructed celadon models, and Figure 6b includes them,
with σ = 1024 and HD resolution. Please note that all scenes were rendered with a GPU
and then denoised using an Optix AI-accelerated Denoiser [37].

Table 2. Details of rendering the scenes in various resolutions and σ values, where the rendering
times are measured in seconds.

Name Celadon

Rendering Time (s)

HD FHD 4K

σ = 64 σ = 1024 σ = 64 σ = 1024 σ = 64 σ = 512

Sdining P6, P7 2.08 15.97 3.46 35.99 10.08 72.04

Slounge P1, P3 2.60 39.04 5.84 86.60 22.98 174.00

Skitchen P0,..., P7 3.87 41.73 7.35 92.75 25.49 187.74

Sshowcase P0,..., P7 6.73 102.62 16.18 224.90 57.41 451.41

Sliving P0,..., P7 8.90 102.29 15.66 233.02 64.37 469.07
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Figure 6. Rendered scenes [35] with a path tracer [22]: (a) scenes without our 3D celadon models;
(b) scenes with the models.
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Finally, we generated a VR celadon museum with the celadon models. Figure 7a,b
show the layouts of the VR museum in wireframe and an unlit view mode, which are
features supported by Unreal Engine 5, and Figure 7c shows a screenshot of the VR
museum experience while wearing a VR headset (please refer to the supplementary video
for additional details). To enhance the visual aesthetics of the celadon models in the VR
environment, we surrounded the models with glass showcases and placed eight directional
light sources inside, simulating a real museum environment. Despite being generated from
a single 2D image, the models sufficiently represent the geometries and textures of their
original celadon, showing that they are suitable for VR content.

(a) (b) (c)

Figure 7. The VR celadon museum in Unreal Engine 5: (a) rendering the museum with wireframe;
(b) rendering the museum in unlit mode; (c) a user wanders around the museum and appreciates 3D
celadon models generated by our method.

5. Conclusions

This paper presents a general guideline for generating a 3D celadon model from a
single 2D image and further illustrates how to apply the model to various scenes rendered
with a path tracer, along with a VR celadon museum. Our approach involves feature extrac-
tion from the 2D image and the detection of the profile curve. This curve is approximated
by a B-spline curve, which offers a higher curve representation and flexibility compared to
other approximation algorithms. This leads to the ability to generate 3D celadon models
at any desired resolution. The texture coordinates of the 3D model are also automatically
calculated, eliminating the need for any further inputs.

The resulting 3D models can be easily used as VR content, for example, in cultural
heritage applications. People can examine the celadon models in the VR celadon museum,
facilitating a deeper understanding of the celadon’s intricate details and cultural signifi-
cance. However, the original celadon images were captured via perspective projection with
a possibility that celadons can contain specular lightings in the images, causing distortions
in the profiles and textures, reducing the reconstruction accuracy. In future work, we
plan to calibrate the original images captured via perspective projection and develop an
automated method for generating a VR celadon museum.

Supplementary Materials: The following supporting information can be downloaded at: https:
//doi.org/10.5281/zenodo.7932434 (accessed on 13 May 2023).
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