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Abstract: NB-PLC (narrowband power line communication) is a method of data communication that
involves superimposing a relatively high-frequency signal (9 kHz to 500 kHz), which contains data,
onto the power grid’s low frequency (50 to 60 Hz) signal. While using the existing power grid as a
transmission medium is convenient, the power grid was not designed for this purpose, leading to
challenges such as conducted emissions and infrastructure limitations. To overcome these technical
challenges, passive filters are necessary. This article presents the design, simulation (using scattering
parameters), and evaluation of an NB-PLC filter by comparing it to commercially available filters. Our
proposed design and benchmarking methods enable the accurate prediction of the filter’s behavior in
field conditions. After comparing our filter with commercially available filters, we observed that it
exhibits superior characteristics. Specifically, our filter has the best insertion loss versus frequency,
achieved three times higher attenuation at 50 kHz (−130 dB) compared to the best commercially
available filter (−40 dB), and has a power consumption of 0.6 W, which is comparable to the most
power-efficient commercial filter (0.5 W). Additionally, our filter has the second best input and output
impedance of 3.6 Ω within the frequency range of 35–95 kHz.

Keywords: power line communication (PLC); power grid; NB-PLC; smart grid; filters; conducted dis-
turbances

1. Introduction

As of 2020, it is estimated that 43% of electricity consumers in the EU-28 (European
Union) have SMs (smart meters) installed, amounting to 123 million [1]. It is expected
that by 2024, the number of installed SMs will increase to 223 million and that by 2030 it
will reach 266 million. A total of 16 countries out of EU-28 have chosen NB-PLC (Narrow
band power line communication) as a communication method between SM and DC (data
concentrator) [2]. The study performed by the Joint Research Centre [2] estimated higher
rollout rates compared to [1], while a market study performed at the end of 2020 showed
that 130 million smart meters had been rolled out in Europe out of which 72% use PLC [3].

In Europe, NB-PLC uses Cenelec A, B, C, and D bands (3 kHz up to 148.5 kHz) which
is impacted by gaps in the electromagnetic compatibility (EMC) conducted emissions
standardization and electromagnetic interferences (EMI). These two topics are the subjects
of research articles [4–15] and have the attention of The Comité International Spécial
des Perturbations Radioélectriques (CISPR) as well as the international electrotechnical
commission (IEC). Efforts are underway to address this gap, including proposed changes
to standards such as CISPR 16-1-2, CISPR 32, and subsequent IEC standards.

We have identified that only in the following cases do standards specify the emission
limits in the 3–148.5 kHz frequency band: NB-PLC specific standard [16], lightning equip-
ment [17], and one home appliance type (inductive ovens) from the home appliances EMC
standard [18]. Figure 1 graphically represents the IEC EMC standards that cover most
equipment connected to the power grid in Europe and the frequency range they cover; for
most of the standards there is no emission limit below 150 kHz.
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Mains connected switched-mode power supplies and inverters commonly utilize
switching frequencies below 150 kHz, resulting in the generation of conducted emissions
that impact NB-PLC [15,19]. The selection of switching frequencies below 150 kHz is
motivated by several key factors [20]:

• Efficiency: lower switching frequencies can improve the overall efficiency of the SMPS.
At lower frequencies, the switching losses in the power semiconductors, such as
transistors or diodes, are reduced. This results in lower power dissipation and higher
conversion efficiency;

• Electromagnetic interference (EMI): higher switching frequencies can generate more
emissions due to increased harmonics and faster switching transitions. Relaxed or an
absence of limits below 150 kHz contribute to this choice as well;

• Thermal management: switching components in SMPS can generate heat and oper-
ating at lower frequencies can help manage thermal issues. With reduced switching
frequency, the components have more time to dissipate heat between each switch-
ing cycle;

• Component selection: some components used in SMPS, such as inductors and trans-
formers, may have limitations at higher frequencies, including increased losses and
size constraints.

The growing adoption of NB-PLC within smart grid applications, combined with
existing standardization gaps and the presence of grid-connected devices that operate at
switching frequencies below 150 kHz, necessitates the development of power line filters
capable of providing significant attenuation within the Cenelec bands A, B, C, and D.

Passive filters were used for a long time [21–24] as a means of addressing conducted
emissions in the power grid or to isolate different sections of a PLC network [25]. This article
aims to contribute to this field of expertise by addressing several novel aspects. Firstly, it
serves as a comprehensive source of information for designing and testing narrowband NB-
PLC filters. Through an extensive literature review, it provides a complete understanding
of the development, integration, and testing considerations associated with NB-PLC filters.

In addition, this research introduces a new approach by employing S-parameters
(scattering parameters) for the design and simulation of NB-PLC filters. While the use of
S-parameters in design and simulation methods is not unprecedented [26,27], this study
represents the first instance of applying this specific approach to NB-PLC filter design.

To demonstrate the efficacy of the proposed design methods described in this article, a
13th order power line filter was developed utilizing custom-made inductors. The designed
filter exhibits high insertion loss characteristics below 150 kHz. It achieves a remarkable
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attenuation of −130 dB at 50 kHz while maintaining a low power consumption of 0.6 W
with an input and output impedance of 3.6 Ω.

Through these findings, the article highlights the potential and advantages of employ-
ing the described methods for designing NB-PLC filters and offering improved performance
in terms of insertion loss, attenuation, power consumption, and impedance characteristics.

The rest of the article is structured as follows:
Section 2 provides a comprehensive overview of the integration of power line filters

into the power grid, highlighting the key services present in the grid and the two main
types of power line filter topologies.

Section 3 presents the performance tests that ought to be conducted as an integral
part of power line filter benchmarking. The relationship between testing methods and the
actual conditions found in the power grid is also presented. By doing so, we aim to provide
a better understanding of the factors that affect filter performance in real-world settings.

Section 4, in addition to Section 3, outlines the safety and immunity tests that should
be conducted as part of benchmarking as well as the passive filter standard [28].

Section 5 presents the design, simulation, and evaluation of the proposed passive
power line filter as well as a comparison with three commercially available filters. Our
approach is pragmatic and uses S-parameters to facilitate the filter design process.

Section 6 presents the conclusions of our research activities presented in the article
and proposes future work in this field of expertise.

2. Filters Integration, Topologies, and Impact in the Power Grid

This section presents the basic types of PLC filters and their main characteristics as
well as interferences between filters and other services in the power grid.

2.1. Integration of Power Line Filters in the Grid

Typically, power line communication filters are used in the smart grid in the follow-
ing cases:

• Between the SM and the fuse box for filtering the conducted noise that is generated
by the devices in the house [29]. If the filter does not require a ground connection or
if the main fuse is not differential, it can be installed after the main fuse without any
issues. However, if the filter does require a ground connection or if the main fuse is
differential, installing the filter after the main fuse may cause the fuse to trip. This
filter use case is labeled as Filter Type 1 in Figure 2;

• Between two sections of the power-line for separating NB-PLC devices from two
areas which are connected to the same voltage transformer. The division in two areas
ensures that the SM using NB-PLC from each area connects to the PLC-DC (power line
communication data concentrator) they are supposed to. This type of filter installation
is required when there are many SM connected to a branch and an additional DC is
installed so that the data-rate is improved [25]. This filter use case is labeled as Filter
Type 2 in Figure 2.

Figure 2 represents the two general use cases of PLC filters in the low voltage smart
grid. For simplicity reasons, only single-phase devices are shown.

2.2. General Topolgies of Powerline Filters

In terms of the safety rating (leakage current) and insertion loss, both are two topolo-
gies of PLC filters with and without Y capacitors, namely Cy, having a middle point
connected to protective earth [21]; these types of filters are shown in Figure 3. All other
types of passive filters are different arrangements starting from these two types of filters.
The graph in Figure 4 shows the insertion loss (with symmetrical loading) of the two
filters depicted in Figure 3, as simulated using SPICE (Simulation Program with Integrated
Circuit Emphasis). The optional resistor has the function to dampen oscillations at resonant
frequencies and to discharge the capacitors.
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2.3. Services Present in the Power Grid

The below-mentioned features present in the grid should not be affected if a PLC filter
is fitted in the installation.

2.3.1. Residual Current Protective Devices

RCD (residual current protective device) is used in the installation as a protective
device against faulty devices or the carelessness of users [30]. The tripping current of an
RCD is I∆n ≤ 30 mA, which can be an issue in the case of a PLC filter with a leakage current
being installed after the main fuse. Of course, the tripping current can be adjusted in some
RCDs but the leakage of the Y capacitors might change due to capacitor ageing causing the
RCD to trip unreliably.

2.3.2. Ripple Control System

Ripple control systems are devices used by the grid operator for load switching. Ripple
control receivers are components of a system of remote control permitting the simultaneous
switching of many loads from a central point. For the system to function it is necessary that
the signal arrives from the injection point to the receiver sites. The ripple control signal
frequency band is between 110 Hz and 3000 Hz [31] so it might be easily filtered out by the
PLC filter.

2.3.3. Remote Connection of the Disconnect Unit

Some SMs detect the state of the main fuse when the power supply is disconnected
from the SM disconnect unit. This feature is used to remote close the disconnect unit of
the SM by cycling the main fuse off and on so that the energy supply to the customer is
reestablished. The feature can be affected by the PLC filter in case it is fitted between the
SM and fuse box [32–34]. There is no description of the way this feature is implemented
but it requires signal injection and measurement, which may be affected when using a
PLC filter.

3. Filter Performance Measurement

This section presents the performance tests that should be performed as part of the
benchmarking: insertion loss, PLC signal filtering, and impedance measurement.

3.1. Insertion Loss

In laboratory environments, the most straightforward method of testing the filters is by
measuring its insertion loss (transfer function) using a VNA (vector network analyzer) [22]
or an FRA (frequency response analyzer). In general, an FRA will allow lower frequency
measurements and are robust to use in conjunction with power line couplers. Figure 5
is an offline insertion loss measurement setup [35] and Figure 6 is an online impedance
measurement setup which uses line couplers [36], AC power supply, and load impedance.
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The practical implementation of the test setup from Figure 6 can be challenging due to
non-standardized power supply impedance ZS and load impedance ZL values at PLC
communication frequencies.

Passive impedance matching circuits can be used to measure the insertion loss of the
filter when the impedance is different to 50 Ω. The main problem of passive impedance
matching circuits is that the impedance matching is achieved only at a certain frequency;
hence, to obtain a proper insertion loss with impedances different to 50 Ω, several matching
circuits should be used. Another way of performing non-50 Ω measurements is to use
matching transformers also known as baluns [37,38]. Some of the FRA models available on
the market have separate ports for measuring and injecting the signal to the DUT (device
under test) [39] so that an impedance matching circuit is not needed and the results with
loading impedances different to 50 Ω are properly measured.
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In order to provide a controlled input impedance and noiseless power supply, a line
impedance stabilization network (LISN) and two PLC couplers were used. The test setup
from Figure 7 is derived from PLC and EMC standards [17,40] and it has the following
features:
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• Isolated AC power supply (isolation transformer);
• Symmetrical V-LISN that allows symmetrical measurements on phase and neutral; the

unused half of the LISN is terminated with 50 Ω;
• Zin and ZL can be adjusted in order to obtain the required impedance at the port of

the filter.
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Power line impedances encountered in real situations are 4 to 15 times lower than
those of commercially available LISN. Figure 8 graphically presents the impedance from
20 kHz to 150 kHz of an 50 Ω/50 µH + 5 Ω LISN [40] and the power line impedance
measured experimentally in five field condition cases [41–45].
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Figure 8. Power line impedance measurements compared to LISN impedance [40–45].

The adaptive impedance circuit from Figure 9 can be used to introduce Zin and ZL
closer to values encountered in field conditions [46]. Figure 10 plots the impedance |Z| and
phase shift ϕ of half of the circuit (between L’ and PE or N’ and PE) from Figure 9; ideal
components were used in the SPICE simulation.
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The power consumption at the mains frequency f = 50 Hz of the adaptive impedance
circuit from Figure 9 is P ≈ 1 kW and thus much lower compared to the power consumed
if a purely resistive 2 Ω load is used, P = 26.45 kW. The power consumption computations
are detailed in Equations (1)–(11).

Z =

√
R2 + (XL − XC)

2 (1)

R = 1 Ω (2)

XL = 2 π fL = 1.5 mΩ (3)

XC =
1

2 π fC
= 95.5 Ω (4)

Z = 95.5 Ω (5)

ϕ = tan−1(
XL − XC

R
) = −25.5

◦
(6)

cosϕ = 0.9 (7)

IRMS/2 = VRMS/2/Z =
115
95.5

= 1.2 A (8)

P1/2 adaptive circuit = URMS IRMS cosϕ = 230× 2.4× 0.9 = 496.8 W (9)

Padaptive circuit = 2 ∗ P1/2 adaptive circuit = 992 W (10)

P2Ω Load =
U2

RMS
R

=
52900

2
= 26.45 kW (11)
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The online insertion loss test setup version 2 with Zin and ZL close to power line
impedance replicates realistic power grid conditions, thus offering an accurate way of
evaluating the PLC filters [47,48].

3.2. PLC Signal Filtering

In some use cases such as the filter, by separating two areas of the PLC system (Figure 2)
the filter must block the PLC signal.

In the absence of an FRA or VNA there are two pragmatic ways of testing the
PLC filters:

• Use PLC modems connected before and after the filter and measure the frame error
rate, as shown in Figure 11;

• Configure a PLC modem in transmit mode and measure the signal level with a
spectrum analyzer before and after the filter, as shown in Figure 12.
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3.3. Impedance Measurement

The impedance of the filter should not affect the PLC modem performance. In some
cases, the PLC filter is installed very close to the SM with a PLC modem, which can severely
affect the transmitted and received signal. Higher filter input impedances can be achieved
using higher order filters (multi-stage) such as the filter designed by us.

The most effective ways of measuring the impedance of the filter at PLC frequen-
cies are:

• Offline measurement using the RLC meter, impedance analyzer, or VNA, Figure 13a;
• Online measurement using the impedance analyzer measuring method [49], Figure 13b;
• Online measurement using the voltage ratio method [49], Figure 13c;
• Offline measurement and monitoring of the voltage and current consumption of the

PLC modem while transmitting carrier frequencies, Figure 13d.

Single port measurements with a VNA are not reliable at extreme impedance values
(i.e., <1 Ω). The single port measurement limitation (S11) comes from the fact that the VNA
is designed to measure the incident wave (E+) entering the DUT (device under test) and
the reflected wave (E−) on impedances close to 50 Ω [50–52]. The ratio of these two waves
is called the reflection coefficient (Γ) and it is used to compute the impedance of the DUT
ZL. The resolution of a VNA is not high enough for single port measurements at extreme
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impedance values: when ZL is very low, Γ becomes close to −1, and when ZL is very high,
Γ becomes close to +1.

Γ =
E−

E+
=

ZL − 50
ZL + 50

(12)

ZL = 50
(Γ + 1)
(Γ− 1)

(13)

In order to overcome the limitations of the single port measurements, the 2-Port VNA
measurement technique can be used which is the equivalent of the 4-wire Kelvin DC
technique for measuring resistance. Port 1 is used to inject to the DUT and port 2 is used to
measure the voltage drop on the DUT.
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4. Additional Testing

This section presents the safety and immunity tests that should be performed as part
of benchmarking in addition to the passive filter standard [28]: heating, surge, overcurrent,
and short circuit.

4.1. Heating

Under maximum rated operating conditions, the housing of the filter shall not reach a
temperature, which might cause a fire hazard or influence the filter and devices surrounding
the filter.

The test can be performed by inspecting the filter with the thermal view camera [23]
while maximum current passes through the filter. Given that the filter may be installed
under similar conditions as the SM, it is important to test it accordingly [53]:

• The filter should carry the maximum rated current and voltage for 2 h;
• The temperature rise of the external surface should not exceed 65 ◦C, with an ambient

temperature of 40 ◦C.

4.2. Surge

The test should be carried out according to the relevant surge testing standard [54]
under the following conditions:

• Filter operating condition: circuits should be energized with reference voltage +5%
without any load connected to the output of the circuit;

• Cable length between the surge generator and filter: 1 m;
• Tested in differential mode (line to line) and, if ground connection is available, common

mode (line/neutral and ground);
• Phase angle: pulses to be applied at 60◦ and 240◦ relative to the zero crossing of the

mains supply;
• Test voltage on the mains lines: 4 kV;
• Generator source impedance: 2 Ω;
• Number of pulses: five positive and five negative;
• Repetition rate: maximum 1/min.

4.3. Overcurrent

It is recommended to conduct this test if there is no fuse fitted before the filter; this is
the case when the filter is separating the two areas of the PLC grid as shown in Figure 2. The
filter shall be able to carry a short time overcurrent of 30 times the maximum rated current
for one half-cycle at a rated frequency [55]. No degradation of the filter characteristics
should be observed after this test.

4.4. Short Circuit

The short circuit condition can be simulated by short-circuiting the output of the filter
and feeding the input with two times the maximum rated current until the filter will result
in an open circuit. During testing, the filter should not be in an unsafe condition and after
the test it should result in an open circuit.

4.5. Overvoltage

This test simulates the overvoltage that may occur in the grid due to faults such as
earth fault, phase reversal, and voltage unbalances. All of the overvoltage conditions
translate in an increased line or phase voltage. The most extreme case that can occur in a
system having VL−N = 230 V as the phase voltage is described below [55,56]:

V(L−N)nominalmax = 1.1× 230 V = 253 V (14)

V(L−L)max =
√

3×V(L−N)nominalmax = 438 V (15)
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5. PLC Filter Design, Simulation, and Evaluation

This section presents the design, simulation, and evaluation of the passive PLC filter.

5.1. PLC Filter Design

The filter was designed using the following requirements:

• The filter should reach −120 dB attenuation at 50 kHz because the maximum PLC
signal level is 120 dBuV [16], thus blocking PLC signal passing through the filter;

• Filter power consumption at the mains frequency should be kept as low as possible;
• The filter saturation current should be at least 30 A, making it suitable for installation

between SM and electrical installation of the building (i.e., main fuse);
• The filter input/output impedance in the NB-PLC frequency band must be as high as

possible so that it does not affect the communication. As a minimum requirement, the
impedance must be above 2 Ω because the PLC modems are designed and tested to
transmit on 2 Ω loads [16];

• The filter design and component selection shall be conducted in order to ensure
compliance with the tests described in Section 4 for additional testing.

We have designed the 13th order filter from Figure 14 in compliance with the require-
ments from the beginning of this section. The compliance and performance have been
assessed in Section 5.3.

Electronic component selection has an important role in the implementation of the
filter, Table 1 is the bill of materials explaining our selection.

Table 1. Filter comparison based on datasheet values.

Component(s) Part Descriptions and Use Case Explanation

TMOV

The filter incorporates a TMOV (thermally protected metal oxide varistor) from Little Fuse™
TMOV20RP460E [57]. The TMOV compared to traditional metal oxide varistors provides surge
protection while ensuring that it will not conduct at mains voltage, thus overheating and ultimately
catching fire [58]. The selected TMOV will start conducting at 460 V, thus safe operation of the filter is
ensured during overvoltage V(L−L)max = 438 V.

R1, R2 and R3

An array of three series connected resistors is used for passive damping of oscillations that might occur
in the grid [59]. Surge safety resistors SSR300J10K0TKZTB500 from Firstohm™ [60] were chosen. Series
connection is preferred in order to ensure that there is no arching due to insufficient clearance and
creepage distances [61].

C1 and C5
Polyester film capacitors capable of withstanding V(L−L)max = 438 V were used. Specifically in our
design, JGGC series from JB® [62] were used.

L1 to L8

The inductors were designed and built using a toroidal core made out of Sendust MS-184075-2 [63]
manufactured by Micrometals™. Sendust is appropriate to be used in applications requiring high
permeability, low coercivity, high resistivity, and high magnetization, such as inductors used in filtering
applications [64]. In order to obtain L = 100 µH and a current rating of 40 A, N = 26 turns of 4 mm2

stranded wire are used.

C2, C3, C4

Polyester film capacitors capable of withstanding V(L−L)max = 438 V were used. Specifically in our
design, JGGC series from JB® [62] were used. The value of the capacitors was adjusted to C = 2.2 µF
based on simulation and calculation values in order to have a trade-off between power consumption,
attenuation, and input/ output impedance.
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5.2. PLC Simulation Using the S-Parameters Simulator

S11 parameters for each component were measured using a VNA and the obtained
Touchstone files [65] are used in simulating the filter in the RFSim99 S-Parameters simulator.
RFSim99 is a linear S-parameter-based circuit simulator which solves matrix equations for
two-port devices.

Figure 15 is the graphical representation of a two-port network [66,67]:

• a1 and a2 are the incident waves for Port1 and Port2;
• b1 and b2 are the reflected waves for Port1 and Port2;
• S21 is the forward transmission coefficient (from port 1 to port 2) and S12 is the reverse

transmission coefficient (from port 2 to port 1);
• S11 is the input reflection coefficient and S22 is the output reflection coefficient.
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Below is the matrix algebraic representation of two port S-parameters [66,67] which is
also used by the simulator:

S11 =
b1

a1
(16)

S12 =
b1

a2
(17)

S21 =
b2

a1
(18)

S22 =
b2

a2
(19)

(
b1
b2

)
=

(
S11 S12
S21 S22

)
×
(

a1
a2

)
(20)

For the measurements, PLC filter online insertion loss test setup version 2, shown in
Figure 7, was utilized. The actual implementation of the test setup is depicted in Figure 16.
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Figure 17 presents the results of the simulated and measured insertion loss for the
proposed filter.

Measurements and graphical representation were performed with the following set-
tings and conventions:

• Measurement equipment reference impedance: Z0 = 50 Ω;
• The measured S21 [dB] parameter is considered to be the insertion loss of the filter [68];
• Due to the dynamic range and noise floor of the VNA, measurements can be performed

starting low at −130 dB [69]. Although the simulated S21 magnitude values are as
low as −300 dB, all magnitude values ≤ −140 dB were scaled to −140 dB in order to
facilitate graphical representation.
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5.3. Proposed Filter Evaluation and Comparison to Other Commercially Available Filters

The filter proposed in Figure 14 is evaluated and compared to other filters advertised as
for PLC and with similar characteristics to the proposed filter. The evaluation is performed
according to a part of the test methods described above. In order to prevent product biasing,
the filter manufacturers and manufacturer part numbers are anonymized; however, the
schematic of the benchmarked filters together with the component values are shown in
Section 5.3.1.

5.3.1. PLC Filter Insertion Loss and Power Consumption Measurements

Insertion loss measurements were performed in the following conditions:

• The test setup used is the PLC filter online insertion loss test setup 2 shown in Figure 7;
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• The first step is to validate the test setup by directly connecting the PLC couplers to
one another. The setup validity check is named “PLC Couplers” in the below figures;

• The subsequent actions involve conducting measurements while the filter is installed,
considering three different states: no mains voltage named “Unenergised”, mains
voltage named “Energised”, and a 2000 W load with the mains voltage named “Ener-
gised with 2000 W load”. The naming convention utilized in the figures below, which
display the results of insertion loss measurements, remains consistent.

Figure 18 presents the insertion loss of the proposed filter.
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Figure 19 shows the schematic extracted from the datasheet of Filter 1. During mea-
surements, the ground connection of the Y-capacitors between C2 and C3 was left floating
and thus the filter was connected in the same way as an eighth-order passive filter or a
two-stage filter from Figure 3b. Figure 20 presents the insertion loss of filter 1.
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Figure 21 shows the reverse-engineered schematic of Filter 2 (the schematic was not
available in the datasheet). The filter is a resonant type of filter with a resonance frequency
between 20 kHz and 30 kHz, this is also visible in Figure 22 where the attention S21 [dB]
has its minimum value. These types of filters have the disadvantage that the attenuation is
highly dependent on the input and output resistance. Proof of this statement entails the
huge difference in attenuation (10 dB to 40 dB) from Figure 22 between the attenuation
when the filter is energized (no load) and the case when the filter has a 2000 W load.
Figure 22 presents the insertion loss of filter 2.

Figure 23 shows the schematic extracted from the datasheet of Filter 3 which is a sixth
order passive filter. Figure 24 presents the insertion loss of filter 3.
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Table 2 summarizes the results of the insertion loss measurements and power con-
sumption measurements while comparing them to datasheet values. The rated current
value is written in the table as a similarity reference between the filters.

The data from Table 2 are obtained from below methods and sources:

• Power consumption measurements at 230 V 50 Hz;
• Insertion loss extracted from measurement results is shown in Figures 18, 20, 22 and 24;
• Insertion loss gap measurement using PLC signal filtering capability test setup ver-

sion 1 is shown in Figure 11. These measurements reflect the gap between the filter
attenuation and the attenuation at which the communication stops.

Table 2. Filter comparison based on measured and datasheet values.

Filter Number
Rated

Current [A]

Power
Consumption

[W]

Insertion Loss [dB] at 50 kHz
Insertion Loss Gap for

Blocking the PLC
Communication [dB]

Datasheet
Value

Measured Value
Filter Energized with

2000 W Load

Proposed filter 30 * 0.597 −130 * −120 0

Filter 1 25 0.524 −40 −32 53

Filter 2 45 0.033 −40 −7 59

Filter 3 25 0.215 −20 −28 55

* Designed and simulated value.

The filter developed in this study exhibits exceptional features, including the best
insertion loss versus frequency, a three-fold increase in attenuation at 50 kHz (−130 dB) in
comparison to the best commercially available filter (−40 dB), and a power consumption
of 0.6 W, similarly to the most power-efficient commercial filter (0.5 W). Furthermore, it
has the second-best input and output impedance of 3.6 Ω within the frequency range of
35–95 kHz.

5.3.2. PLC Filter Impedance Estimation

Table 3 summarizes the PLC modem current consumption in transmit mode (sending
frequency beacons in 35–95 kHz) while being connected in turns at the input and output of
the filter. The filter impedance estimation method is shown in Figure 13d.

The measured modem’s power consumption is 0.42 A when transmitting over a
resistive impedance of 1 Ω.
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Table 3. Modem power consumption and estimated impedance in the frequency range 35–95 kHz.

Filter Number and Location Current Consumption RMS [A] Estimated Impedance [Ω]

Proposed filter output 0.125 3.36

Proposed filter input 0.125 3.36

Filter 1 output 0.275 1.53

Filter 1 input 0.275 1.53

Filter 2 output 0.025 16.8

Filter 2 input 0.075 5.6

Filter 3 output 0.225 1.87

Filter 3 input 0.205 2.05

6. Conclusions and Future Work

In conclusion, this paper has presented comprehensive benchmarking, design methods,
and actual measurements for the development and evaluation of power line filters, with a
specific focus on the CENELEC A communication band.

We have designed a power line filter using an S-parameters simulator and real pas-
sive components and detailed information regarding the component selection and filter
construction has been provided. Practical validation of the simulated values was achieved
through actual measurements. Benchmarking against three commercially available filters
shows that our filter is the best suited for filtering below 150 kHz.

Our filter has superior characteristics, such as the best insertion loss versus frequency,
three times higher attenuation at 50 kHz (−130 dB) compared to the best commercially
available filter (−40 dB), and a power consumption of 0.6 W which is comparable to the
most power-efficient commercial filter (0.5 W). Additionally, our filter has the second-best
input and output impedance of 3.6 Ω within the frequency range of 35–95 kHz.

The proposed filter has the maximum rated current limit of only 30 A, which makes
it suitable as a type 1 filter but unsuitable as a type 2 filter (separating two sections of the
power grid) as defined per Section 2.1. It is of interest to design a type 2 filter using the
design methods presented in this paper.

As future work, we propose to benchmark additional power line filter using the test
methods presented in Sections 3 and 4. In addition, it is of interest for us to design and
evaluate a hybrid between resonant and nth order filters with the scope of reducing the
order of the filter while maintaining the attenuation below 150 kHz.
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