
Citation: De Silva, K.D.M.; Lee, H.J.

Distorted Aerial Images Semantic

Segmentation Method for

Software-Based Analog Image

Receivers Using Deep Combined

Learning. Appl. Sci. 2023, 13, 6816.

https://doi.org/10.3390/app13116816

Academic Editor: Zhengjun Liu

Received: 2 May 2023

Revised: 29 May 2023

Accepted: 31 May 2023

Published: 4 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Distorted Aerial Images Semantic Segmentation Method for
Software-Based Analog Image Receivers Using Deep
Combined Learning
Kalupahanage Dilusha Malintha De Silva and Hyo Jong Lee *

Division of Computer Science and Engineering, CAIIT, Jeonbuk National University,
Jeonju 54896, Republic of Korea
* Correspondence: hlee@jbnu.ac.kr

Abstract: Aerial images are important for monitoring land cover and land resource management. An
aerial imaging source which keeps its position at a higher altitude, and which has a considerable
duration of airtime, employs wireless communications for sending images to relevant receivers.
An aerial image must be transmitted from the image source to a ground station where it can be
stored and analyzed. Due to transmission errors, aerial images which are received from an image
transmitter contain distortions which can affect the quality of the images, causing noise, color shifts,
and other issues that can impact the accuracy of semantic segmentation and the usefulness of the
information contained in the images. Current semantic segmentation methods discard distorted
images, which makes the available dataset small or treats them as normal images, which causes poor
segmentation results. This paper proposes a deep-learning-based semantic segmentation method for
distorted aerial images. For different receivers, distortions occur differently, and by considering the
receiver specificness of the distortions, the proposed method was able to grasp the acceptability for
a distorted image using semantic segmentation models trained with large aerial image datasets to
build a combined model that can effectively segment a distorted aerial image which was received
by an analog image receiver. Two combined deep learning models, an approximating model, and
a segmentation model were trained combinedly to maximize the segmentation score for distorted
images. The results showed that the combined learning method achieves higher intersection-over-
union (IoU) scores than the results obtained by using only a segmentation model.

Keywords: semantic segmentation; deep learning; aerial images; image enhancement

1. Introduction

Earth-orbiting satellites and unmanned aerial vehicles (UAVs) are a crucial source
of aerial images. Detailed and comprehensive studies on aerial images are important for
useful land cover examination. For a specific area of land, the diversity of resources and
the correct assessment of the availabilities and capabilities of each resource make a clear
view for efficient land management. For a given duration of time, earth surfaces may go
through many changes due to human activity, climate change, and natural disasters, hence
frequent land cover monitoring is helpful for impact assessment. Undergoing changes such
as natural processes and social and economic events made the change-detecting process
an active research field [1]. Possibilities for good urban planning are largely dependent
on aerial images [2], and vegetation planning [3] is another major activity. Pre- and post-
disaster aerial images can be compared for detecting the impacts caused by the disaster [4].
For situations which need immediate attention, such as traffic monitoring [5] and the search
and rescue of humans [6], aerial images provide crucial assistance.

Aerial photos, which are taken from earth-orbiting satellites or UAVs equipped with
camera sensors, have a viewpoint from a higher altitude. Satellites and UAVs with longer
airtime need to send taken images to image receivers. Many studies use aerial imagery
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without considering technological details such as image transmission from source to ground
stations. The quality of the images depends on the image-capturing mechanism of the
source and the image transmission process. Sending an aerial image to a receiving ground
station is practically achieved by establishing a wireless communication link between the
satellite itself and the ground station. During transmission, radio communications can
be disturbed in many ways, such as attenuation and interference. When this happens,
inevitably, some information regarding the aerial image will be lost, causing receiver
dissatisfaction. Image information which was originally modulated to the radio carrier
will not be demodulated or recovered correctly. This will result in distorted images at the
receiver’s end. Figure 1 shows an example of a source (transmitted) image and the resulting
received image.
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Advancements in deep learning architectures for image classifications and big data
analysis have demonstrated the use of such techniques in land cover classification and
changed regions detection in aerial images [7]. Labor-intensive tasks, such as the mapping
of road networks in aerial images, are becoming inexpensive with deep learning [8]. For
damage assessment in timely disaster risk management, an adequate deep-learning-based
framework has been proposed [9]. Many aerial image datasets, such as [10], are presented
with fine annotations and readily available for semantic segmentation. Images and their
corresponding annotations are applicable for popular deep learning segmentation models
such as U-net [11] and Linknet [12]. However, in the case of certain transmission systems,
consideration of the uncertainty of having some distorted aerial images to be semantically
segmented and the results of such images with existing pretrained semantic segmentation
models will not be better than images with no distortions. Another challenging fact is the
lack of distorted aerial images to train a segmentation model. The manufacturing process
of satellite image receivers is still unable to properly solve the problem of distortions in
received images. Existing distortions have made it difficult to correctly examine aerial data.

This paper proposes a semantic segmentation method for distorted aerial images
which can easily be implemented in software-based radio receivers to provide it as an
added functionality to the radio. The image approximating network included in the
proposed method can improve the quality of a distorted image in such a way that it
is more applicable to the segmentation model, hence the combined model can predict
segmentations for distorted aerial images with a higher accuracy than the results produced
by using only the pretrained segmentation model. This work skillfully combines several
concepts, approaches, techniques, and components such as semantic segmentation, deep
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learning, aerial images, and existing segmentation models if needed, such as U-net and
Linknet. Further, according to the user’s preference or a model’s appropriateness in a
certain problem domain, different segmentation model architectures can be used as a
module in the proposed method. Contributions from the proposed method are listed
as follows.

n We propose a combined deep learning model of an approximating network to be
used with a segmentation network. A programmable interconnection between the
approximating block and the segmentation block provides the possibility of changing,
training, or adjusting participating deep learning models according to the relevance
of the problem to be solved.

n A comprehensive loss function is proposed to train the combined model optimally.
n The proposed method provides a compatible implementation of the software-based

image receiver and aerial image segmentation in a small-scale computer such as a
single board computer (SBC).

n The developed segmentation model is compared with similar benchmark networks
to demonstrate the robustness of the proposed method, verifying that the proposed
method obtains relative improvements of up to 80% in terms of mean IoU.

2. Related Works
2.1. Classical Segmentation Methods

Classical segmentation includes edge-based, region-based, and threshold-based meth-
ods. Edge-based segmentation relies on detecting edges within an image by identifying
local changes in image intensity. However, this method is not suitable for images with
smooth edges or many edges. In contrast, region-based segmentation depends on a seed
point to initiate the segmentation process, where the region grows by examining neigh-
boring pixels’ intensity to determine whether to include them, thus separating the regions.
This technique is computationally expensive, and different seed points may result in vary-
ing segmentation outcomes, which undermines the segmentation accuracy. Combining
edge-based and region-based techniques addresses their individual shortcomings and leads
to a more robust segmentation technique [13,14]. Threshold-based segmentation is one
of the simplest and most commonly used techniques [15,16]. It involves calculating an
optimal threshold that distinguishes between two classes while minimizing intra-class
variance and maximizing inter-class variance. This method performs well when the image
histogram has a bimodal distribution but cannot process images with unimodal intensity
distribution [17–19].

2.2. Deep-Learning-Based Semantic Segmentation

A pixel of an image can be in a part of a certain region in that image with its own
characteristics to form a region type, and an image is a combination of one or more region
types. Semantic segmentation correctly labels each pixel according to its relevance to
a certain region type. In segmented output, spatial information must be retained until
the end result. A software-based radio is likely to be a portable device, hence it can be
implemented in a mini-computer or an SBC. Its computing capabilities must be considered
before designing a proper deep leaning model to be implemented in such a device. Deep
convolutional neural networks (CNNs) which are successful at image classifications such
as VGG16 [20] have continuing convolutional layers for feature extraction. The work
presented in [21] proves the capability of end-to-end training methods for pixel-to-pixel
semantic segmentation with fully convolutional networks (FCNs). These networks take
an arbitrary input size and produce a same-sized segmented output. In FCNs, pretrained
deep CNNs such as AlexNet [22], VGG [20], and GoogLeNet [23] have been used for
segmentation. AlexNet and GoogLeNet are much easier to test with a low power portable
computer which can be used as a software-based image receiver. Internal mathematical
operations other than tensor calculations of a deep learning model decide the additional
processing power and the amount of memory needed by it. Deep deconvolutional neural
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networks have eliminated the need of saving pooling indices [24,25]. Auto-encoders have
been an inspiration for many segmentation techniques [12,26,27]. An input is encoded to a
feature space which can be decoded into spatial categorization to achieve segmentation.
SegNet [25] consists of an encoder which was followed by a decoder network, and it
has topological similarities with VGG16. A better candidate to be implemented in an
SBC is LinkNet [12], and it has a mechanism to bypass spatial information directly from
its corresponding encoders to decoder blocks. At each encoder, there is a possibility of
information loss, but LinkNet can preserve a considerably large amount of information
without losing details. ParseNet is an end-to-end, effective CNN for semantic segmentation,
which uses a technique to add global context to full CNNs [28].

Ronneburger et al. introduced U-net [11] for biomedical images semantic segmentation
built upon FCNs [21]. Its internal concatenation operation can be performed in a system
with low computational power. Its structure has a contracting path for context capturing
and a symmetric expanding path for precise localization. Feature pyramid networks (FPNs),
which are more tolerant of images with distortions because of their internal structure,
showed significant improvement as a feature extractor and can be used for both object
detection and semantic segmentation [29]. A robust segmentation method for noisy images
was introduced by using an unsupervised denoising filter [30] for real-time images. A
scalable subspace clustering method [31] was proposed, which includes a concise dictionary
and robust subspace representation in a unified model.

2.3. Multiple Model Training Methods

The work of training and evaluating multiple neural networks within one training
step is tested for adjusting their training parameters to achieve a collaborative result. For
example, generative adversarial networks (GANs) brought a generator network and a
discriminator network which can be connected and trained together [32]. A loss function
for a GAN is formed by combining two different prediction error functions, one for the
generator and one for the discriminator. SR-GAN [33] employees a deep residual network,
a ResNet [34] structure, with skip connections as a generator combined with a discriminator.
It also brought a more intuitive combined loss function. Pix2pix GAN was tested to use a
segmentation model as its generator, which brought attention to the segmentation-oriented
loss function to be in a combined loss definition [35]. AIDEDNet [36] and MATR [37]
made use of multiple internal deep learning models for better results. Such multiple
networks require the mandatory need of training each subnetwork simultaneously with the
same dataset, preventing the option of training the subnetworks separately. For medical
images segmentation, a dual adversarial attention mechanism was proposed [38] which
has included two inputs for two sub networks.

3. Methodology

A segmentation model can be trained with an available aerial image dataset with
thousands of images, but these datasets do not include aerial images with distortions.
Pretrained segmentation models produce erroneous results for a distorted aerial image
because they have not learnt about them. The expansion of the learning space of an existing
segmentation model can be done so that already learned parameters are not changed. In
this work, the main task is to fuse a limb of extra deep CNNs prior to a segmentation model
while keeping the compatibility over the conjunction, so that the whole structure will
be collaboratively acting as a segmentation model. Throughout the work, the possibility
of implementing the proposed method without exceeding the capabilities of software-
based radio hardware was a high concern. The inadequacy of distorted data prevents
the proposed method from using the multiple network training strategies which were
used in [32–35]. Because each participating network must be trained simultaneously, the
accuracy will be a low value for unseen data as the training distorted aerial image set is
insufficient.
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The extra CNN to be fused prior to the pre-trained segmentation model is an approxi-
mator model which has the duty of producing a more applicable input to the segmentation
model. Through the programmatically made conjunction, its output is presented to the
segmentation model. In Section 5, the performance of the proposed approximator model
will be tested. The following are details of the proposed combined method.

• The approximator model and the segmentation model must keep compatibility at
their connecting point. The expected output of the approximator model is given to the
segmentation model.

• Each model is composed of modules. Combinations of different approximators and
different segmentation models are possible.

• The proposed method follows a modular approach, according to the user’s preference,
so different approximators and different segmentation models can be used.

3.1. Dataset

Satellite images of the Dubai dataset [39] provide their volume with segmentation
labels in six classes. The classes are building, land, road, vegetation, water, and unlabeled.
The provided images and segmentation labels are cropped to a size of 320 × 256. The
total number of images is 1404. Even though the dataset provides its own color scheme in
segmentation labels, this work used more intuitive colors for each region type (buildings:
blue, vegetation: green, water: light blue, roads: yellow, unlabeled: gray). Samples from
the Dubai dataset are shown in Figure 2.
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3.2. Distorted Aerial Images

The workflow used in analog image transmitters and receivers is depicted in Figure 3.
An aerial image from a proper source is converted to set of low-frequency tones between
0 Hz and 3 kHz. These tones are frequency-modulated with a radio frequency (RF) carrier.
The characteristics of the RF carrier are determined according to the relevance of the
situation, how the transmission process must be accomplished, and by considering the
possibilities of acquiring a proper license to transmit. For the work conducted in this
paper, a 433 MHz carrier frequency was used, which is a part of the non-licensed industrial,
scientific, and medical (ISM) band. The modulated RF carrier is amplified and transmitted
over the air by using a proper antenna. The image receiver obtains that signal from its
antenna, demodulates it, then de-converts it to obtain the image which was sent.
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To denote a situation where distortions are inevitable, an analog image transmitter
was emulated to capture noisy aerial images. The transmitter and receiver were kept at
a distance with many obstacles between them. The details of an image are converted to
many low-frequency tones to be frequency-modulated with a radio carrier wave at the
transmitter. The narrowband frequency modulation (NBFM) type was used, and the carrier
frequency was 433 MHz. Image i was transmitted through the air, received as image i’.
With this process, 120 images were collected. Figure 4 shows dissimilarities between the
transmitted image and the received image.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 16 
 

To denote a situation where distortions are inevitable, an analog image transmitter 
was emulated to capture noisy aerial images. The transmitter and receiver were kept at a 
distance with many obstacles between them. The details of an image are converted to 
many low-frequency tones to be frequency-modulated with a radio carrier wave at the 
transmitter. The narrowband frequency modulation (NBFM) type was used, and the car-
rier frequency was 433 MHz. Image i was transmitted through the air, received as image 
i’. With this process, 120 images were collected. Figure 4 shows dissimilarities between 
the transmitted image and the received image. 

 
(a) (b) 

Figure 4. The source (transmitted) image (a) and the received image (b). 

3.3. Approximator Model 
For the approximator model, which is a deep CNN, we propose a network which is 

a combination of convolutional blocks and residual blocks. The expectation is to find bet-
ter pixel values which are near appropriate for the distorted regions and to keep the orig-
inal information for a given input. The proposed network has a symmetrical structure 
which is capable of learning with end-to-end mapping from input distorted images to 
non-distorted targets. Unlike the generator of SR-GAN, the proposed structure does not 
have residual connections from start to end. The proposed approximator network is 
shown in Figure 5.  

 
Figure 5. The proposed approximator network. 

A single convolutional layer has a 3 × 3 kernel with 64 feature maps that use the same 
padding and (1, 1) strides. It is followed by a batch normalization operation (momentum 
= 0.5) and leaky rectified linear unit (Lrelu) activation function (α = 0.2). The architecture 

Figure 4. The source (transmitted) image (a) and the received image (b).

3.3. Approximator Model

For the approximator model, which is a deep CNN, we propose a network which is a
combination of convolutional blocks and residual blocks. The expectation is to find better
pixel values which are near appropriate for the distorted regions and to keep the original
information for a given input. The proposed network has a symmetrical structure which is
capable of learning with end-to-end mapping from input distorted images to non-distorted
targets. Unlike the generator of SR-GAN, the proposed structure does not have residual
connections from start to end. The proposed approximator network is shown in Figure 5.
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Figure 5. The proposed approximator network.

A single convolutional layer has a 3 × 3 kernel with 64 feature maps that use the
same padding and (1, 1) strides. It is followed by a batch normalization operation
(momentum = 0.5) and leaky rectified linear unit (Lrelu) activation function (α = 0.2). The
architecture has residual blocks in the middle with skip connections. A single residual block
contains two convolutional layers which increase the depth of the structure and involve
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symmetric skip connections to improve efficiency in training. The skip connections keep
forwarding information to the beginnings of the next blocks to retain spatial information
which helps faster convergence. The final convolutional layer has three filters, followed by
a rectified linear unit (relu) activation function.

3.4. Segmentation Model

From the chosen dataset, 1404 available aerial images and their corresponding segmen-
tation labels were used to train the segmentation model. The dataset provides six different
classes so that the output layer of the segmentation model is made for six categories. In
other words, for each input pixel, the output will be a list with a length of six for each pixel,
which provides the probabilities as to which class that pixel belongs to. As an accuracy
metric, the basic definition of intersection-over-union (IoU) is used. A is the prediction set
and B is the label set.

IoU = (A ∩ B)/(A ∪ B) (1)

Since there are six region types in the chosen dataset, the total number of classes C = 6.
For each class c, the IoUc is defines as:

IoUc =
TPc

TPc + FPc + FNc
(2)

TPc is the number of true positive pixels for a class c ∈ C, and it is divided by the total
number of pixels in the union in the prediction set and label set. From (2), the mean IoU is
defined as:

mIoU =
1
6

6

∑
c=1

IoUc (3)

The Jaccard loss was utilized as a loss function for training. The following is its
definition for prediction set A and label set B.

L(A, B) = 1 − (A ∩ B)/(A ∪ B) (4)

3.5. Combined Loss

Basically, two models are being used for accomplishing better approximation and
segmentation. To decipher the pixel-wise difference per approximation, the mean squared
error (MSE) loss function is used in the approximator model training. For an input distorted
image IInp with a size of W × H, the referencing image is IRef, and its approximation A(IInp)
and loss of the approximator LAE is defined as follows.

LAE =

(
1

WH

W

∑
x=1

H

∑
y=1

(
IRef
x,y − A

(
I Inp

)
x,y

)2
)

(5)

The proposed method is not fixating a specific loss function for the approximating
model or the segmentation model. The method itself is using models as modules. If the
loss of the approximator model is LAM and the loss of the segmentation model is LSM, then
the combined loss LC is defined as:

LC = λa LAM + λs LSM (6)

where λa and λs are constants. Based on training observations with Jaccard loss and MSE,
λa = 1 and λs = 10−2 are the best for training the combined model properly.
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4. Experiments

First, the proposed approximator network is trained end-to-end with distorted aerial
images targeting referencing images to make a proper approximation for the segmentation
model. Mainly it is conducted to see the efficiency of the derived combined loss function.
For that task, we considered only the loss of the approximator model LAM. Distorted and
approximated aerial images can be segmented using a pre-trained U-net to compare the
effects of approximation. Finally, by using the proposed combined learning method, the
proposed approximator network is trained again, and the results are segmented. Figure 6
depicts the combined learning method. The loss of the approximator model is LAM, and the
loss of the segmentation model is LSM. Learning is conducted according to the combined
loss LC. However, the weights of the segmentation model are not updated during the
training process.
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In the training processes, the inputs to the combined model are distorted images, for
the approximator model targeting source images, and for the segmentation model targeting
segmentation labels. We wanted the combined model to predict segmentations for both
distorted and non-distorted images, so from the collected 120 images, 100 of them and their
source images were used in the training of the approximator. The remaining 20 images
were kept for testing. However, for the segmentation model, all 1404 images were used.
Figure 7 shows 5 source images from the remaining 20, which were used to transmit, their
corresponding segmentation labels and received instances.
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5. Results

In each training scenario described in this paper, the segmentation models were trained
with 500 epochs, and approximator models were trained for 1000 epochs with the Adam
optimizer [40], whose parameters were set as follows: the learning rate was 0.001, β1 was
0.9, and β2 was 0.999. Training was completed on an NVIDIA Quadro 6000 RTX GPU
(by NVIDIA corporation in Santa Clara, CA, USA) with the tensorflow framework. For a
pretrained segmentation model, U-net was trained with the 1404 available images. The
mean IoU was the evaluation metric used for the test segmentation results. Usually, the
mean IoU is calculated for a set of images, but the same function can be utilized for a
single image by setting the number of images per set to one. We tested three inference
methods. (1) Segmentation model only—the received distorted image is directly passed to
the segmentation model, (2) approximator trained separately—approximator network is
trained only according to LAM, and (3) the proposed method—approximator was trained
according to both LAM and LSM (Figure 6). The obtained IoU values are shown below for
each result.

All approximations were segmented by using pretrained U-net, and the IoU scores
were obtained and are shown below for each segmentation result for the proposed ap-
proximator model. Based on the observations, the proposed approximator model which
was trained by using the proposed combined learning method presented a low error in
approximation and a higher IoU score for semantic segmentation.

Since this research field is narrow with limited related works, popular additional
segmentation models, Linknet [12] and FPN [29], were tested to prove the modularity of
the proposed combined learning method. These methods can be incoporated with many
backbones such as Resnet18 [34], SeResnet18 [41], DenseNet121 [42], InceptionV3 [23],
MobileNetV2 [43], and EfficientNetB0 [44]. The proposed approximator model was trained
separately and combined with Linknet and FPN. The results are shown in Figures 8–10 for
five testing images and their corresponding segmentation labels (the obtained IoU score
is shown below each result). Table 1 summarizes the effects of the proposed combined
learning method in terms of the mean IoU score. The obvious fact is that the segmentation
models themselves could not have a higher segmentation score for distorted images. We
have reached a point where we are closer to the related literature, which is worked out as
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the approximator trained separately, and it presented an improvement of 5.52% for Unet,
10.0% for Linknet, and a 0.6% reduction in FPN. However, by using the proposed combined
method, we have achieved 65.83% improvement for Unet, 75.36% for Linknet, and 53.6%
for FPN. Table 2 shows a summary of the results for different backbones. Even without the
proposed method, some backbones presented a relatively higher IoU score than that which
was obtained with the separately trained approximator as they are much more tolerant of
images with distortions. In this case, backbones such as DenseNet121 produced a slightly
lower IoU score with a separately trained approximator. However, with the proposed
method, the same backbone presented a higher IoU score.
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Table 1. Effects of the proposed method (mean IoU with standard dev.).

Inference Method U-Net Linknet FPN

Segmentation model only 0.3870 (0.008) 0.3970 (0.012) 0.4615 (0.006)
Approximator trained

separately 0.4084 (0.004) 0.4367 (0.005) 0.4587 (0.007)

Proposed method 0.6418 (0.026) 0.6962 (0.034) 0.7089 (0.027)

Table 2. Summary of results for different backbones (mean IoU with standard dev.).

Segmentation
Model Backbone Segmentation Model

Only
Approximator Trained

Separately Proposed Method

Unet Resnet18 [34] 0.7022 (0.015) 0.6238 (0.002) 0.7749 (0.0004)
SeResnet18 [41] 0.7109 (0.017) 0.7229 (0.020) 0.7873 (0.0011)

DenseNet121 [42] 0.6433 (0.004) 0.5423 (0.001) 0.7139 (0.0015)
InceptionV3 [23] 0.3541 (0.050) 0.4881 (0.008) 0.7065 (0.0022)

MobileNetV2 [43] 0.4024 (0.031) 0.5283 (0.002) 0.7330 (0.0004)
EfficientNetB0 [44] 0.4836 (0.009) 0.5773 (2 × 10−6) 0.7689 (0.0002)

Linknet Resnet18 [34] 0.7133 (0.017) 0.5866 (6 × 10−5) 0.7706 (0.0002)
SeResnet18 [41] 0.6759 (0.009) 0.6426 (0.004) 0.7752 (0.0004)

DenseNet121 [42] 0.6946 (0.013) 0.6109 (0.001) 0.7569 (9 × 10−6)
InceptionV3 [23] 0.4850 (0.008) 0.5034 (0.005) 0.7252 (0.0008)

MobileNetV2 [43] 0.4009 (0.031) 0.4426 (0.018) 0.6289 (0.0156)
EfficientNetB0 [44] 0.6847 (0.011) 0.6132 (0.001) 0.7586 (2 × 10−5)

FPN InceptionV3 [23] 0.7327 (0.023) 0.7086 (0.016) 0.9189 (0.0272)
MobileNetV2 [43] 0.4293 (0.022) 0.5128 (0.004) 0.7357 (0.0003)

To compare different backbones quantitatively, Table 3 summarizes parameter counts
and computational complexity. The number of parameters is calculated for different combi-
nations of the approximator network and segmentation models with different backbones.
The evaluation time per a batch size of 20, which was taken by each combined model
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entity, was measured and included. Larger combined models with backbones, such as
InceptionV3, took a longer time to evaluate. Some combined models with backbones such
as DenseNet121 took a longer amount of time because of the relatively higher internal
mathematical operations which are needed to perform the evaluation.

Table 3. Parameters and computational complexity of combined networks.

Segmentation Model Backbone Parameters in
Combined Form (M)

Evaluation Time
(ms/batch)

Unet Resnet18 14.75 288
SeResnet18 14.84 286

DenseNet121 12.55 306
InceptionV3 30.34 316

MobileNetV2 8.46 288
EfficientNetB0 10.52 283

Linknet Resnet18 11.93 266
SeResnet18 12.02 275

DenseNet121 8.76 294
InceptionV3 26.68 311

MobileNetV2 4.55 290
EfficientNetB0 6.50 305

FPN InceptionV3 25.44 367
MobileNetV2 5.62 342

6. Conclusions

In this paper, we proposed an image segmentation method for distorted aerial images,
which can be used in software-based aerial images reception and analyzing processes. De-
pending on an individual or an organization, methods of communication differ according
to the scale of materials to be transmitted and received. In image communications, a variety
of image receivers have suffered distortions in received contents. With a few hundred
available distorted aerial images, the proposed method gained the advantage of using a
segmentation model which was trained with thousands of aerial images and segmentation
labels. Without a need for training a segmentation model, the added approximator model
has taken the obligation of presenting a proper input to a pre-trained segmentation model.
The proposed method employed a modular approach so that different combinations of
approximator models and segmentation models can be used. Deep learning models which
are yet to be introduced can be used as modules, hence perfectly futureproofing the soft-
ware and hardware compatibility for receivers to use the proposed method. For controller
software with a GUI, users can choose their preferred models from a list. The results
obtained by using the proposed method showed a significant improvement in the semantic
segmentation of distorted aerial images. For future works, we will increase the distorted
aerial image dataset by performing more image transmitting activities and expand the
concept into the general image communications over radio-waves-related applications
and for satellite images from other planets. It is a transformation to receive images from
much larger standards of image transmitting methods and to test different software-based
image receiver hardware for seeking more implementations for the proposed combined
learning method.
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