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Abstract: The widespread application of multimedia technologies such as video surveillance, online
meetings, and drones facilitates the acquisition of a large amount of data that may contain facial
features, posing significant concerns with regard to privacy. Protecting privacy while preserving the
semantic contents of facial images is a challenging but crucial problem. Contemporary techniques
for protecting the privacy of images lack the incorporation of the semantic attributes of faces and
disregard the protection of dataset privacy. In this paper, we propose the Facial Privacy and Semantic
Preservation (FPSP) model that utilizes similar facial feature replacement to achieve identity con-
cealment, while adding semantic evaluation to the loss function to preserve semantic features. The
proposed model is versatile and efficient in different task scenarios, preserving image utility while
concealing privacy. Our experiments on the CelebA dataset demonstrate that the model achieves a
semantic preservation rate of 77% while concealing the identities in facial images in the dataset.

Keywords: semantic preservation; face de-identification; deep learning; autoencoders

1. Introduction

In today’s digital age, the widespread application of multimedia technologies such
as video surveillance, online meetings, and drones has resulted in the need for a large
amount of personal private data. Due to the high potential for misuse of private data
contained in multimedia, the protection of privacy is becoming increasingly important.
Special emphasis should be placed on facial privacy protection in safeguarding personal
privacy in multimedia, as facial features can reveal individuals’ identities, facial semantics,
and other crucial information.

Faces obtained from multimedia can be used for various purposes such as semantic
research and analysis, which is useful for understanding patterns and trends related to
humans. Specifically, the semantics of a face can include lots of useful information such
as emotions, race, and so on. These semantics can be used for a variety of purposes
such as facial recognition or to understand the impact of emotions on behavior. While
this capability offers many benefits in various fields, it also raises concerns about the
potential misuse of such semantics and the infringement of privacy. Taking into account the
preservation of semantics, face de-identification is not equivalent to completely concealing
private information in an image. After de-identification, the disruption of facial features
can negatively impact the utility of the processed image for algorithms that rely on facial
semantics for specific purposes, particularly in modern machine learning. As a result,
ensuring privacy protection while preserving data related to specific requirements of facial-
related algorithms after de-identification becomes crucial. However, specific semantics may
involve privacy, and the boundary between them is vague. Therefore, it is a conundrum in
facial de-identification how to achieve a balance between protecting privacy and retaining
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semantics to ensure processed images in the dataset are available for subsequent machine
learning algorithms.

Several existing works that aim to preserve the utility of facial images while concealing
identity information are surveyed. Reference [1] suggested a technique of a generative
model for face privacy protection with utility maintenance which is based on existing
privacy protection technologies and innovatively adds the loss of service quality to the
loss function, ensuring the generation of de-identified face images with guided quality.
Reference [2] utilized conditional generative adversarial networks to remove the iden-
tifying characteristics of faces and bodies and produce high-quality images and videos.
Reference [3] introduced a user-specific password and an adjustable parameter to control
the direction and degree of identity variation to achieve a personalized and invertible
de-identification method based on the deep generative model. Reference [4] suggested
a technique of image inpainting that combines facial landmarks generated from image
context and facial landmark-conditioned head inpainting for generating realistic head
inpainting in the photo. However, features will be weakened or blurred after processing
by existing methods. There is no de-identification model that can preserve certain aspects
of semantics for images in a dataset that can still be used in subsequent machine learning
tasks (such as facial expressions) [5] so far. Furthermore, the need to develop an effective
face deidentification model cannot be overstated.

To address these challenges, based on previous work, we propose a new de-identification
model on the dataset called Facial Privacy and Semantic Preservation (FPSP) model in
this paper. The proposed generative model that is capable of producing utility-preserving
de-identification images in facial datasets takes advantage of a powerful de-identification
model: the Quality Maintenance-Variational AutoEncoder [1]. To generate deidentifying
images contained in the dataset while maintaining features based on specific generation
goals, for each image, the proposed strategy, on one hand, utilizes corresponding privacy-
concealed images processed by several typical protection methods, and on the other hand,
considering feature preservation, utilizes facial features extracted from other facial images
that are similar to this image in the dataset. This approach ensures that the resulting image
retains features and cannot be distinguished from the dataset because of the introduction
of approximate facial features, achieving a desired tradeoff between utility and privacy. We
transformed face images into corresponding embeddings in the first stage, then classified
images into several clusters based on embeddings. Then, we used four typical protection
methods, blindfold, mosaic, cartoon, and mosaic, to process the images, forming four sets of
images without private information. Along with four de-identified images and a surrogate
image generated in the same cluster as the input, we adjusted the loss function to set up
a matched facial semantic evaluation function based on specific semantics. Finally, for
generated images, we enhanced them by GFP-GAN [6].

The following are the major contributions of this work:

• We first put forward the concept of de-identification of datasets for machine learning
while preserving facial semantics, proposing a novel generative model that disrupts
the distribution of facial features in images as little as possible and validating that the
processed dataset is available for subsequent machine learning.

• We introduce an appropriate approach that merges privacy-concealed faces corre-
sponding to original images and similar facial feature images in the dataset, serving
the purpose of enhancing the anonymity of individual identities and the usability of
image features.

• We selected facial expression recognition as the machine learning task, utilizing the
CelebA dataset [7]. Our model outperforms traditional de-identification and AMT-
GAN [8], generating images with 5% more utility. It also maintains facial expression
recognition rate, evaluated using RTCNN [9], DACL [10], and DAN [11].

The rest of the article is distributed as follows. In Section 2, we review previous work
related to face de-identification. In Section 3, we present some preliminary work related to
our research. In Section 4, we describe detailed information about our proposed model, the
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FPSP model. In Section 5, quantitative evaluation experiments were performed to verify
the performance of our proposed method, and the results are presented to demonstrate its
effectiveness. In Section 6, the proposed model’s capability is discussed along with topics
that can be further researched. In Section 7, we give a brief conclusion of our research.

2. Related Work

Over the past few years, there has been a significant amount of research [12–17]
conducted on safeguarding the privacy of facial images. Previous methods such as image
blurring, color block masking [18], and pixelation [19,20] are simple but lack a formal
privacy model. Although applicable to all kinds of images, the privacy of people in
the image is not always guaranteed. Consequently, these methods are naive and fail to
effectively preserve data utility and privacy protection. In the forthcoming sections, several
novel and model techniques, which have shown promising results in protecting the privacy
of individuals in images, will be introduced.

2.1. K-Same

The algorithm family of k-same [21–25] that adopts the average face of similar faces
in the whole image set to represent the resulting face provides a sequence of techniques
with theoretical anonymity guarantees. In this regard, various k-same algorithms have
been developed to address this challenge. Sweeney [26] was the first to introduce the
k-anonymity idea and successfully implemented it in a relational database. The idea of
k-anonymity subsequently gave rise to a set of k-same algorithms. Newton et al. [27]
suggested a k-same algorithm that preserves the visual features of all images in a cluster by
working directly in the pixel space. To deal with the problem that generated de-identified
images suffer from ghosting effects, the k-Same-Model [22] was offered. As proposed
by Gross et al., the k-Same-Model adopts the idea of Active Appearance Models [28],
which achieves better alignment between images and synchronized images appear more
realistic. Proposed by Sun et al., k-Diff-furthest [29] utilized a novel algorithm to address
the issue that the generated de-identified facial image has minor differences. Reference [30]
proposed k-Same-furthest-FST. It completes the goal of identity protection by morphing
the privacy-free face region and original background. What is more, this method has been
proven to deliver substantial safeguarding of facial privacy within the context of the FERET
database [31]. Meden et al. [32] proposed the k-Same-Net scheme. By combining the
principle of anonymity with GNN architectures, this approach achieves impressive visual
outcomes. Reference [33] explores a novel model based on AAM. It divides the face space
into two subspaces and uses the appropriate k-anonymity technique to process utility to
achieve face de-identification. Although facial privacy is, to some extent, well protected
by k-anonymity family algorithms, these algorithms come with substantial limitations, as
each individual can only be represented once in the dataset. This may cause a decrease in
identity diversity in the whole dataset.

2.2. GAN

Currently, generative models that synthesize synthetic but natural-looking images
provide novel ideas for de-identification. Generative Adversarial Networks [34] (GANs) are
the most relatively well-known and commonly used model among all generative models
and have paved a novel way for research on face de-identification [35–38]. The components
of it are two competing deep models: a generative model and a second discriminator
network. Qi et al. [39] put forward a novel Loss-Sensitive Generative Adversarial Network
(LS-GAN). It combines the set of mathematical principles and computational techniques,
which involve constraining the Lipschitz constant and measuring the rate of change of the
function or model with the utilization of the idea of game theory to promote the generator
to generate the most realistic samples. The authors of reference [40] introduced a novel
model based on the architecture of a Variational Generative Adversarial Network (VGAN),
combining the Variational Autoencoder (VAE) [41] and CGAN [42]. This approach is



Appl. Sci. 2023, 13, 6799 4 of 20

capable of extracting image representations that are specifically disentangled from identity
information. CGAN-based PPGAN was proposed by Wu et al. [43], which utilized the
discriminator in the pre-trained model to output a structurally similar image, using the
extracted feature space related to identity privacy. To boost the effectiveness of concealing
personal information, Li et al. [44] proposed a novel GAN called SF-GAN. This method
combines both a geometry synthesizer and an appearance synthesizer to construct various
external mechanisms, achieving the goal of facial-related feature concealing. An au-to-GAN-
based identity protection method, which lowers the data dimensionality for the database
utilized to facilitate machine learning operations, was proposed in [45]. It generates
deidentified data through confrontation. Reference [46] put forward FPGAN, an end-to-
end method. It uses an improved convolutional neural network that involves both an
encoder and a decoder pathway and two discriminators, and its loss function is devised
depending on the requirement of the specific scenario of service. GAN-based methods lack
the powerful grasping ability for facial features; thus, each of these methods has a common
drawback in that the details of the generated facial images are not perfect.

2.3. Differential Privacy

Various types of privacy-preserving techniques are utilized in machine learning op-
erations, with differential privacy being the most renowned approach. Dwork [47] et al.
proposed it in 2006. Its background is based on the assumption that attackers have access
to all non-target information but cannot discern whether the data of a specific individual
are included in the dataset. This approach offers a methodical and numerically measured
means of evaluating the potential probability of disclosing private information. The concept
of Differential Privacy (DP) [48] is commonly employed in numerous identity-concealing
technologies [49] for facial images. In order to address the issue of inconsistent noise and
uniform errors in multimedia datasets, a solution known as the D-noise-mean algorithm
is proposed in reference [50]. This algorithm utilizes a combination of the KD-tree [51]
and multi-party secure computation techniques [52], and replaces the median with an
approximate mean of noise. Reference [53] proposed a new model called PEEP. In order to
safeguard against privacy attacks, such as model memorization attacks [54] or membership
inference [55], the model employs local differential privacy techniques. This involves
adding noise to the characteristics of the facial distribution extracted from the original
images, thereby protecting against the unauthorized disclosure of personal information.
The perturbed data are stored on third-party servers. In order to address privacy concerns
on end devices while maintaining high data utility for analytical tasks such as inversion
attacks [56], reference [57] presents a novel scheme in the field of differential privacy.
This approach employs an efficient face representation technique within the Bloom filter
space. In order to overcome the issue of imbalanced data distribution within a dataset,
reference [58] proposes a method that partitions the data into two levels based on the
quantity of data points in each partitioned grid. This approach employs an adaptive par-
titioning strategy that meets the requirements of identity shielding. DP-GAN, proposed
in reference [59], is a framework for generating privacy-preserving facial images that is
specifically designed for semantic-rich data. The approach leverages a deep generative
model and trains it in a differentially private manner using original data. However, despite
its effectiveness in generating privacy-preserving facial images, this approach is not suitable
for some specific tasks related to privacy protection. A new model named PPSGAN is
proposed in reference [60] to address the issue related to privacy preservation. The model
utilizes the self-attention mechanism to add noise to the features that are independent
of privacy preservation. By doing this, the generated images can still match the original
label. This approach aims to generate facial images that preserve privacy while maintaining
the image’s semantic meaning. While differential privacy does de-identify privacy from
identification, privacy protection and data utility are coupled due to the need to add noise
to protect privacy, i.e., increasing noise to enhance privacy protection will directly result in
a decrease in data utility.
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In general, while the aforementioned techniques have demonstrated notable advance-
ments, given the particularity of the protection for specific tasks in machine learning
datasets such as facial expression recognition, semantic segmentation, and so on, these
generally designed methods are not applicable. Hence, the design of customized privacy-
protection and utility-maintaining techniques for specific datasets holds significant value.

3. Preliminary
3.1. Affine Transformation

In order to obtain a different face that still preserves original features, our proposed
method utilizes affine transformation [61,62], while maintaining both affine subspace di-
mensions and the ratios of the lengths of parallel line segments. As a result, units of parallel
affine subspaces stay parallel after affine transformation. Affine transformation consists of
translation, scaling, homothety, similarity, reflection, rotation, shear mapping, and com-
binations of them in any combination and sequence. Generally written in homogeneous
coordinates, the affine transformation is as shown in Equation (1)(

a2
a2

)
= A ·

(
a1
a1

)
+ B (1)

where (a1, b1) represents the value of pixel intensity in an original image and (a2, b2) is the
new coordinate after the transformation.

A =

(
cosθ −sinθ
sinθ cosθ

)
, B =

(
0
0

)
(2)

Matrix A depicted in Equation (2) represents the pure rotation
Now, given the old coordinates (x, y), the new coordinates (x′, y′) for the image are

obtained considering the initial angle θ and the angle of rotation θ′. x and y are depicted in
Equation (3)

x = rcosθ, y = rsinθ (3)

As x′ = rcos(θ + θ′) and y′ = rsin(θ + θ′), x′ and y′ are presented in Equation (4)

x′ = rcosθcosθ′ − rsinθsinθ′, y′ = rsinθcosθ′ − rcosθsinθ′. (4)

So, the conversion between (x′, y′) and (x, y) can be described by Equation (5).

x′ = xcosθ′ − ysinθ′, y′ = ycosθ′ + xsinθ′ (5)

3.2. Image Enhancement

As the pictures generated are not always visually good, it is necessary to enhance the
image texture. To recover high-quality faces from the generated images, GFP-GAN [6] is
adopted in our proposed model. The architecture of the whole model can be divided into
two parts. One of the parts is a module for removing image degradation, which is known
as U-net, and the second part is a prior in the form of a facial generative adversary network
that has been trained in advance. Two networks are connected by a mapping of latent
embeddings and a series of several layers called Channel-Split Spatial Feature Transform
(CS-SFT) layers. For the original input image, U-net retrieves useful features, forming two
features: Flatent and Fspatial . The formulation is as follows:

Flatent, Fspacial = U − Net(x) (6)

After passing through multiple layers of the network, Flatent is mapped to intermediate
latent codes W. The characteristics are recorded in the pre-trained StyleGAN2 model [63]
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and those stored features are utilized to generate convolutional features, denoted by FGAN .
Equation (7) shows the above process.

W = MLP(Flatent), FGAN = StyleGAN(W) (7)

To enhance the preservation of accuracy, it employs a Spatial Feature Transform
(SFT) [64] to modify the GAN features FGAN by transforming the input spatial features
Fspatial . More specifically, the model utilizes a set of convolutional layers to generate the
parameters (m, n) for an affine transformation from the input features Fspatial , as shown in
Equation (8)

m, n = Conv(Fspatial) (8)

After that, the FGAN feature is manipulated by changing its scale and position based
on the parameters obtained in the previous step, as represented by Equation (9)

Foutput = SFT(FGAN |m, n) (9)

It takes advantage of input features Fspatial to modify certain GAN features in terms
of space while keeping the remaining features unchanged. Finally, the restored face y is
generated with the channel-split SFT layers implemented at every resolution level. The
process is as shown in Equation (10).

y = CS− SFT(FGAN |m, n) (10)

4. Method

In this paper, we propose a novel model for preserving facial semantics while con-
cealing identity. The overall process can be divided into multiple stages and appropriate
methods are used at each stage. For the rest of this section, we provide a brief description of
the FPSP model and its overall structure in Section 4.1. Section 4.2 elaborates on the specific
details used and how they work together to achieve the research goals. In Section 4.3, we
describe the method execution process, including the data processing and application of
algorithms to generate utility-preserved and privacy-free images.

4.1. System Model

When it comes to retaining facial semantics, concealing the identity of individuals is
complicated work. Previous approaches do not take the possible loss of the utility of images
into consideration in the process of removing identical information. As a result, for specific
tasks, the quality of service will be far from expected. To tackle the trade-off between
privacy and semantics, we propose the Facial Privacy and Semantic Preservation (FPSP)
model with a delicate architecture design and loss evaluating facial semantics. Figure 1
showcases the general architecture of the model.

Firstly, to all images in the dataset, we cropped faces from images and generated a
128-dimensional face feature embedding for each face through the network. Then, we
classified images into 15 clusters according to the face embedding. In the next stage, in
each cluster, we generated a surrogate face for every image and applied four protection
methods to every face image to construct de-identified datasets. Following that, we input
these datasets into a generative model guided by a semantic-related quality evaluation. In
the training process, the semantics of generated images were evaluated to calculate the loss,
which is a part of the loss function. In maintaining service quality, backpropagation is a
significant part that helps update the output continuously.
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Figure 1. The overall structure of the Facial Privacy and Semantic Preservation (FPSP) model.

4.2. Architecture and Working
4.2.1. Face Extraction and Generation of Corresponding Vector

Taking a set of N different sample images, to reduce the influence of background infor-
mation and effectively improve the reliability of facial features, the pre-trained
MTCNN [65] model was used. It carries out bounding box regression, probability predic-
tion of a real face, and localization of facial landmarks (such as mouths, eyes, and noses)
at the same time by applying several networks in a cascade. By detecting the geometric
structure of the image, the boundary rectangle of the detected face was returned. According
to the detected five facial points, the input face image was cropped from the rectangle. Face
alignment, transformation, and normalization [66], which depend on the position of the
located key landmark, were performed on cropped faces. After that, faces were further
resized to 128× 128× 3 pixels, which is inspired by VQ-VAE [67], in which the chosen size
speeds up training and sampling and captures the global structure. A set of N identified
images X = {x1, x2, . . . , xn} is produced. To extract 128-dimensional facial embedding from
each face in X, FaceNet [68], which utilizes deep convolutional networks [69,70] (DNNs)
to map face images to a compact Euclidean space, was applied, generating facial features
V = {v1, v2, . . . , vn}.

4.2.2. Facial Clustering in Dataset

The principal goal of this stage is to divide V into 15 different categories such that the
features in one group are very similar, while the difference among different groups is quite
large. Firstly, we randomly selected 15 face features Vµ = {vµ1 , vµ2 , . . . , vµn} as centroids.
Then, to assign other face features to the closest cluster, we calculated the square errors J
between every element in V and every centroid. Facial features in the same cluster are more
homogeneous when the value of J is lower. Equation (11) defines the objective function J.

J =
N

∑
i=1

15

∑
k=1

ωik
∥∥vi − vµk

∥∥2 (11)

where ωik is set to 0 when vi is not in one cluster or 1 when vi is in one cluster.



Appl. Sci. 2023, 13, 6799 8 of 20

By controlling the value of ωik, we obtained the lowest square error based on the
random centroids. Furthermore, the belonging of different clusters of face embedding
is defined by ωik. The next step is to update the centroid in each cluster by computing
the average value among all face embeddings in the cluster. To obtain the global lowest
variation within clusters, we kept iterating the above steps until there was no change to the
centroids. The whole faces were then split into 15 clusters.

4.2.3. Surrogate Face Generation

The third stage is to generate synthetic surrogate face images that achieve anonymity
in the cluster, i.e., any surrogate face image cannot be linked to the input picture among
images in the original cluster in an unambiguous manner on the premise of maintaining
the facial features. Given the face image xi and its corresponding centroid xµ(xi, xµ ∈ X),
to obtain the surrogate face image fxi , we first utilized Dlib [71] to detect key facial feature
landmarks on both xi and xµ, producing two key point sets Sm and Sn, correspondingly.
For every key coordinate (e.g., (ai, bi)) in Sm and the corresponding pixel Sn (e.g., (aj, bj)),
calculating the location of the new key point (e.g., (am, bm)) by Equation (12), we obtained
a set of points Si, which are the key facial feature landmarks of the surrogate face image fi.

am = (1− k)ai + kaj, bm = (1− k)bi + kbj (12)

where k is used to assign the proportional weight of the image coordinates and the corre-
sponding centroid image coordinate. The value of k ranges from 0 to 1.

Then, we performed Delaunay Triangulation for all the sets Sm,Sn,Si, producing a one-
to-one correspondence between triangles in the images xi, xµ, and fi. Selecting each triangle
T from the image xi and its corresponding triangle Y in the image fi, we calculated the affine
transform that converts the triangle T to Y. Similarly, we calculated the transformation
matrix of the corresponding triangle W in the image xµ to the triangle Y. Applying the
transformations above to images xi and xµ correspondingly, we obtained warped images
x′i and x′µ. Then, fi was calculated by using the equation below with warped images.

fi = (1− t)x′i + tx′µ (13)

where t is used to assign the proportional weight and it ranges from 0 to 1.

4.2.4. Learning Stage

Inspired by QM-VAE [1], a service-guided generative model that takes several privacy-
removed facial images to generate one high-quality image, the framework of this part
contains three different parts: the encoder, the decoder, and the embedding space e. Con-
catenated by the surrogate image and corresponding de-identified images generated by
four traditional privacy protection methods (covering the eyes, blurring the faces, adding
Laplace noise, and transforming the image into cartoon form), the input i is fed into the en-
coder, producing ze(i). Instead of directly transporting ze(i) to be finished like an ordinary
autoencoder, ze(i) is transformed into the new embedding vector ei by searching for the
closest embedding. Equation (14) shows the one-hot defined form of posterior categorical
distribution q(z|i) probabilities.

q(z = k|i) =

1 i f k = argmin
j
||ze(i)− eJ ||2

0 other
(14)

In the process of achieving the discretization process, we utilize a mapping described
in Equation (15) to transform and identify the closest element of ze(i), which is subsequently
passed to the decoder.

zq(i) = ek, where k = argmin
j
||ze(i)− eJ ||2 (15)
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Ultimately, zq(i) is passed through the decoder and becomes the output, ze(i). Our
model utilizes gradients to facilitate the updating of values in Equation (15), which impacts
the encoder’s discretization and subsequently affects the final output. As the encoder and
decoder share the same D-dimensional space, gradients also help adjust the encoder’s
output to decrease the reconstruction loss.

The complete loss function consists of three components. The first part Lq represents
the specific machine learning task service quality loss. In this work, we focused on facial
semantics (facial expression). In each iteration of training, the expression of generated
images is recorded. To make sure the generated expression is the same as the original
picture’s label, the task-related quality loss, Lq, is determined using Equation (16). If the
output’s facial expression recognition result matches the label, it indicates that features
related to facial semantics are maintained and Lq is set to 0. Alternatively, if they do not
match, Lq is set to 1.

Lq =

{
0 i f E(i) = E(z(i))
1 i f E(i) 6= E(z(i))

(16)

In the next part, Lm1 quantifies the resemblance between the output images and
the original images. The initial component of the function delineates the loss of image
reconstruction between the original images and the corresponding identity-concealed
images generated by the proposed model. The intention of the second component is to
enhance the vector quantization embedding space by continuously updating the dictionary
throughout the model training process. Its function is to slow down the update rate of the
encoder, keeping the generated output close to the embedding vector.

Lm1 = logp(i|zq(i)) + ||sg[ze(i)]− e||22 + βm1 ||ze(i)− sg[e]||22 (17)

where sg represents the stop gradient, stopping the gradient flow from flowing through
specific parts of the network, and is defined as a constant value in forward computing of
the whole model. Changes in the parameter βm1 ranging from 0.1 to 2.0 do not significantly
affect the outcome.

Similar to Lm1 , the third part Lm2 shown in Equation (18) below calculates the degree
of resemblance of faces contained in two images. The difference is that Lm2 is used to
describe the reconstruction loss between output images and the corresponding surrogate
facial images generated from the same cluster.

Lm2 = logp(i| f (i)) + ||sg[ f (i)]− e||22 + βm2 || f (i)− sg[e]||22 (18)

where βm2 ranges from 0.1 to 2.0.
The whole loss function L is defined below:

L = αLq + (1− α)((1− β)Lm1 + βLm2) (19)

where α is utilized to determine the relative weight of the semantic-related loss and the
image fusion loss in the overall loss function and β is used to allocate a weight that
corresponds to the relative importance of the original images and the surrogate images.
The values of both α and β range from 0 to 1. In our experiment, we adjusted the values
of both α and β to analyze the corresponding quality of service. The specific results are
presented in Section 5.

4.3. Method Execution Process

Given the concept of concealing the privacy contained in the image and subsequently
restoring it with preserved utility, we drew Figure 2 to illustrate the whole process of
our approach.
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Figure 2. The workflow of the FPSP model.

In the beginning, we carry out the process of identification of facial regions on the origi-
nal image in the dataset to crop out the face area. Then, the cropped face is transformed into
facial embedding and classified into one cluster. Furthermore, we utilize its corresponding
centroid to synthesize surrogate images. The surrogate face and four de-identified cropped
faces modified by four face methods (covering the eyes, blurring the face, adding Laplace
noise, and transforming into a cartoon face) are fed into the model to reconstruct the image
that conceals identity while preserving utility.

The semantic-related estimator takes advantage of the difference in attributes within
the serving scene before and after processing to quantify the service quality loss of images.
It adjusts the manner in which the whole model is trained with the intention of the model
generating facial images that fulfil the goal of privacy removal and utility preservation,
supplying reliable and secure facial images that are suitable for use in the facial dataset
that is related to specific machine-learning tasks.

5. Experimentation and Results
5.1. Experimental Setup

The proposed method for identity concealing in the dataset was executed on the
CelebA [7] dataset. We chose part of the original dataset, forming a dataset containing
1000 female images, which were divided into six different categories based on the expres-
sion of the subject. The expression distribution of facial images in the dataset is shown in
Figure 3. In the training process, the first 800 images were employed, leaving the remaining
200 for testing. The generated images of our proposed approach were then applied to three
existing recognition algorithms, namely RCNN [9], DACL [10], and DAN [11], to evaluate
the utility of generated dataset in the recognition of facial expressions. The validation
results of these methods are presented in Section 5.4 of the paper.

Figure 3. The expression distribution of the dataset.



Appl. Sci. 2023, 13, 6799 11 of 20

The FPSP model was implemented based on the TensorFlow and Keras frameworks
and trained on an RTX 3080 GPU, significantly reducing the training time compared to
traditional training. According to paper [67], the βm1 and βm2 parameters were set to 0.25,
as when the values are in the range of 0.1 to 2.0, the results are not significantly different. By
using the ADAM optimizer with a learning [72] rate of 1× 10−3, the model can effectively
update the weights of the neural network during training, improving its accuracy. Other
parameters included in the model are listed in Table 1.

Table 1. Model parameters and settings.

Parameter
Name Brief Description Range

of Value

k Allocate the relative weight to be given to the image coordinates and
their corresponding centroid image coordinate [0, 1]

t Control the proportional weight of the image region and the
corresponding centroid image region to synthesize a surrogate image [0, 1]

βm1

Commitment loss in Łm1 , ensuring that the encoder is dedicated to
the embedding [0.1, 2]

βm2

Commitment loss in Łm2 , making sure the encoder commits to
the embedding [0.1, 2]

α
Determine the appropriate balance between the weight assigned to the

loss of service and the loss of image fusion [0, 1]

β Control the proportional weight of original images and surrogate images [0, 1]

5.2. Privacy Preservation Evaluation

We established a dataset consisting of original, surrogate, and de-identified images
for training the model. By including a surrogate and four de-identified images in the
dataset, we aimed to improve the model’s ability to conceal facial privacy. Considering the
protection performance of the model, in this training process, we set α in Equation (19) to 0.

During training, we experimented with different values of β to minimize the loss, after
which we checked the maintenance quality loss to choose the most suitable percentage of β.
The graph depicted in Figure 4 illustrates the change in the loss rate with different values
of β.

Figure 4. The changing trend of the loss rate when α = 0.



Appl. Sci. 2023, 13, 6799 12 of 20

As Figure 4 depicts, when β is about 0.2, the effort of the model is much better, and
after 50 rounds, the loss rate is reduced to 0.09 which is less than other proportions. This
represented a significant reduction of at least 2.4% compared to the initial loss rate.

To verify the effect of privacy preservation of our method, we conducted re-identification
experiments that evaluate the risk of successfully identifying the subject contained in the
input dataset utilizing de-identified facial images in the generated dataset. Drawing on the
k-anonymity theory, we consider that when the generated image I is more similar to other
original images in the same cluster compared to its original image, I meets the criteria.

Specifically, if the cosine similarity between I and its corresponding original image is
larger than the smallest value of similarity calculated between I and other authentic images
in the same cluster, the privacy of the image is protected. Let Nprotected be the number
of privacy-protected images generated and Ntotal represent the total number of images
in the dataset. The privacy protection rate, denoted as “RP”, is calculated according to
Equation (20). As the proportion of the surrogate image increases, generated images have
a much greater chance of not being identified from the original cluster. We measured the
percentage rate for privacy-preserved images, respectively.

RP =
Nprotected

Ntotal
(20)

As indicated in Figure 5, overall, there was a significant upward trend, which indicates
that the effect of the model on image privacy protection improves. The highest percentage
is up to 84% when the proportion of surrogate images is 80%. It can be concluded that the
identity of images is obviously concealed after our method, achieving privacy protection.

Figure 5. The percentage of privacy-protected images.

To preserve the privacy of facial images in the dataset, we utilized models with
various values of β. Initially, we employed the model with a relatively small value of β for
protection. If the protection is successful, the resulting images are directly incorporated
into the output set. In cases where privacy has not been adequately preserved, the β value
is increased to prompt the model to regenerate the output and reassess the outcome. The
ratios of the cumulative number of protected images to the total number of images at
different values of β are depicted in Table 2.

As shown in Table 2, in general, the privacy of the majority of images is effectively
protected when employing a relatively small value of β. In the last few images, as there
are no facial features of the original face involved in fusion during the synthetic process
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(i.e., they are completely fake images), the probability of being recognized as any face in
the cluster is equal. Thus, they were not included in the statistics.

Table 2. The ratio of the cumulative number of privacy-protected images in different models.

0.2 0.4 0.5 0.6 0.8 1

Ratio of protected images 58.8% 79.2% 87.4% 92.0% 96.2% 98.5%

In Figure 6, the top row presents the original pictures, the middle row or rows exhibit
the model-generated images, and the last row showcases the images that have been identi-
fied as belonging to the same person as the corresponding original picture. Notably, the
six images on the left side of the figure demonstrate successful privacy protection when
the parameter β is set to 0.2. In contrast, the three images on the right side present cases
where the identity is not concealed in the second row when β takes the same value, while
the third row reveals the successful concealment of identity when the value of β increases,
i.e., the proportion of surrogate images is increased.

Figure 6. Demonstration of de-identified images.

5.3. Images’ Utility Maintenance

Aiming to improve the quality of generated images of the model, i.e., to obtain the
minimum loss rate to image quality, we adjusted the key parameter α, which allocates the
proportion of the quality loss, while keeping β fixed at 0.2, and checked the model effect of
quality maintenance to each value of α, respectively. The downward trend of quality loss is
presented in Figure 7.

Figure 7. The changing trend of expression loss rate.
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As the figure above illustrates, with a value of 0.4 of α, the model yielded the best
output. After 50 epochs, the loss was reduced to approximately 0.23, which was the
lowest among other types of α percent. This achieved a semantic retention rate of 77%,
demonstrating the efficacy of the proposed approach in preserving the semantics of images
while de-identifying. In general, using an α value of 0.4 for the output is more beneficial
in terms of training iterations as compared to using a simple image fusion approach.
This suggests that within the overall loss function, semantic loss plays a crucial role in
maintaining the quality of the generated images.

Our method contains expression loss, which plays an important role in preserving
semantics, outperforming other face privacy protection models that do not take the quality
of facial semantics (facial expression) into consideration such as AMT-GAN [8]. While
AMT-GAN had a loss rate of 0.37, the proposed model only lost 0.23, demonstrating a
better performance overall. The results are presented in Figure 8, further supporting the
effectiveness of the FPSP model.

Figure 8. Representation of output images generated by the FPSP model and AMT-GAN.

We performed the following analyses under an α value of 0.4. Let Nunchanged be
the number of processed images with unchanged expression labels and Ncategory be the
total number of images in the dataset. The loss rate of six expressions that underwent
processing using different methods is computed using Equation (21). The results of this
analysis are presented in Table 3, demonstrating their respective impacts on the loss rate of
the expressions.

Loss rate =
Nunchanged

Ncategory
(21)

Table 3. Facial expression loss rate under different methods.

Loss Rate Angry Fear Happy Sad Surprise Neutral

Our Model 0.235 0.342 0.136 0.273 0.429 0.231
Blindfold 0.441 0.737 0.029 0.669 0.893 0.814
Cartoon 0.794 0.513 0.489 0.360 0.785 0.459
Laplace 0.911 0.895 0.665 0.756 0.964 0.702
Mosaic 0.294 0.302 0.299 0.361 0.321 0.169

AMTGAN 0.625 0.764 0.120 0.635 0.740 0.536

Upon analysis of the results presented in Table 3, it becomes apparent that the proposed
model was able to maintain the service quality of each expression to a certain degree,
highlighting that our model is a practical approach that can be applied to the dataset for
protecting privacy while preserving utility. The slightly elevated rate of the fear group and
surprise group was due to the limited size of the sample.

We computed the disparity between the values of the facial expression recognition out-
comes for the original images and those processed by six different methods. Subsequently,
we generated an error bar plot to represent the results, which is presented in Figure 9. As
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depicted in the diagram, our model demonstrates remarkable proficiency in maintaining
efficacy across a wide range of facial expression recognition results, showing a higher level
of consistency and an exceptional ability to preserve efficacy when faced with a diverse set
of outcomes.

Figure 9. The error bar diagrams of output images processed by different methods.

5.4. Evaluation of the De-Identified Facial Image Dataset for Machine Learning

In the problem of the utility of generated processed dataset, our method aims to retain
information related to quality, maintain the similarity between the original image and the
processed image as much as possible, and erase only privacy-related information, which
can ultimately benefit the effectiveness of the image.

As an illustration of the effectiveness of our method, we used facial expression recog-
nition as a service and employed three different de-identification methods: direct output
images without post-processing (DOP), images with post-processing (GFP) using the GFP-
GAN technique [6] for facial enhancement, and images with relabels (RL) to validate the
usability of the proposed model. To evaluate the performance of our method, we utilized
three state-of-the-art facial expression algorithms, RTCNN [9], DACL [10], and DAN [11],
and selected the best quality-preserving model that was trained for 50 rounds with α = 0.4
for analysis.

For the dataset processed using DOP and GFP, we employed the aforementioned
facial expression recognition algorithms to detect and compare the results with the original
dataset labels. If they matched, the semantics of the face were considered preserved. The
number of images with matching labels was compared to the total number of images
to obtain a value for utility preservation. For RL, we first performed facial expression
recognition on the processed dataset to obtain new labels. We then used the new labels and
processed images as inputs to retrain the facial expression recognition algorithm, followed
by testing the testing set for facial expression recognition. The number of images with
matching labels of the testing set was then calculated and compared to obtain the value.
Let Nmatched be the number of generated images with matching labels and Ntotal represent
the total number of images in the dataset. The preserved utility PU is calculated according
to Equation (22). The results are shown in Table 4.

PU =
Nmatched

Ntotal
(22)
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Table 4. Usability of the processed dataset under different de-identification methods.

DOP DOP + RL DOP + GFP DOP + GFP + RL Original

RTCNN 0.43 0.40 0.48 0.45 0.53
DACL 0.57 0.58 0.59 0.59 0.59
DAN 0.40 0.59 0.47 0.49 0.61

The data presented in Table 4 reveal that the accuracy rates for most of the above
methods utilizing the generated dataset are similar to the accuracy rate achieved on the
original dataset. This indicates that our method is successful in protecting the utility of
images with a concealed identity.

Figure 10 displays a demonstration of our model on street pictures captured by un-
manned aerial vehicles that include lots of faces of pedestrians. This showcases the complete
process of maintaining utility while prioritizing privacy protection, as implemented in our
model, providing a clear representation of our model’s capability of utility maintenance
and privacy protection.

Figure 10. A demo of the FPSP model.

6. Discussion

As the experimental data show above, the model we propose is capable of obscuring
identities in the dataset and preserving the semantic information lost during protection,
which is achieved by the utilization of appropriate approaches used at every stage. Addi-
tionally, the paper introduces the concept of de-identification in machine learning datasets,
which includes preserving task-related features. The experiments validate that our model
can quantitatively process a dataset that is available for subsequent machine learning. Our
approach is the first to provide a general solution for identity concealing in facial datasets
used in modern machine learning, offering great flexibility and efficiency.

We provide the results of the quantitative experiments that assess the efficacy of the
model in concealing identity information in the dataset used for machine learning tasks.
However, as the proportion of surrogate faces increases, the quality of the generated images
is somewhat degraded, leading to the perception of falseness when visually inspected.
In future research, we aim to address this limitation by incorporating advanced network
architectures and collecting a richer and more diverse dataset of surrogate faces, reducing
the sense of falseness and providing more accurate and high-quality results in visual.

7. Conclusions

In this paper, we introduce the concept of de-identification of datasets for machine
learning while preserving service-related features, and present a novel framework named
the FPSP model that aims to simultaneously maintain privacy and semantic fidelity. To
achieve this goal, we leverage surrogate images generated by the centroid of the facial
cluster in the input and adjust the semantic-related loss in the loss function. The efficiency
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of the model in preserving facial semantics has been demonstrated to be as high as 77%.
Extensive experiments show that when applied to facial expression recognition, the per-
formance of the identity concealed dataset processed by our model is comparable to the
original recognition rate. Our future work will explore the application of our approach to
more complex and less constrained machine learning datasets, as well as how to apply our
model to more intricate scenarios while achieving relatively good preservation of utility
and protection of privacy.
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