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Abstract: The switching system model of a closed-loop supply chain with Markov jump parameters
is established. The system is modeled as a switching system with Markov jump parameters, taking
into account the uncertainties of the process and the inventory decay factors. The Markov switching
idea is applied to the controller design and performance analysis of the system to effectively suppress
the bullwhip effect while ensuring the stability of the closed-loop supply chain system. Simulation
examples are presented to illustrate the validity of the results obtained.
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1. Introduction

With the development of productivity and the growing awareness of resource use and
environmental protection, research on closed-loop supply chains has attracted more and
more attention [1–4]. In recent years, research on manufacturing and remanufacturing
systems has attracted extensive attention. Industry practice shows that remanufacturing in
closed-loop supply chains not only helps to reduce resource consumption but also helps to
save costs and improve competitive advantages [5]. Because remanufacturing is profitable
and environmentally efficient, many enterprises have established their own recycling and
remanufacturing systems and voluntarily carried out remanufacturing activities, such as
IBM, HP, BMW, Ford, Apple, Kodak, Xerox, Caterpillar, etc. [6,7]. Therefore, consideration
of the remanufacturing link in closed-loop supply chain systems [8,9] is being paid more
attention. Ref. [10] considers the supply chain model with a product remanufacturing link,
Ref. [11] investigates the problem of effective channel design for closed-loop supply chain
systems, and Ref. [12] determines productivity, remanufacturing rates, and disposal rates
through a cost optimization approach. Ref. [13] applied the Pontryagin maximum value
principle [14] and studied a linear model for optimizing production, remanufacturing,
and abandonment strategies. In addition, a number of scholars have started to focus on
closed-loop supply chain production–inventory control systems: Ref. [15] used optimal
control ideas to study the dynamic capacity planning problem of closed-loop supply chain
remanufacturing systems; Ref. [16] applied the ideas of game theory to the network
equilibrium problem of closed-loop supply chain systems; and Ref. [17,18] applied fuzzy
logic ideas to study the product recovery strategy of closed-loop supply chains.

It is worth noting that the above-mentioned literature mainly focuses on the static
environment, while it is obvious that the static model is not sufficient to portray the dynamic
characteristics of closed-loop supply chain systems such as demand fluctuation, production
lead time, sales forecast, etc. Therefore, supply chain analysis based on a dynamic model
has achieved some results [19–22], among which, modeling the closed-loop supply chain
as a kind of dynamic behavior of switching system has attracted great attention from
many scholars [23,24], and it is generally believed that a switching system with Markov
jump parameters is an appropriate model to describe the closed-loop supply chain system.
The robust production and maintenance scheduling problem is described in [19] as a
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minimax statistical control problem. The machine state process is modeled as a finite-state
Markov chain whose generator depends on the rate of aging, productivity, and maintenance,
modeling the demand rate as an unknown interference process. Ref. [25] studies the control
problem of a closed-loop supply chain switching system with Markov jump parameters.
Aiming at the uncertainty problem in the process of remanufacturing, based on the input
lag control strategy, the Markov switching idea is applied to the controller design and
performance analysis of the system. However, modeling the production–inventory model
of a closed-loop supply chain system as a switching system with Markov jump parameters
has rarely been reported [26], which is one of the main motivations for this study.

The bullwhip effect is the phenomenon of demand fluctuation amplification in supply
chain and is the most important performance indicator in supply chain operations [27–29].
The bullwhip effect exists in a supply chain and more extensive ERP, e-commerce, and other
management systems, including modern logistics operation. It has important theoretical
significance and wide application prospect to study bullwhip effect of a closed-loop supply
chain system with a robust H∞ control method.

This paper studies the closed-loop supply chain production–inventory system of
remanufacturing. Considering the inventory decay factor, the corresponding subsystems
are determined according to the different inventory status, and the switching system with
Markov jump parameters is established. Meanwhile, the H∞ control method [30] in robust
control is applied. In the form of LMI, sufficient conditions are given to ensure the stability
of the system and have H∞ performance in suppressing the bullwhip effect. Finally, a
numerical example of scrap recycling in a domestic iron and steel enterprise is used to
illustrate the validity of the results obtained.

2. Closed-Loop Supply Chain Switching System Modeling

This paper considers the control problem of a closed-loop supply chain system based
on remanufacturing. The model assumes that a manufacturer produces a product, and at
the same time, the manufacturer retrieves that product from the market for remanufacturing.
This paper assumes that the quality standard of the remanufactured goods can meet the
standard of the new products. This paper mainly considers the problem of inventory
management. Manufactured and remanufactured goods are stored in the usable goods
warehouse, and used goods recovered from the market are stored in the recycled goods
warehouse. x1(k) and x2(k) represent the inventory levels of the available commodity
warehouse and the recycled commodity warehouse and are the state vector of the system.
u1(k) and u2(k) represent the manufacturing rate of the manufacturing equipment and the
recycling rate of the used goods at the moment, respectively. For the system model, we
have the following assumptions.

Assumption 1. Assume that all products are recyclable and that the manufacturer is the only
determinant of the amount of product to be recycled, i.e., that there are sufficient products on the
market to meet the demand for recycling and that the manufacturer only needs to recycle the amount
of product it needs.

Assumption 2. The market demand d(k) is the sum of the constant d̄ and the perturbation
ω(k), i.e.,

d(k) = d̄ + ω(k)

Note 1. For the sake of generality, it is assumed that the perturbations ω(k) follow a normal
distribution or are sinusoidal functions.

Assumption 3. Recycled products are disposed of in two ways, remanufacturing and disposal, so
that α (0 ≤ α ≤ 1) represents the remanufacturing rate, β (0 ≤ β ≤ 1) the disposal rate, and α
and β are uncertain parameters; 0 < α + β ≤ 1 is assumed in this paper.
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Assumption 4. The value of the products in the warehouse decreases over time. ρ1 and ρ2 represent
the decay rates of the available and recovered warehouses, respectively.

The closed-loop supply chain system considered in this paper have inventory levels
as the state variable.

First, for the available commodity warehouse, when 0 < x1(k) < c1
max , the system is

given by the following equation

x1(k + 1) = (1− ρ1)x1(k) + αx2(k) + u1(k)− d(k) (1)

where c1
max is the maximum capacity of the available warehouse.

It should be noted that when x1(k) ≤ 0 indicates that there are no items in the
warehouse that can be used to meet the order demand, which also results in a stock-out
phenomenon. At this point, the production–inventory model can be described as

x1(k + 1) = x1(k) + αx2(k) + u1(k)− d(k) (2)

Similarly, for the recycled goods inventory, let c2
max be the maximum capacity of the

recycled goods warehouse; when 0 < x2(k) < c2
max, the system can be represented as

x2(k + 1) = (1− ρ2)x2(k)− αx2(k)− βx2(k) + u2(k) (3)

When x2(k) ≤ 0 is used, the system can be described as

x2(k + 1) = x2(k) + u2(k) (4)

Let y(k) be the operating cost of the system, then

y(k) = (C + ∆C)x(k) (5)

where C =

[
Ch1 0
0 Ch2

]
, ∆C =

[
0 crα + c0β

]
, the parameters are as follows: ch1 is

the cost of useful inventory, ch2 is the cost of remanufactured inventory, cr is the cost of
remanufactured product, and c0 is the cost of discard (all deterministic parameters).

Note 2. The total closed-loop supply chain cost is determined by the cost of useful inventory,
the cost of remanufactured inventory, the cost of remanufactured products, and the cost of
waste disposal.

In order to establish a closed-loop supply chain production–inventory switching sys-
tem model, let x(k) =

[
xT

1 (k) xT
2 (k)

]T ; considering Equations (1) and (3), the following
closed-loop supply chain model can be obtained:{

x(k + 1) = (A1 + ∆A1)x(k) + B1u(k) + b + B2ω(k)
y(k) = (C + ∆C)x(k)

(6)

where

A1 =

[
1− ρ1 0

0 1− ρ2

]
, ∆A1 =

[
0 α
0 −α− β

]
, b =

[
−d̄
0

]
B1 =

[
1 0
0 1

]
, B2 =

[
−1 0
0 0

]
, u(k) =

[
u1(k)
u2(k)

]
Considering Equations (1) and (4), the supply chain model of the closed-loop system

is as follows: {
x(k + 1) = (A2 + ∆A2)x(k) + B1u(k) + b + B2ω(k)
y(k) = (C + ∆C)x(k)

(7)
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where

A2 =

[
1− ρ1 0

0 1

]
, ∆A2 =

[
0 α
0 0

]
.

Similarly, combining Equation (2) with Equation (3), the following closed-loop supply chain
system can be obtained:{

x(k + 1) = (A3 + ∆A3)x(k) + B1u(k) + b + B2ω(k)
y(k) = (C + ∆C)x(k)

(8)

where

A3 =

[
1 0
0 1− ρ2

]
, ∆A3 =

[
0 α
0 −α− β

]
Finally, considering Equations (2) and (4), the following closed-loop supply chain system
is obtained: {

x(k + 1) = (A4 + ∆A4)x(k) + B1u(k) + b + B2ω(k)
y(k) = (C + ∆C)x(k)

(9)

where

A4 =

[
1 0
0 1

]
, ∆A4 =

[
0 α
0 0

]
Suppose that the switch between the 4 subsystems is determined by the Markov

process {σ(k), k ≥ 0} and that the transfer probabilities of P =
[
Pij
]
(i,j∈S), {σ(k), k ≥ 0}

satisfy

P[σ(k + 1) = j|σ(k) = i] = Pij , ∀i, j ∈ S (10)

and meet Pij ≥ 0,
4
∑

j=1
Pij = 1.

The closed-loop supply chain system can be rewritten as a switching control system
as follows: {

x(k + 1) = (Aσ(k) + ∆Aσ(k))x(k) + B1u(k) + b + B2ω(k)
y(k) = (C + ∆C)x(k)

(11)

where ∆Ai, ∆C are uncertain matrices. Suppose it satisfies ∆Ai = HaiFaiEai, where Fai is
unknown matrices, and satisfies

FT
ai Fai ≤ I, FT

ci Fci ≤ I. (12)

Hai, Eai, Hci, and Eci are known matrices. In the following, ∆Ai , ∆C is treated in that form ,
when i = 1, 3 , ∆Ai = HaiFaiEai , where

Hai =

[
1 0
0 1

]
, Eai =

[
0 1
0 −1

]
, Fai =

[
α 0
0 α + β

]
When i = 2, 4, ∆Ai = HaiFaiEai, where

Hai =

[
1 0
0 0

]
, Eai =

[
1 0
0 1

]
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∆C = HcFcEc, where

Hc =

[
cr 0
0 c0

]
, Fc =

[
α 0
0 β

]
, Ec =

[
1 0
0 1

]
Note 3. The bullwhip effect is the most significant performance indicator of a closed-loop
supply chain analysis, which generates production control and recovery remanufacturing
control through inventory levels u(k), suppressing the perturbations of uncertain system
demand ω(k) , thereby minimizing the system operating costs y(k), and this level of
suppression can be described by the following equation:

‖y‖2
‖ω‖2

≤ γ (13)

The smaller the γ , the better the performance of the system, and it is easy to see that
Equation (13) is precisely the condition for the level of disturbance suppression in the H∞
control to satisfy the gain of l2 . In essence, the study of the suppression of the bullwhip
effect in supply chain systems can be incorporated into the framework of the study of
H∞ control.

Note 4. This paper uses the idea of robust control to study the control problem of H∞
for switching systems with Markov jump parameters. Assumption (12) is a common
assumption condition in robust control.

In a closed-loop supply chain system, the following state feedback control law
is designed.

u(k) = b̂ + Kσ(k)x(k) (14)

The closed-loop supply chain switching system can be described as follows:{
x(k + 1) = (Aσ(k) + ∆Aσ(k) + B1Kσ(k))x(k) + B2ω(k)
y(k) = (C + ∆C)x(k)

(15)

The initial conditions of system (15) are given as follows:

x(0) = x0 (16)

The objective of this paper is described as follows: to establish a switching system for
a closed-loop supply chain with Markov jump parameters, on this basis, design a robust
H∞ controller to make the closed-loop supply chain system with remanufacturing and
abandonment stable under the condition of satisfying H∞ performance.

3. Stability Analysis and Controller Design

In this section, we give sufficient conditions for the mean square exponential stability
of closed-loop supply chain systems with Markov jump parameters and give the design
method of the state feedback control law.

The following lemma is used in this paper.

Lemma 1 ([26]). Given matrices of appropriate dimensions G = GT , H , E , for all matrices F
satisfying FT F ≤ I, such that, the following inequality holds:

G + HFE + ET FT HT < 0

Then, there exists the scalar ε > 0, such that the following inequality holds:

G + εHHT + ε−1ETE < 0
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Lemma 2 ([31]). (Suhur’s Complementary Lemma) For a given symmetric matrix

R =

[
R11 R12
RT

12 R22

]
, where R11 is r× r dimensional, the following three conditions are equivalent

(1) R < 0.
(2) R11 < 0, R22 − RT

12R−1
11 R12 < 0.

(3) R22 < 0, R11 − R12R−1
22 RT

12 < 0.

In the following, we consider the following nominal system, i.e., the stability and
robust H∞ control of the system in the case of ∆Aσ(k) ≡ 0, ∆Cσ(k) ≡ 0 , with the nominal
system modeled as {

x(k + 1) = (Aσ(k) + B1Kσ(k))x(k) + B2ω(k)
y(k) = Cx(k)

(17)

We begin by introducing the following two definitions:

Definition 1 ([32]). For any initial condition (x0, 0), if there exist constants α and λ such that

E
{
‖x(k)‖2

}
≤ αe−λk‖x0‖2, k→ ∞

holds, the system (15) is said to be mean square exponentially stable.

Definition 2 ([32]). For any disturbance initial condition level ω(t) ∈ l2 , the system (15)
is called mean square exponentially stable and has a dry disturbance suppression level γ if the
system mean square index is stable and satisfies the constant ‖y(k)‖2 ≤ γ‖ω(k)‖2 , where

‖y(k)‖2 =

[
∞
∑

k=0
E
[
yT(k)y(k)

]] 1
2
.

The main results are given below.

Theorem 1. The closed-loop supply chain system (17) with Markov jump parameters {σ(k), k ≥ 0}
and state transition probability matrix satisfying condition (10) is exponentially stable with mean
square and interference suppression level γ if, for a given positive constant λ , there exists a set of
symmetric positive definite matrices Pi,i ∈ S , such that the following optimization problem can
be solved:

min γ
S.t

Σi1 =

[
(Ai + B1Ki)

TGi(Ai + B1Ki) + e−λCTC− e−λPi (Ai + B1Ki)
TGiB2

∗ BT
2 GiB2 − e−λγ2 I

]
< 0. (18)

where Gi =
4
∑

j=1
pijPj,

Proof. We first consider the system at ω(k) = 0. Additionally, by Schur’s complementary
lemma, if Equation (18) holds, then

Σi0 = (Ai + B1Ki)
TGi(Ai + B1Ki)− e−λPi < 0.

Construct the following Lyapunov functional:

V(xk, k) = xT(k)Pσ(k)x(k)
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For ease of writing, the matrix Aσ(k) in the modal σ(k) = i is denoted by Ai, and the rest of
the matrices are denoted similarly. Fn =

{
x(0), · · · , x(n)

}
, ∀n ≥ 0 .

Considering the Markov property, a calculation based on conditional expectations
readily yields

E{V(k + 1)|Fk} − e−λV(k)
= xT(k)((Ai + B1Ki)

TGi(Ai + B1Ki)− e−λPi)x(k)
= xT(k)Σi0x(k).

We therefore have

E{V(x(k + 1), k + 1)|Fk} − e−λV(xk, k) ≤ −λmin(−Σi0)xT(k)x(k) ≤ −βxT(k)x(k))

where λmin(−Σi0) denotes the smallest eigenvalue of −Σi0 when σ(k) ∈ S,
β = inf

{
λmin(−Σi0)

}
. For any K ≥ 1, there is

E{V(k + 1), K + 1} − e−λkE{V(x0, 0} = −β
K

∑
k=0

E
[

xT(k)x(k)
]

and then by

K

∑
k=0

E
[

xT(k)x(k)
]
≤ 1

β

[
e−λE{V(x0, 0)} − E{V(xK+1, K + 1}

]
≤ 1

β
e−λkE{V(x0, 0)}

It is possible to obtain
∞

∑
k=0

E
[

xT(k)x(k)
]
≤ 1

β
e−λkE{V(x0, 0)}

Therefore, the system (17) mean square index is stable when ω(k) = 0 .

The following shows that the system satisfies yT(k)y(k) ≤ γ2ωT(k)ω(k) , when
ω(k) 6= 0 , under zero initial conditions. Define the following performance metrics.

J = E

[
N

∑
k=0

[
e−λyT(k)y(k)−γ2ωT(k)ω(k)

] ∣∣∣x0, σ(0)

]
From the zero initial condition, V(x0, 0) = 0 , V(x(N + 1)) ≥ 0 , then

J = E{
N
∑

k=0
e−λ[yT(k)y(k)− γ2ωT(k)ω(k)−V(x(k))

+V(x(k + 1)) + V(x(0))−V(x(N + 1))]}

≤
N
∑

k=0

{
e−λyT(k)y(k)− e−λγ2ωT(k)ω(k) + E

[
V(x(k + 1)− e−λV(x(k)

]}
=

N
∑

k=0

{
e−λxT(k)CTCx(k)− e−λγ2ωT(k)ω(k)

}
+xT(k)((Ai + B1Ki)

TGi(Ai + B1Ki)− e−λPi)x(k)

+ωT(k)B2
TGiB2ω(k) + 2xT(k)(Ai + B1K)TGiB2ω(k)

= ξT(k)Σi1ξ(k)

where
ξ(k) =

[
xT(k) ωT(k)

]T

From the theorem, if Equation (18) holds, then J < 0.
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Note 5. The condition in Theorem 1 is not linear matrix inequality, because it contains the
coupling term of the product of the controller gain matrix Ki and the Lyapunov functional
matrix. Therefore, Theorem 1 is just the result of the mean square stability of the system in
theory and has no practical operational significance. The gain matrix Ki of the controller
can be obtained only by converting Equation (18) into linear matrix inequalities through
appropriate matrix transformation.

Theorem 2. The closed-loop supply chain system (17) with Markov jump parameter {σ(k), k ≥ 0}
and state transition probability matrix satisfying condition (10) is mean square exponential stable
and has disturbance suppression level γ . If for a given positive constant λ , there exists a set of
symmetric positive definite matrices Xi ,Yi ,i ∈ S , such that the following optimization problem
can be solved, and if the following problem is feasible, the state feedback controller Ki = YiXi

−1:

Σi2 =


−e−λXi 0 (AiXi + B1Yi)

TWi XiCT

∗ −e−λγ2 I BT
2 Wi 0

∗ ∗ −χ 0
∗ ∗ ∗ −e−λ I

 < 0. (19)

Proof. Let

Wi =
( √

pi1 I
√

pi2 I
√

pi3 I
√

pi4 I
)
, χ = diag

{
X1 X2 X3 X4

}
then

Gi = WiPWT
i ,P = diag

{
P1 P2 P3 P4

}
It is clear that

Σi1 =

[
e−λCTC− e−λPi 0

0 −e−λγ2 I

]
+

[
(Ai + B1Ki)

TWi
BT

2 Wi

]
P
[

WT
i (Ai + B1Ki) B2

] (20)

By Schur’s complementary lemma, the above equation is equivalent to
−e−λPi 0 (Ai + B1Ki)

TWi CT

∗ −e−λγ2 I BT
2 Wi 0

∗ ∗ −P−1 0
∗ ∗ ∗ −e−λ I

 < 0 (21)

The above equation is multiplied by diag
{

Xi I I I
}

and its transpose, KiXi = Yi , on
the left and right sides, respectively, to obtain Equation (19).

In the following, we consider the uncertainty of the system due to the recycling
remanufacturing rate and give sufficient conditions for the closed-loop supply chain system
(15) to be exponentially stable in mean square and have a disturbance rejection level of γ
based on the idea of handling uncertainty in robust control thinking.

Theorem 3. The closed-loop supply chain system (15) with Markov jump parameter {σ(k), k ≥ 0}
and state transition probability matrix satisfying condition (10) is exponentially stable with mean
square and interference suppression level γ. If for a given positive constant λ, there is a set of
symmetric positive definite matrix Xi , Yi , and parameter εai , εc , which makes the following
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optimization problem solvable, and if the following problem is feasible, the state feedback controller
Ki = YiXi

−1.

−e−λXi 0 (AiXi + B1Yi)
TWi XiCT XiET

ai XiET
c

∗ −e−λγ2 I BT
2 Wi 0 0 0

∗ ∗ Ξi3 0 0 0
∗ ∗ ∗ Ξi4 0 0
∗ ∗ ∗ ∗ −εai 0
∗ ∗ ∗ ∗ ∗ −εc


< 0 (22)

where
Ξi3 = −χ + εaiWT

i Hai HT
aiWi, Ξi4 = −e−λ I + εcWT

i Hc HT
c Wi.

Proof. It follows from Theorem 2 that a sufficient condition for a closed-loop supply chain
system (15) to be mean square exponentially stable and have a disturbance suppression
level γ is that the following inequality holds:

−e−λXi 0 ((Ai + ∆Ai)Xi + B1Yi)
TWi Xi(C + ∆C)T

∗ −e−λγ2 I BT
2 Wi 0

∗ ∗ −χ 0
∗ ∗ ∗ −e−λ

 < 0 (23)

Since ∆Ai = HaiFaiEai , Equation (23) can be rewritten as
−e−λXi 0 (AiXi + B1Yi)

TWi Xi(C + ∆C)T

∗ −e−λγ2 I BT
2 Wi 0

∗ ∗ −χ 0
∗ ∗ ∗ −e−λ



+


0
0

WT
i Hai
0

Fai
[

EaiXi 0 0 0
]
+


XiET

ai
0
0
0

FT
ai
[

0 0 HT
aiWi 0

]
< 0

(24)

By Lemma 1, if Equation (24) holds, then the following equation holds:
−e−λXi 0 (AiXi + B1Yi)

TWi Xi(C + ∆C)T

∗ −e−λγ2 I BT
2 Wi 0

∗ ∗ −χ 0
∗ ∗ ∗ −e−λ



+εai


0
0

WT
i Hai
0

[ 0 0 HT
aiWi 0

]
+ ε−1

ai


XiET

ai
0
0
0

[ EaiXi 0 0 0
]
< 0

(25)

From Schur’s complementary lemma, it follows that
−e−λXi 0 (AiXi + B1Yi)

TWi Xi(C + ∆C)T XiET
ai

∗ −e−λγ2 I BT
2 Wi 0 0

∗ ∗ −χ + εaiWT
i Hai HT

aiWi 0 0
∗ ∗ ∗ −e−λ I 0
∗ ∗ ∗ ∗ −εai

 < 0 (26)

Since the uncertainty matrix still exists in the above equation, we continue to apply
Lemma 1 to deal with the uncertainty matrix present in the inequality. Since ∆C = HcFcEc,
Equation (26) is rewritten as
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−e−λXi 0 (AiXi + B1Yi)

TWi XiCT XiET
ai

∗ −e−λγ2 I BT
2 Wi 0 0

∗ ∗ −χ + εaiWT
i Hai HT

aiWi 0 0
∗ ∗ ∗ −e−λ 0
∗ ∗ ∗ ∗ −εai



+


0
0
0

WT
i Hc
0

Fc
[

EcXi 0 0 0 0
]
+


XiET

c
0
0
0
0

FT
c
[

0 0 0 HT
c Wi 0

]
< 0

(27)

From Lemma 1, Equation (27) holds; then, the following equation holds:
−e−λXi 0 (AiXi + B1Yi)

TWi XiCT XiET
ai

∗ −e−λγ2 I BT
2 Wi 0 0

∗ ∗ −χ + εaiWT
i Hai HT

aiWi 0 0
∗ ∗ ∗ −e−λ I 0
∗ ∗ ∗ ∗ −εai



+εc


0
0
0

WT
i Hc
0

[ 0 0 0 HT
c Wi 0

]
+ ε−1

c


XiET

c
0
0
0
0

[ EcXi 0 0 0 0
]
< 0

(28)

The content of the theorem is obtained from Schur’s complementary lemma.

4. Optimization Algorithm

The level of disturbance suppression is found by an optimization method based on the
relationship between the H∞ control theory and suppression of the bullwhip effect γ. This
is performed as follows: for a given parameter λ solve the following optimization problem:

minγ

s.t(22)
(29)

If the optimization problem (29) is solvable, the state feedback controller parameters can be
solved by the following equation: Ki = YiXi

−1.

5. Simulation Examples

Considering the scrap recycling data of a domestic steel mill [33] , the following model
parameters are set according to the actual situation and the historical data of the enterprise:
the decay rate of the available commodity warehouse and the recycled commodity ware-

house are ρ1 = 0.06, ρ2 = 0.08, and the cost parameter matrix C =

[
2.8 0
0 4.1

]
, cr = 1.2,

c0 = 0.3, and the initial values are set to x1(0) = 5, x2(0) = 10, (unit 106 tons). d(k) satisfies
Assumption 2. The remanufacturing rate α and the obsolescence rate β are considered as
uncertain parameters and satisfy Assumption 3 .

The system parameters are as follows:

A1 =

[
1− ρ1 0

0 1− ρ2

]
, ∆A1 =

[
0 α
0 −α− β

]
, A2 =

[
1− ρ1 0

0 1

]
, ∆A2 =

[
0 α
0 0

]
,

A3 =

[
1 0
0 1− ρ2

]
, ∆A3 =

[
0 α
0 −α− β

]
, A4 =

[
1 0
0 1

]
, ∆A4 =

[
0 α
0 0

]
,
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State Transfer Matrix

P =


0.11 0.72 0.04 0.13
0.15 0.65 0.05 0.15
0.12 0.68 0.05 0.15
0.12 0.68 0.05 0.15

.

Take another

Ea1 = Ea3 =

[
0 1
0 −1

]
, Ea2 = Ea4 = Ec =

[
0 1
0 1

]
, Hai =

[
1 0
0 1

]
, Hc = [ 1.2 0.3 ],

From the Matlab toolbox, the state feedback controller is obtained as follows:

K1 =

[
1.3784 −0.0210
−0.0062 0.0573

]
× 10−3, K2 =

[
2.2074 −0.001
−0.0001 0.0231

]
× 10−3,

K3 =

[
0.0340 −0.010
−0.0010 0.0065

]
× 10−3, K4 =

[
0.3491 −0.000
−0.0000 0.0301

]
× 10−3,

In the following, we consider the robust H∞ control problem for a system with both
external demand uncertainty and remanufacturing process uncertainty. Assuming that
the external demand uncertainty ω(k) is a sinusoidal disturbance, Figure 1 represents the
switching signal of a supply chain switching system with Markov jump parameters.

Figure 1. The switching signal of CLSC.

Figure 2 shows the change in stock levels of available commodity warehouses in the
presence of external disturbances to the system in the form of sinusoidal disturbances and
in the presence of recovery and remanufacturing uncertainty.
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Figure 2. The state of the serviceable stock.

Figure 3 shows the change in stock levels in the recycled goods warehouse in the
presence of external disturbances in the form of sinusoidal disturbances in the system and
in the presence of uncertainty in recycling and remanufacturing.

Figure 3. The state of the returned stock.
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From the simulation results, it can be seen that the robust H∞ controller designed
in this paper can effectively suppress the uncertain demand disturbance in the recy-
cling and remanufacturing process for the closed-loop supply chain system with Markov
jump parameters.

6. Conclusions

In this paper, a closed-loop supply chain system is modeled as a switching system
with Markov jump parameters, and the H∞ control problem is studied. The horizontal
states of different inventories are determined as four subsystems, and it is assumed that
the switching between them has Markov properties. The sufficient conditions to ensure
exponential stability of the system and H∞ performance of suppressing the bullwhip effect
are given by using LMI form. Simulation examples show the validity of the results obtained.
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