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Abstract: To determine the exact distribution of tensile stress in a cold rolled strip, tensile stress
evolution caused by lateral uneven velocity distribution outside the deformation zone of the strip is
examined. The finite difference method is employed to solve the problem. Different factors, including
the strip width and the form and amplitude of the initial stress distribution on the stress evolution, are
analyzed. On the one hand, to improve the calculation speed, a “Gaussian” curve is proposed to fit
the results calculated by the finite difference method. Simulation results show that the stress evolution
calculated by the fitting equation is in good agreement with that obtained by the finite difference
method. On the other hand, to verify the exactness of the model, an experiment is conducted, and the
comparison between the calculated results and experimental values is discussed.
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1. Introduction

Cold rolled strips are widely used in automobiles, households, buildings, and the
electronics industry [1–3]. The accuracy of its flatness and thickness is important in a cold
rolled strip. With the rapid development of science and technology, such thin strips are
playing an increasingly important role in industry. At the same time, demand for cold
rolled strips with high-quality flatness is increasing [4–6].

The stress distribution in a cold rolled strip has a significant impact on its flatness
quality. Thus, establishing a model of the stress distribution is of considerable interest to
many researchers. The earliest stress distribution model for cold rolled strips was presented
by Shohet and Townsend [7], which is widely used by many researchers [8,9]. To determine
the precise stress distribution, researchers proposed various methods, such as the analytical
method [10–12], three-dimensional difference method [13], finite element method [14],
variation method [15,16], and strip element method [17,18]. Although the aforementioned
models gained widespread support from industrialists and academics, they suffer from
certain major drawbacks. As shown in Figure 1 [19,20], the analytical method is based on
the assumption that the stress distribution far upstream (point A) has no effect on the stress
distribution at the roll-gap entry (point B), exit (point C), and far downstream (point D),
and at the same time, the stress distribution at points B, C, and D is identical. In contrast,
the three-dimensional difference method does not consider the influence of residual stress
at point A and analyzes the transverse distribution of residual stress at points B and C. It
does not indicate whether the tensile stresses at points C and D are the same. Meanwhile,
the variation method and strip element method are based on the hypothesis that the stress
distribution at points C and D is identical. While the former method considers the stress
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distribution at points A and B to be identical, the latter method considers the uneven
velocity distribution at point B, so the stress distribution at point B is the sum of the stress
distribution at point A and the additional stress distribution caused by the uneven velocity
distribution at point B.

Figure 1. Typical location of strip in cold rolling.

The stress distribution at points A, B, C, and D is different [21–23]. As the velocity
distribution at points B and C is uneven, the additional stress distribution caused by this
uneven velocity distribution must be considered. Generally, a cold rolling shape meter
can measure the uneven stress distribution; however, if the shape meter is not installed far
enough from point C, then the measurements will include the residual stress and additional
stress distribution caused by the uneven velocity distribution, which will have an adverse
effect on the flatness control.

According to rolling theory [24], uneven tensile stress distribution will result in the
uneven distribution of the rolling force, neutral point, forward slip, and backward slip
along the strip width. Moreover, the uneven tensile stress distribution will eventually cause
uneven velocity distribution at the entry and exit. At the same time, the uneven velocity
distribution will result in uneven tensile stress distribution.

Tensile stress consists of mean tensile stress, residual stress, and the additional stress
caused by the uneven velocity distribution. The tensile stress distribution is flowing,
along with the change in the velocity distribution before the entry and after the exit of the
deformation zone. Generally, the tensile stress, residual stress, and velocity distribution
at the entry and exit of the deformation zone are coupled with one another (as shown
in Figure 2). Outside the deformation zone, the velocity and tensile stress distribution is
flowing (as shown in Figure 3).

Figure 2. Coupling relationship between velocity and stress.

Figure 3. Combination relationship outside the deformation zone.
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In a word, to determine the precise stress distribution, two problems must be solved.
The first problem is the coupling at the entry and exit of the deformation zone, and the
second problem is the flowing of the velocity and tensile stress distribution outside the
deformation zone. This study delves into the second problem. The key to the second
problem is to examine the evolution of the stress distribution between points C and D,
which is similar to the evolution of the stress distribution between points A and B. However,
research on this problem is limited. The only study on the subject was conducted by [25],
who used a Laplace transform technique to solve the problem. With the assumption that
the velocity distribution is a sine or cosine function, numerous beneficial conclusions can
be obtained. Laplace transform methods are limited to some inherent characteristics, so
complex velocity distributions cannot be settled easily. This work introduces the finite
difference method to solve the problem. The finite difference method is suitable for complex
boundary conditions. The different influencing factors, including the strip width and the
form and amplitude of the initial stress caused by the uneven velocity distribution on the
evolution of the stress distribution between points C and D, are analyzed in this study.
Based on the simulation results, a new formula is obtained, which can be used to calculate
the evolution of the stress distribution easily and quickly, with high precision.

To verify the exactness of the model, an experiment is conducted, and the comparison
between the calculated results and experimental values is discussed.

2. Governing Equations
2.1. Problem Description

The strip is assumed to be very thin, making the problem a two-dimensional plane
stress problem. As shown in Figure 4, x is the width direction, y is the rolling direction, and
B is the strip width. From the exit of the deformation zone, the area of B × 2B is analyzed.
According to [25], 2B is an adequate distance for the velocity distribution, evolving from
uneven to even, so at y = 2B, the stress σy(x) induced by the velocity distribution is 0. At
x = −B/2 and x = B/2, the surface force of Fx and Fy is 0, and at y = 0, the stress σy(x)
induced by the uneven velocity distribution is expressed by Equation (1):

σy(x) = E
vy − vy

vy
(1)

where E is the Young’s modulus of the strip, vy is the velocity distribution at the exit of the
deformation zone, and vy is the average velocity at the exit of the deformation zone.

Figure 4. Coordinate system of the problem.

According to the theory of elasticity [26], the stress function of the plane stress problem
can be described as the biharmonic Equation (2):

∂4 ϕ

∂x4 + 2
∂4 ϕ

∂x2∂y2 +
∂4 ϕ

∂y4 = 0 (2)
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where ϕ is the stress function.
The boundary conditions can be described by Equation (3): l ∂2 ϕ

∂y2 − m ∂2 ϕ
∂x∂y = Fx

m ∂2 ϕ

∂x2 − l ∂2 ϕ
∂x∂y = Fy

(3)

where l, m are the directional cosines, and Fx, Fy are the applied surface force on the boundary.
To solve the problem with the finite difference method, the strip is divided into

20 × 40 small rectangular elements, and the side length of a small rectangular element is
B/20. Outside the border of the strip, a layer of imaginary nodes is applied. The nodes are
numbered i = 0 ∼ 42, j = 0 ∼ 22.

2.2. Solution Technique

According to the locations of the different nodes, different equations are obtained. For
the inner nodes, Equation (2) can be converted into a finite difference, yielding Equation (4):

20φi,j − 8
(
φi+1,j + φi−1,j + φi,j+1 + φi,j−1

)
+ 2
(
φi+1,j+1 + φi−1,j+1 + φi+1,j−1 + φi−1,j−1

)
+(

φi+2,j + φi−2,j + φi,j+2 + φi,j−2
)
= 0

(4)

where ϕi,j is stress function of node (i, j).
For the boundary nodes, a basis point must be chosen. For convenience, node (41, 11)

is chosen as the basis point. The stress function and first-order partial derivative of the
stress function should be equal to 0, as follows in Equation (5):

ϕ41,11 =

(
∂ϕ

∂x

)
41,11

=

(
∂ϕ

∂y

)
41,11

= 0 (5)

According to the basic theory, the stress functions and first-order partial derivatives of
the stress functions of the other boundary nodes can be calculated by Equation (6):

(
∂φ
∂x

)
A
= −

∫ A
O Fyds(

∂φ
∂y

)
A
=
∫ A

O Fxds

φA =
∫ A

O (yA − y)Fxds +
∫ A

O (x − xA)Fyds

(6)

where O is the basis point, and A is any boundary node that must be solved.
The stress functions of all the boundary nodes can be obtained according to Equa-

tion (6). In addition, from the first-order partial derivatives of the stress functions, the
following equation can be obtained:

φ2,j−φ0,j
B/10 =

(
∂φ
∂y

)
1,j
(j = 1 − 21)

φ42,j−φ40,j
B/10 =

(
∂φ
∂y

)
41,j

(j = 1 − 21)

φi,2−φi,0
B/10 =

(
∂φ
∂x

)
i,1
(i = 1 − 41)

φi.22−φi,20
B/10 =

(
∂φ
∂x

)
i.21

(i = 1 − 41)

(7)

The stress functions of the four corner nodes are meaningless to the problem. Based
on Equations (4), (5) and (7), the stress function of each node can be solved. The linear
systems of Equations (4), (5) and (7) are solved using the scientific computation package
Scipy through the Python language.
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3. Results Analysis

With the finite difference method, different influencing factors, including the strip
width and the form and amplitude of the initial stress on the evolution of the stress
distribution, are analyzed. To match the common stress distribution form in practice, the
initial stress induced by the velocity distribution at the exit of the deformation zone is
assumed to be a quartic polynomial, which can be expressed as Equation (8).

σy(x) = a0 + a2

(
x

B/2

)2
+ a4

(
x

B/2

)4
(8)

where a0, a2, and a4 are the coefficients of the quartic polynomial.
First, when the strip width is 1000 mm, the effects of different initial stress forms on

the stress evolution are shown in Figures 5–8. It can be seen that the stress tends to be
zero after roughly one strip width among the four types of initial stress at the exit of the
deformation zone, and the variation trends of the stress evolution of the different initial
forms are different. In the case of a2 = −100 MPa, a4 = 0 along direction y, the stress along
the edge of the strip tends to be steady, while the stress in the middle of the strip presents
an “S”-shaped form. A similar law can be observed in the case of a2 = 0, a4 = 100 MPa.
In the case of a2 = −100 MPa, a4 = 100 MPa, the stress in the middle of the strip presents
an “S”-shaped form, but the change trend of the evolution of the stress along the edge of
the strip is highly complex. That is, it decreases with distance, and then it increases to zero
instead of decreasing to zero directly. The case of a2 = 100 MPa, a4 = −100 MPa is similar
to the case of a2 = −100 MPa, a4 = 100 MPa. According to the theory of elasticity, the
superposition principle can be used. That is, the case of a2 = −100 MPa, a4 = 100 MPa
can be treated as the superposition of a2 = −100 MPa, a4 = 0 and a2 = 0, a4 = 100 MPa.
Thus, the case of a2 = −100 MPa, a4 = 0 and a2 = 0, a4 = 100 MPa can be considered as
two basic modes, and any stress form combination at the exit of the deformation zone can
be handled easily if the stress evolution regulation of the basic modes is known.

Figure 5. Results of a2 = −100 MPa, a4 = 0.

Figure 6. Results of a2 = 0, a4 = 100 MPa.
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Figure 7. Results of a2 = −100 MPa, a4 = 100 MPa.

Figure 8. Results of a2 = 100 MPa, a4 = −100 MPa.

Second, when the strip width is 1000 mm, and a4 = 0, the initial stress amplitude
a2 will be 20, 40, 60, 80, or 100 MPa. The effect of the different initial stress amplitudes
on the stress evolution is shown in Figure 9. It can be seen that the form of the stress
distribution is similar to the different initial stress amplitudes on the same y coordinate, and
the stress amplitude on the same y coordinate has a linear relationship with the amplitude
of the initial stress. In addition, it can be seen that the stress amplitudes fall roughly 98.8%
compared with the original stress on y = B, whereas the stress on y = B/2 is decaying.

Figure 9. Results of different initial stress amplitudes. (a) y = B, (b) y = B/2.

Finally, when a2 = −100 MPa, a4 = 0, the strip width will be 1000, 1500, 2000, or
2500 mm, and the effect of the different strip widths on the stress evolution is shown in
Figure 10. It can be seen that the different strip widths have a similar stress evolution
regulation in the middle and along the edge of the strip. If the horizontal axis is y/B, then
all the curves will coincide with one another.
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Figure 10. Results of different strip widths. (a) Stress distribution in the middle of the strip. (b) Stress
distribution along the edge of the strip.

From the above analysis, it can be determined that the initial stress amplitude and
strip width have little effect on the change trend of the stress evolution, and the highly
influential factor is the form of the initial stress, which can be broken down into two
basic modes, namely, a unit quadratic or quartic coefficient. For example, the case of
a2 = −100 MPa, a4 = 100 MPa can be treated as the superposition of a2 = −100 MPa,
a4 = 0 and a2 = 0, a4 = 100 MPa.

4. Discussion

Although the finite difference method is effective in solving the problem, its calculation
speed is slow, as the calculation slows down when solving a large system of linear equations.
If the calculation results of the finite difference method can be fitted by a simple equation,
it will increase the computation speed significantly. A natural idea is fitting the surfaces
in Figures 5 and 6 directly. However, different types of surface equations are necessary to
fit the surfaces in Figures 5 and 6, and the fitting results will be unsatisfactory. Another
idea is fitting the curves in Figures 5 and 6, which was also proven to be unsatisfactory.
After careful consideration, it was decided that the quadratic and quartic coefficients of
the different y values can be fitted by a type of “Gaussian” curve with high precision. The
basic curve equation can be expressed as Equation (9).

f (y/B) = A1 exp

(
−
(

y/B − B1

C1

)2
)
+ A2 exp

(
−
(

y/B − B2

C2

)2
)

(9)

where A1, B1, C1, A2, B2, and C2 are the fitting coefficients.
The fitting coefficients in Equation (9) are obtained using the numerical computation

package Numpy through the Python language. The fitting results are shown in Figures 11
and 12, and Table 1. It can be seen that the fitting results of all the cases are highly
satisfactory. In Figure 11, a20 is the quadratic coefficient of the initial stress distribution,
and the quartic coefficient is zero. In Figure 12, a40 is the quartic coefficient of the initial
stress distribution, and the quadratic coefficient is zero.

Table 1. Results of fitting coefficients.

Mode A1 B1 C1 A2 B2 C2

1
a2 0.01292 0.03105 0.02057 1.114 −0.1145 0.6015
a4 −0.07125 0.3252 0.2516 −0.119 0.431 0.4751

2
a2 0.3064 0.2181 0.2123 0.2661 0.4202 0.3696
a4 1.059 −0.0938 0.2506 −0.1504 0.2766 0.5254
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Figure 11. Fitting results of model 1.

Figure 12. Fitting results of model 2.

To test the fitting precision, the case of a20 = −30 MPa, a40 = 50 MPa, B= 1250 mm
is simulated as an example with the finite difference method and fitting equation, and the
results are shown in Figure 13. It can be seen that the stress evolution regulation along the
edge and at a quarter of the strip, calculated by the fitting equation, is in good agreement
with that calculated by the finite difference method.

Figure 13. Comparison between finite difference method and fitting equation. (a) Edge, (b) Quarter.

To achieve accurate flatness prediction, two issues need to be studied, as shown
in Figures 2 and 3. The coupling relationship between the entry and exit tensile stress
distribution and the velocity in the deformation zone has been extensively studied by
the authors in previous research [27]. The second issue, which is the mechanism of the
flow variation of the external tensile stress and velocity distribution in the deformation
zone, is the main focus of this study. According to the research results in this study, it is
obvious that the tensile stress distribution in the upstream and downstream regions of the
deformation zone is different from that in the entry and exit regions of the deformation
zone. Specially, between the exit of the deformation zone and the downstream region, the
velocity distribution gradually becomes more uniform, while the tensile stress distribution
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gradually stabilizes. When the installation position of the flatness meter is sufficiently far
from the exit of the deformation zone, the detection errors caused by uneven velocity can
be disregarded. However, when the installation position of the flatness meter is not far
enough from the exit of the deformation zone, the model proposed in this study can be
utilized to eliminate flatness detection errors.

5. Experiment
5.1. Experimental Equipment and Materials

Two pieces of aluminum strips with different specifications are placed on a 265 mm
two-high rolling mill. The samples’ specifications are listed in Table 2, and the related
equipment is shown in Figure 14. Before rolling, 15 strain gauges are adhered to the strips
at certain intervals along the width direction, as shown in Figure 15. The values in this
figure are the number and position of strain gauges. At the beginning of the rolling process,
with the strain gauge closest to the roll gap, the strain signal is recorded with a mobile data
recorder (MDR), and then the change in the tensile stress is obtained using Hooke’s law.

Table 2. Sample specifications.

Sample
Number

The Initial Specification

Length/mm Rolling Length/mm Width/mm Thickness/mm

1 600 400 200 1.7
2 450 300 150 1.7

Figure 14. Equipment and materials. (a) Rolling mill. (b) MDR. (c) Aluminum strips.

Figure 15. Distribution of strain gauges. (a) Sample 1, (b) Sample 2.
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5.2. Experimental Results

For sample 1, depending on the final moment curve along the entire width of the
sample, compared with that of the proposed model, which is set to a2 = −50.34, a4 = 22.65,
the final tension stress of the experiment and model is obtained, as shown in Figure 16.

Figure 16. Final curve of entire width of sample 1.

Then, the curve of the tensile stress variation with the rolling time along the half width
is established, as shown in Figure 17, where 1–8 represent the edge to the middle gauges in
the half width. The two graphs in Figure 18 show the edge (strain gauge 1) and middle
(strain gauge 8) stress variations.

Figure 17. Stress distribution along half width of sample 1. (a) Experiment stress. (b) Model stress.

Figure 18. Comparison between model and experiment for sample 1. (a) Edge, (b) Middle.
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The three-dimensional graphs of the whole process for sample 1 are presented
in Figure 19.

Figure 19. Stress distributions in entire process for sample 1. (a) Model, (b) Experiment.

To verify the correctness of the proposed “Gaussian” curve, the edge (strain gauge 8) is
taken as an example, and the comparison between the fitting results and model results and
experimental results is discussed, as shown in Figure 20. It can be seen that the simulation
results calculated by the fitting equation are in good agreement with those calculated by
the finite difference method and with the experimental results.

Figure 20. Comparison between fitting results and model and experimental results for sample 1.
(a) Comparison with model, (b) Comparison with experiment.

With the same treatment for sample 2, which is set to a2 = −46.89, a4 = 28.15, the
final tension stress of the experiment and model is obtained, as shown in Figure 21.

Figure 21. Final curve of whole width for sample 2.
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The tensile stress variation with the rolling time along the half width is also obtained,
as shown in Figure 22. The two graphs in Figure 23 show the edge (strain gauge 1) and
middle (strain gauge 8) stress variations.

Figure 22. Stress distributions along half width for sample 2. (a) Experiment stress, (b) Model stress.

Figure 23. Comparison between model and experiment for sample 2. (a) Edge, (b) Middle.

Then, the three-dimensional graphs of the whole process for sample 2 are presented
in Figure 24.

Figure 24. Stress distributions in whole process for sample 2. (a) Model, (b) Experiment.
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Finally, taking the edge (strain gauge 8) as an example, the comparison between
the fitting results and model results and experimental results for sample 2 is discussed
in Figure 25.

Figure 25. Comparison between fitting results and model and experimental results for sample 2.
(a) Comparison with model, (b) Comparison with experiment.

5.3. Analysis

From the experimental results, it can be seen that the strain signal starts to appear at
half of the rolling time, in general, because the actual roll length is twice its width; that is,
the signal appears after a distance of one strip width, so it is consistent with the model.
The stress variation forms of the experiment and model are nearly identical. As presented
above, the experimental results fit well with the model results. The comparison of the
fitting results with the model results and experimental results shows that the proposed
“Gaussian” curve is accurate and practical.

6. Conclusions

1. The theoretical and experimental results show that the tensile stress distribution in
the upstream and downstream regions of the deformation zone is different from that
in the entry and exit regions of the deformation zone. Specially, between the exit of
the deformation zone and the downstream region, the velocity distribution gradually
becomes more uniform, while the tensile stress distribution gradually stabilizes.

2. The tension stress fluctuation of the strip outside the deformation zone can be regarded
as a plane stress problem. A basic differential equation can be established based on
the stress function method, and the finite difference method can be used to solve
the differential equation. The calculated results indicate that the stress amplitude at
different distances from the exit has a linear relationship with the amplitude of the
initial stress, which falls roughly 98.8% after a distance of one strip width. The initial
stress amplitude and strip width have little effect on the change trend of the stress
evolution caused by the uneven velocity distribution, and the initial stress form is
influential. The initial stress form can be broken down into two basic modes, that is, a
quadratic or quartic coefficient. Any type of initial stress form can be considered as a
linear combination of the two basic modes.

3. To save time, a “Gaussian” curve is proposed to fit the calculated results of the finite
difference method. The simulation results reveal that the stress evolution calculated by
the fitting equation is in good agreement with that calculated by the finite difference
method.

4. To verify the practicability of the proposed model, a tensile stress rheology experiment
is conducted, as shown above, and it can be seen that the experimental results fit well
with the model results. Thus, it can be concluded that the model is correct and practical.
The comparison of the fitting results with the model results and experimental results
reveals that the proposed “Gaussian” curve is accurate and practical.
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