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Featured Application: The proposed method can improve emotion recognition accuracy in
human–computer interactions.

Abstract: Emotion recognition is a research area that spans multiple disciplines, including compu-
tational science, neuroscience, and cognitive psychology. The use of electroencephalogram (EEG)
signals in emotion recognition is particularly promising due to their objective and nonartefactual
nature. To effectively leverage the spatial information between electrodes, the temporal correlation of
EEG sequences, and the various sub-bands of information corresponding to different emotions, we
construct a 4D matrix comprising temporal–frequency–spatial features as the input to our proposed
hybrid model. This model incorporates a residual network based on depthwise convolution (DC)
and pointwise convolution (PC), which not only extracts the spatial–frequency information in the
input signal, but also reduces the training parameters. To further improve performance, we apply
frequency channel attention networks (FcaNet) to distribute weights to different channel features.
Finally, we use a bidirectional long short-term memory network (Bi-LSTM) to learn the temporal
information in the sequence in both directions. To highlight the temporal importance of the frame
window in the sample, we choose the weighted sum of the hidden layer states at all frame moments
as the input to softmax. Our experimental results demonstrate that the proposed method achieves
excellent recognition performance. We experimentally validated all proposed methods on the DEAP
dataset, which has authoritative status in the EEG emotion recognition domain. The average accuracy
achieved was 97.84% for the four binary classifications of valence, arousal, dominance, and liking
and 88.46% for the four classifications of high and low valence–arousal recognition.

Keywords: emotion recognition; electroencephalogram; 4D features; convolution; attention

1. Introduction

Emotion represents a complex psychological construct that encompasses an individ-
ual’s affective, cognitive, and behavioural responses to external stimuli, accompanied by
corresponding physiological reactions [1]. In the modern era of intelligent technology,
people’s daily lives are becoming increasingly intertwined with these advanced systems,
underscoring the growing importance of accurate emotion recognition in human–computer
interaction. Studies in neurological physiology [2] and social psychology [3] have revealed
a strong correlation between EEG signals and numerous cognitive processes, including
emotional responses, and can objectively reflect the real emotions of subjects, establishing
EEG-based emotion recognition as a cutting-edge research area in cognitive science [4].

Owing to the nonlinear, unsmooth, low signal-to-noise ratio (SNR) and multichannel
correlation characteristics of EEG data, which are inherently complex chaotic data, there
are numerous data processing methods available in the research field [5], but the extraction
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of features that are highly relevant to emotions and the selection of a suitable classification
model remain two obstacles for researchers. EEG signals have been demonstrated to
contain emotion-related feature components in three dimensions: temporal, frequency,
and spatial. Unfortunately, most of the literature considers only one or two of these three
dimensions and performs pattern recognition by simple combinations, completely ignoring
spatial information interactions across channels, prior knowledge across frequency bands,
and information complementarity between different features. This not only fails to improve
model accuracy, but also leads to feature redundancy and increased complexity. Therefore,
it is important to improve emotion recognition accuracy by integrating information from
different domains and adaptively capturing important temporal, frequency, and spatial
features in subsequent classification models.

Recently, deep learning, the successor to machine learning, has made significant
contributions to various fields, including computer vision (CV) and natural language
processing (NLP). A wide range of deep models have been developed and have shown
impressive results. The application of these models has also had a significant impact on
EEG emotion recognition, including the use of autoencoders (AEs), graph convolutional
neural networks (GCNs), transformers, and other related techniques. Although these
approaches have yielded promising outcomes, challenges remain that need to be addressed.
Specifically, how to construct a network that is suitable for EEG signal feature extraction
represents a crucial issue that must be addressed.

Regarding the aforementioned challenges, a cascade network based on multidimen-
sional features is proposed, which presents three main contributions:

• EEG data are converted into a 4D matrix structure consisting of multiple frames, which
contain information in three dimensions: temporal, frequency, and spatial, and can
effectively represent the neural features of different emotions.

• In this paper, a novel attention module FcaNet is introduced. FcaNet redistributes the
weights of different channels to obtain high-quality discrimination. FcaNet is found to
be superior to traditional channel attention squeeze-and-excitation networks (SENet)
while incurring no significant computational cost.

• To satisfy the real-time demands of the emotion recognition system, a residual net-
work is devised, which comprises DC and PC to decrease the computational burden
while utilizing the attributes of depth-separable convolution to segregate the spatial
and channel mixing dimensions. Furthermore, the existence of a residual structure
prevents overfitting. Ultimately, Bi-LSTM is employed to understand the temporal
interdependence among different frames in the sample. The hidden layer states at
each frame moment are allocated weights and then summed to serve as the input
to softmax.

The experimental results show that the designed model achieves advanced perfor-
mance on the DEAP dataset. The rest of the article is arranged as follows: Section 2:
Related Work, Section 3: Methods, Section 4: Materials and Experimental Results, and
Section 5: Conclusions.

2. Related Work

In the realm of emotion recognition, machine learning has traditionally been a pop-
ular approach for simple classification tasks [6]. Some prominent algorithms, including
support vector machine (SVM), decision trees (DT), and k-nearest neighbour (KNN), have
been successfully utilized in this field. Zubair [7] used the discrete wavelet transform
(DWT) to extract temporal–frequency information and applied the maximum relevancy
and minimum redundancy algorithm (mRMR) to select the most relevant features. In the
literature [8,9], wavelet transform (WT) was applied for sub-band EEG signal decomposi-
tion, and the processed smooth feature information was then fed into SVM for classification.
This method demonstrated promising improvement in accuracy for EEG emotion-state
recognition in machine learning. However, machine learning techniques still face signifi-
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cant limitations when processing nonlinear and indistinguishable data, which restrict their
capability for more complex classification tasks.

With the advent of deep learning, the machine learning limitations are gradually being
overcome, and deep learning techniques are successfully moving in the direction of EEG
emotions. Typically, deep-learning-based approaches focus on feature extraction from three
dimensions: temporal, frequency, and spatial. For instance, in terms of the temporal infor-
mation of EEG signals, Xing [10] proposed a framework combining a stacked autoencoder
(SAE) and long short-term memory neural networks (LSTM). SAE is employed to simulate
the mixing process in EEG and to separate the source signals. Then, the source signals are
framed, and frequency features are extracted and combined into chained data, followed by
discriminative classification using LSTM. Ma [11] designed the multimodal residual LSTM
(MMResLSTM) network, using different LSTM layers to learn the temporal characteristics
of different physiological signals and share parameters to achieve the information inter-
action of different modal data. References in the literature [12–14] introduced a temporal
learning architecture that employs a 1D convolutional neural network (CNN) to extract
temporal information from multichannel chained data.

Studies in neuroscience and psychology have proven that the δ-band (1–4 Hz),
θ-band (4–8 Hz), α-band (8–13 Hz), β-band (13–30 Hz), and γ-band (30–50 Hz) of EEG [15]
are associated with human emotions. Therefore, during the frequency domain feature
extraction process, EEG signals are typically mapped onto these five frequency bands,
and sub-band features are extracted. Zheng [16] extracted EEG signal differential en-
tropy (DE) features on a sub-band and performed emotion recognition on a deep belief
network (DBN). Zhang [17] extracted DE, power spectral density (PSD), differential asym-
metry (DASM), and rational asymmetry (RASM) in four representative EEG datasets and
trained them for classification by the proposed dynamic graph convolutional neural net-
work (DGCNN). The results showed that the DE and PSD features could convey the most
discriminative information.

Researchers have been interested in exploring physical models between electrode
positions to characterize spatial features in EEG signals. Hwang [18] proposed a method to
generate an image by performing a polar coordinate projection of the channel DE features
and using different interpolation methods to fill the blank space after the projection, thus
proving that the spatial topology based on electrode arrangement is effective. Song [19]
utilized graph theoretic ideas to model multichannel EEG signals and used DGCNN to
explore the depth spatial information of neighbouring channels. Other studies [20–23]
constructed a connectivity matrix containing structural information of the brain to express
features in different ways and then input the rearranged EEG signals into an end-to-end
CNN model.

The researchers have also considered various feature information combinations. Refer-
ences from the literature [23,24] extracted the DE features of the four EEG signal sub-bands,
which were mapped into a 3D matrix based on the electrode distribution to retain its
channel information. Finally, the spatial–frequency information was extracted by different
2D convolutions. Researchers in [25–28] introduced a combined CNN and LSTM model
that learns spatial–frequency and temporal features, respectively, from the input signal.
Experimental findings reveal that the accuracy of combined multidimensional feature
information surpasses that of a single dimension.

There exists a broad range of feature extraction methods; however, fully exploiting
key features remains a significant challenge. Introducing an attention mechanism has
greatly enhanced the capabilities of various classification models. Researchers in EEG
emotion recognition have noted that attentional mechanisms can selectively focus on brain
regions associated with emotional stimulation and have begun to explore their application
to EEG emotion recognition to improve performance. Zhang [29] introduced band attention
and temporal attention in a hybrid deep learning model to adaptively assign weights for
different frequency bands and times, respectively. In [22,30], researchers constructed 3D
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data containing temporal–frequency information, introduced the channel attention module
SENet to assign weights to frequency bands and channels, and obtained advanced results.

3. Methods

In this section, data preprocessing and the three components of the proposed model
are explained in detail. A complete overview of the model framework is shown in Figure 1.
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Figure 1. Overview of the identification framework.

3.1. Data Preprocessing

In the original data acquisition, a few seconds of the steady state of the subject before
the emotional stimulus is recorded. Most studies choose to remove this part of the data
directly when recognizing the task and consider only the EEG signal in the stimulated state.
Studies [25,30,31] demonstrated that preprocessing through the baseline signal is effective
for improving experimental robustness. The difference between the signal of the subject
under the emotional stimulus and the baseline signal was calculated as an indication that
the segment’s emotional state data could yield the expected results. Assume that the dataset
is sampled at a frequency of S. Consider the entire baseline clip Xbase ∈ RMxN1 , where M is
the number of electrodes: 32; and N1 is the sum of the sampling points for the entire baseline
clip. First, Xbase is uniformly divided into 1 s periods to obtain

{
X1

base, X2
base, . . . , XO

base

}
,

Xi
base ∈ RMxS(i = 1, 2, . . . , O) denoting the i-th baseline segment, O = N1

S . Then, the
average value Xbase ∈ RMxS of Xbase is calculated as follows:

Xbase =

O
∑

i=1
Xi

base

O
(1)

Xtrial ∈ RMxN2 denotes the experimental EEG signal in the emotional stimulation
condition, and N2 denotes the total number of sampling points of the experimental EEG
signal. As in the above method, the experimental data were split into Q segments accord-
ing to the length criterion of Xbase to obtain

{
X1

trial, X2
trial, . . . , XQ

trial

}
, where Xi

trial ∈ RMxS

(i = 1, 2, . . . , Q) denotes the i-th experimental segment, and Q =N2
S . Finally, the baseline

removal data were obtained by subtracting the baseline mean Xbase from each segment of
the experimental data using the following equation:

Xi
trial.rmov = Xi

trial − Xbase, Xi
trial.rmov ∈ RM×S (2)
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where Xi
trial.rmov(i = 1, 2, . . . , Q) represents the contrast data from Xi

trial and Xbase. Finally,
the Q segment removed the baseline data to patch the complete data
Xtrial.rmov =

{
X1

trial.rmov, X2
trial.rmov, . . . , XQ

trial.rmov

}
, Xtrial.rmov ∈ RMxN2 , which was per-

formed on Xtrial.rmov in the subsequent feature extraction.

3.2. Multiband Four-Dimensional Feature Construction

In this section, the process of forming a 4D matrix based on the temporal–frequency–
spatial is explained in detail, as shown in Figure 2.
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Since the integration of temporal and frequency band information of all available
channels requires a three-dimensional spatial representation, this requires the consider-
ation of a matrix of filtered signals obtained from all channels. Take the DEAP dataset
as an example, which includes a total of 1280 sample data points (32 subjects × 40 ex-
periments). For the problem that a small quantity of data can cause overfitting when
the network layers are deep, we reduce this effect by increasing the number of samples.
Specifically, for the signal Xtrial.rmov ∈ RM×N2 after baseline removal, a nonoverlapping
windowing process with a time duration of u seconds (design in this paper with u = 5 s)
is performed to obtain the divided data

{
X1

S, X2
S, . . . , Xn

S

}
, where the ith window segment

Xi
S = {x1, x2, . . . , xM} ∈ RM×R(i = 1, 2, . . . , n), xc ∈ RR(c = 1, 2, . . . , M) denotes data

from the c-th electrode channel in Xi
S, and R is the sampling frequency of the whole

window segment.
Different frequency band data in EEG reflect different emotional information, as

detailed in Table 1 [32]. While conducting directional research, the linear data phase is
commonly required to be high. A finite impulse response filter (FIR) can obtain a rigorous
linear phase with high stationarity and low interference power caused by operational
errors. Therefore, we use FIR to have a sub-band division for each window segment Xi

S.
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Qu [25] experimentally compared the EEG emotion recognition results under different
band combinations and found that band combinations of α, β, and γ had the highest
accuracy in task recognition. In addition, Frantzidis [33] remarked that the θ-band features
are closely correlated with arousal. Therefore, in this paper, the four bands θ,α,β,γ
were chosen to study the emotional state features of EEG signals. Through the FIR filter,
each window segment was decomposed into Xi

S =
{{

fθ1 , fα1 , fβ1 , fγ1
}

, . . . ,
{

fθM, fαM, fβM, fγM
}}

(i = 1, 2, . . . , n). The specific realization formula is as follows:

h(n) = hd(n) ·w(n) =
sin[(M− τ) ·Wh]− sin[(M− τ) ·Wl]

π · (m− τ)
·w(n) (3)

Hd(e
jw) =

n=+∞

∑
n=−∞

hd(n)e
−jwn (4)

H(w) = |H(ejw)| = | 1
2π

π∫
−π

(Hd(e
jθ)e−jθM/2)W(ejw)dθ| (5)

where h(n) is the filter coefficient, Hd(ejw) is the corresponding frequency response, H(w)
is the amplitude–frequency response function, hd(n) is the unit impulse response, w(n) is
the window function, Wh and Wl are the cut-off frequencies of the bandpass filter, τ = M−1

2 ,
and M is the number of filter steps.

Table 1. Emotional states correspond to different frequency band information.

Frequency Band Frequency Range Brain States Awareness

δ 1–4 Extreme fatigue and deep sleep states Sleep mode
θ 4–8 Light sleep, frustrated state Low
α 8–13 Awake, quiet, and eyes closed state Medium
β 13–30 Active thinking, mental tension, anxiety, concentration state High
γ 30–50 Multimodal sensory stimulation, mentally active state High

Treating all channel data of a single frequency band as a whole, such that Xi
S is

transformed into
{

pθ
i , pα

i , pβ
i , pγ

i

}
, where p = {p1, p2, . . . , pM} denotes all channel data of

a single frequency band, the arrangement order is shown in Figure 3.
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After data enhancement, our focus shifts to emotion recognition at the segmentation
level, and considering that human emotion changes are temporally dynamic, the window seg-
mented signal Xi

S is segmented into equal-length frames of 0.5 s. Using 0.5 s data per channel
as the vector components that constitute a single frame window, Xi

S will be converted into a

sequence containing 2u frame vectors, Xi
S =

{{
p1θ

i , p1α
i , p1β

i , p1γ
i

}
, . . . ,

{
pjθ

i , pjα
i , pjβ

i , pjγ
i

}}
(i = 1, 2, . . . , n.j = 1, 2, . . . , 2u). Considering the information complementarity between
different features, the DE and PSD features of all channels within each frame window are
extracted in this paper [16].

DE is a derivative of Shannon’s concept of information entropy over a continuous
probability distribution, which is a good method to describe internal EEG information.
A specific length of EEG that approximately obeys the Gauss distribution N(µ,σ2

i ) is
calculated as:

DE = −
∫ +∞

−∞

1√
2πσ2

i

e
− (x−µ)2

2σ2
i log(

1√
2πσ2

i

e
− (x−µ)2

2σ2
i )dx =

1
2

log(2πeσ2
i ) (6)

where σ is the variance in the sequence signal.
PSD is a physical quantity that characterizes the relationship between the power

energy of a signal and its frequency and is often used to study random vibration signals,
which can describe the activation level and emotional complexity of EEG signals. It is
calculated as:

P(w) =
1

MU

∣∣∣∣∣M−1

∑
n=0

xi
N(n)d(n)e

−jwn

∣∣∣∣∣
2

(7)

where xi
N(n) is the sampled data in segment i, d(n) is the selected window function, M is

the length of each segment, and U is the normalization factor.
The final two sets of features obtained both include a two-dimensional vector sequence

of four frequency bands, where the frame vectors fjγ
i and gjγ

i retain the same arrangement
as pjγ

i . It can be described as:

FPSD = PSD(Xi
S) =

{{
f1θ
i , f1α

i , f1β
i , f1γ

i

}
, . . . ,

{
fjθ
i , fjα

i , fjβ
i , fjγ

i

}}
(8)

FDE = DE(Xi
S) =

{{
g1θ

i , g1α
i , g1β

i , g1γ
i

}
, . . . ,

{
gjθ

i , gjα
i , gjβ

i , gjγ
i

}}
(9)

Nevertheless, frequency features can never fully characterize all the feature compo-
nents of the entire signal. The EEG is obtained from electrodes placed in different regions
for acquisition, and the positional relationships between these electrodes contain informa-
tion about the spatial structure associated with emotions. Therefore, in this paper, a single
frequency band frame vector is mapped into a two-dimensional matrix using spatial map-
ping. References [34–36] proposed the sparse transform, compact transform, and sensitive
transform methods, respectively. The sparse transformation matrix is 19 × 19, which un-
doubtedly requires many computations [34]. The compact matrix of Shen [35] reduces the
size to 8× 9, which drastically reduces the computational effort, and the adjacent electrodes
in the matrix are more strongly connected, but it is not sensitive to spatial information and
does not work well experimentally. Therefore, here, we use the sensitive transformation
method of Xu [36] to map it to 9 × 9 data. Compared with the first two methods, the
connection relationship between electrode points is more in line with the “10/20” system
while considering the computational effort. These three specific mapping methods are
shown in Figure 4. Each frame vector fjγ

i of a single frequency band is further converted
into a two-dimensional matrix. SEED and DEAP each contain 62 and 32 electrode channels,
so here, 62 channels are used to map the electrode positions, the corresponding DE and
PSD values are filled for the elements with position mapping, and the remaining positions
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are replaced by 0. In this way, the window segments transform into a two-dimensional
matrix sequence from the perspective of a single frequency band. Taking the θ-band as
an example, Sθ =

{
Sθ1 , Sθ2 , . . . , Sθj

}
∈ R9×9×2u(j = 1, 2, . . . , 2u), it is extended into 3 di-

mensions in dimensionality. The four-dimensional data of a single feature in the whole
window fragment are obtained by fusing the four frequency bands. Taking the DE fea-
ture of the window fragment as an example, S =

{
S(DE)1, S(DE)2, . . . , S(DE)j

}
∈ R9×9×8×2u,

considering the problem of information complementarity between different features, we
place the same frequency band data of DE and PSD features together to construct the final
four-dimensional data S =

{
S1, S2, . . . , Sj

}
∈ R9×9×8×2u.
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Figure 4. (a) EEG; (b) sparse transform; (c) compact transform; and (d) sensitive transform. Figure 4. (a) EEG; (b) sparse transform; (c) compact transform; and (d) sensitive transform.

After obtaining the mapping matrix of all frame window feature data, Equation (10) is
used to normalize the data to a distribution with a mean of 0 and a variance of 1, attempting
to avoid poles that may negatively affect the recognition results during gradient descent.

xscale =
(x− xmean)

σ
(10)

where xmean is the mean of the eigenvalue data, σ is the standard deviation of each set of
features, x is the actual eigenvalue, and xscale is the final normalized data.

3.3. Network Architecture
3.3.1. FcaNet

In this study, the aim is to obtain high-quality EEG feature information. To achieve this
goal, we incorporated an attention module called FcaNet [37] into the backbone network,
which is used to lower the weight of low-quality EEG information. FcaNet is a novel
attention module based on SENet [38], which was initially used in target detection. Unlike
the global average pooling (GAP) used in SENet to squeeze the feature map, FcaNet uses
two-dimensional discrete cosine transformation (2D-DCT) for the same purpose. GAP
corresponds only to the lowest frequency portion of the 2D-DCT, resulting in the loss of the



Appl. Sci. 2023, 13, 6761 9 of 22

remaining frequency portions in the channel. A comparison of SENet and FcaNet is shown
in Figure 5.
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Given an input X, it is divided into n parts along the channel dimension:[
X0, X1, X2, . . . , Xn−1

]
, where i ∈ {0, 1, 2, . . . , n− 1}, Xi ∈ RH×W×C′ , C′ = C

n . For each
part, the corresponding 2D-DCT frequency portion is distributed, and the result of 2D-DCT
is used as the compression result noted by the channel. The following equation shows
2D-DCT:

Freqi = 2DDCTui,vi(Xi) =
H−1

∑
h=0

W−1

∑
w=0

Xi
:,h,wBui,vi

h,w (11)

Bui,vi
h,w = cos(

πh
H

(ui +
1
2
)) cos(

πw
W

(vi +
1
2
)) (12)

s, t.i ∈ {0, 1, . . . , n−1}

where H, W, and (ui, vi) are the height, width, and 2D index of Xi, respectively. The whole
feature information compression vector can be represented by cascading as:

Freq = compress(X) = cat([Freq0, Freq1, . . . , Freqn−1]) (13)

The complete FcaNet framework can be described as follows:

ms_att = sigmoid(fc(Freq)) (14)

3.3.2. Spatial–Frequency Feature Learning

Extracting spatial–frequency features is primarily accomplished through the use of
the convolutional encoder and the attention module FcaNet discussed in Section 3.3.1, with
the module structure illustrated in Figure 6.

Specifically, 2u frames Sj in each segment are fed into the CNN module sequentially
in time order, and the three-dimensional data structure of each frame is 9 × 9 × 8. To
better retain information in the relatively small three-dimensional data structure, two
convolutional layers are first implemented. The first layer employs a 1 × 1 convolution
kernel with 64 kernels, and the second layer utilizes a 3 × 3 convolutional kernel with
128 kernels. These different convolutional kernels are utilized to extract deeper information
from the three-dimensional data. Subsequently, the residual network is constructed using
DC and PC. This combination reduces the number of training parameters while extracting
internal features from expanded individual feature maps using DC and expressing cross-
feature map relationships using PC. Moreover, the residual structure effectively avoids
network degradation. ReLU is utilized as the activation function for each convolutional
layer, and BatchNorm processing is performed. Padding operations are carried out for DC
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to maintain output size consistency for each layer of convolution. FcaNet assigns weights
to different channel features to enhance model performance. The data are subjected to
dimensionality reduction through the utilization of a 2 × 2 maximum pooling layer at
the end of the cycle, followed by one-dimensional data transformation via flattened layer
processing. Finally, each data frame is convolutionally encoded to obtain vector S′j ∈ R1152.
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3.3.3. Temporal Feature Learning

Since emotion changes are temporally dynamic, changes between frames in four-
dimensional data may hide emotion-related information. To explore the temporal corre-
lation features in the whole window segment, we input the spatial–frequency features
S′ =

{
S′1, S′2, . . . , S′j

}
obtained after convolutional coding into the Bi-LSTM network in time

order for coding.
LSTM solves the problem that its distant text information cannot be exploited and

its close distance but not much semantic association is based on the traditional recurrent
neural networks (RNN). It is a model for processing sequential signals that can mitigate the
gradient disappearance that occurs with long sequence inputs in RNN. The computational
equation of an LSTM cell is shown as:

ft = σ(Wf · [ht−1, xt]) + bf (15)

it = σ(Wi · [ht−1, xt]) + bi (16)

C̃t = tanh(WC · [ht−1, xt]) + bc (17)

Ct = ft ×Ct−1 + it × C̃t (18)

Ot = σ(WO · [ht−1, xt]) + bO (19)

ht = tanh(Ct)×Ot (20)

where xt is the current input feature, W and b are the matrix and bias vector to be trained,
respectively, it, ft, and Ot are the three gates introduced by LSTM, which are the input gate,
forget gate, and output gate, respectively, and the three gates via the sigmoid function, so
that the threshold range is controlled between 0 and 1. Cell state Ct characterizes long-term
memory. Candidate state C̃t represents the new information to be deposited into Ct by
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induction, and ht is the hidden state. In comparison, the output equation of the Bi-LSTM is
shown below:

yt = σ(Wh · [ht, h′t]) + bh (21)

Bi-LSTM networks combine an LSTM network that moves from the beginning of the
sequence and an LSTM network that moves from the end of the sequence, and the backward
layer is an extension of the information of past emotions. It is worth mentioning that the
parameters of the two LSTM neural networks in Bi-LSTM are mutually independent,
and they share only the input vector sequence. This structure merges the gate control
architecture and the bidirectional feature perfectly and experimentally proves to be more
efficient than a single LSTM for feature extraction of sequences. The network architecture of
Bi-LSTM is shown in Figure 7. The time sequences are input to the model, and the forward
layer has the information at time t and the previous time, while the backward layer has
the information at time t and the subsequent time. The hidden layer data of the two LSTM
layers can be processed using summation, average, or connection. Equation (21) is the
output value in the form of a connection.
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Figure 7. Bi-LSTM structure information.

To highlight the data at key frame moments, the output of Bi-LSTM is not used as the
result of the whole temporal feature learning module in this paper. Instead, a nonlinear
transformation is first performed for each frame moment hidden layer state with the
following equation:

Htemp,j = tanh(Wtemp,jhj + btemp,j) (22)

The amount of memory in each LSTM layer is q
2 . The hidden layer is processed in a

connected form to obtain hj ∈ Rq. Htemp,j is the nonlinear expression of the hidden layer,
while Wtemp,j ∈ Rd×q and btemp,j ∈ Rd are the weights and bias vectors of the tanh function,
respectively, and d is set to 512. After obtaining Htemp,j ∈ Rd, the softmax function is used
to calculate the weights for each frame moment to obtain Atemp,j. The specific equation is
as follows:

Atemp,j =
exp(Htemp,jutemp,j)

∑
j

exp(Htemp,jutemp,j)
(23)
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where utemp,j ∈ Rd is a trainable parameter, and the greater the value of Atemp,j, the more
important the corresponding frame is in the timing sequence. Multiplying the hidden layer
states of all frame data with the weights and summing up, the equation is as follows:

Ztemp = ∑2u
j=1 Atemp,jhj (24)

where Ztemp is used as the output of the whole temporal feature learning model, which not
only contains the temporal correlation of the whole window segment, but also enhances
the important frame data and suppresses the irrelevant information. Finally, Ztemp is used
to obtain the prediction result by the softmax classifier. The entire temporal information
extraction structure is shown in Figure 8:
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In the proposed method, we conducted ablation experiments on how many memory
cells are set in the unidirectional LSTM layer, and the results are shown in Table 2. There-
fore, the unidirectional LSTM layer is set up with 256 memory cells (512 in total) in the
proposed method.

Table 2. Experimental comparison of different numbers of memories.

Number Test Accuracy (%)
(2-Class) F1-Score Test Accuracy (%)

(4-Class)

64 95.09 93.47 86.33
128 95.42 94.35 87.27
256 97.84 96.61 88.46
512 96.57 94.66 87.65

4. Materials and Experimental Results
4.1. Dataset

The DEAP dataset comprises EEG signals from 32 participants, and the acquisition
process is illustrated in Figure 9. During data collection, the “10–20” international standard
32-lead electrode cap is used to record signals, and each participant watches 40 one-minute
videos while EEG signals are recorded for 63 s (3 s baseline + 60 s of video stimulation)
per sample. Thus, the entire dataset consists of 1280 (32 × 40) samples, with each sample
containing 63 s of data from 32 channels. Following video viewing, participants subjectively
evaluated the videos based on arousal, valence, dominance, and liking using a 1–9 scale.
Two versions of the DEAP dataset are officially available: one is the raw signal containing
noise such as electromyography (EMG) and electrooculogram (EOG); the other is the
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preprocessed data, which consists of downsampling the data to 128 Hz from 512 Hz,
filtering and denoising using a 4–45 Hz bandpass filter. This study utilizes the preprocessed
version of the DEAP dataset in Python to conduct the experiment. The downsampling
operation considerably reduces the computational effort, and the resulting accuracy impact
is minor.
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Upon removing the baseline from the dataset’s signal, a single channel of 60 s will
result in 60 × 128 samples, and the resulting Xtrial.rmov obtained from the 32 channels for a
subject will be of the form 32 × 60 × 128. To create more samples, the data were segmented
in this study into nonoverlapping windows with a duration of u = 5 s. Specifically, the
data were partitioned into 12 windows of 5 s duration, and the data form of Xi

S was
32 × 5 × 128. The follow-ups were all performed with each window fragment Xi

S as
a single experimental sample for emotion recognition. The data form is expanded to
32 × 5 × 128 × 4 by dividing Xi

S into frequency bands. To capture the hidden temporal

messages of the sequence signal, the single-band data
{

pθ
i , pα

i , pβ
i , pγ

i

}
in Xi

S are separated
into frames of 0.5 s, and each frame has the data form 32 × 0.5 × 128 × 4. The vector data
are converted into a two-dimensional matrix with a sensitive transformation on the basis of
a frame, and the DE and PSD features of every 0.5 s frame data are used as matrix element
data. Each frame of a single frequency band becomes a 9× 9 matrix, combining two groups
of features as well as four frequency bands with different features to obtain the final frame
data in the form of 9 × 9 × 8. The whole sample Xi

S is transformed into a four-dimensional
feature sequence of 9 × 9 × 8 × 10 when viewed from the perspective of the whole sample
Xi

S. Each subject has 40 (video) × 60 (seconds) of EEG data, and using 5 s as a sample,
480 copies (40 × 12) are generated. For 32 subjects, a total of 15,360 samples are generated.

4.2. Experimental Parameter Settings and Evaluation Indices

The code implementation in this article was partially performed on a CUDA 11.2,
PyTorch version 1.11 framework, and the hardware module was a server with four Nvidia
RTX2080Ti processors, manufactured by Lenovo, Beijing, China. The loss function utilized
was cross-entropy, with L2 regularization applied to enhance generalization. The Adam
optimizer was used, with a learning rate of 0.001 and a dropout rate of 0.5. A 10-fold
cross-validation method was used. To determine the optimal number of iterations for
subsequent experiments, a range of values was assessed, and epoch = 50 was chosen based
on the achieved accuracy of the model. The outcomes of the comparative analysis are
presented in Table 3.

Table 3. Experimental comparison for different epoch cases.

Epoch Test Accuracy (%)
(2-Class) F1-Score Test Accuracy (%)

(4-Class)

50 97.84 96.61 88.46
100 97.53 96.49 86.93
150 96.81 95.12 86.10
200 97.04 96.83 85.79

Various performance metrics can be employed to assess the performance of a system.
Although accuracy is widely used as the evaluation criterion to indicate the percentage of
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correctly predicted samples, it is not always the most appropriate metric, particularly in the
case of imbalanced data. In this regard, the F1-Score is used as an additional performance
metric in this study. The F1-Score, which is the harmonic mean of precision and recall, is a
statistical measure that assesses the accuracy of a binary classifier. Specifically, the equation
for F1-Score is expressed as follows:

Acc =
TP + TN

TP + TN + FP + FN
(25)

Pre =
TP

TP + FP
(26)

Rec =
TP

TP + FN
(27)

F− score =
2× Pre× Rec

Rec + Pre
(28)

where TP and TN indicate that the data labels are positive and negative classes, respec-
tively, and are consistent with the recognition results, and FP and FN indicate that the
data labels are positive and negative classes, respectively, but are inconsistent with the
recognition results.

4.3. Emotion Recognition Binary Classification Experiment

To verify the efficacy of the feature extraction method proposed in this article, we
selected EEG features that lacked frequency feature extraction and spatial transformation
and compared them to the method outlined in this paper. For each set of features, we
performed two- and four-classification tasks on the dataset. The set of features lacking
frequency feature extraction and spatial transformation is referred to as the “baseline
features” throughout this study, the detailed extraction process is shown in Figure 10.
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Figure 10. Baseline feature extraction process.

To ensure the maximum effectiveness of the proposed method, the same baseline
removal, window segmentation, and frame-segmentation processes were applied to the
baseline features. The resulting data form of Xtrial.rmov obtained from 32 channels of the
subject is 32× 60× 128, and window segmentation generates the window fragment data Xi

S.
The data form of Xi

S is 32 × 5 × 128. Then, Xi
S is divided into five frequency bands, and its

data form is expanded to 32 × 5 × 128 × 5. To extract complete sample timing information
and then carry out the time-length 0.5 s framing process, the form is transformed to
32 × 0.5 × 128 × 5. The five data bands are superimposed in the dimension to convert
them into a three-dimensional matrix sequence of size 5 × 32 with a sequence length of



Appl. Sci. 2023, 13, 6761 15 of 22

64 (0.5 × 128) so that each frame enters the convolutional coding module proposed in this
paper in the form of 5 × 32 × 64. The important temporal features of EEG bands in matrix
sequence data are extracted by Bi-LSTM, and the results of the binary classification on the
dataset are shown in Figure 11 below:
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Figure 11. (a) Valence dimension recognition results; (b) arousal dimension recognition results;
(c) dominance dimension recognition results; and (d) liking dimension recognition results.

The average training and testing accuracies of binary classification for the four evalua-
tion metrics were 98.99% and 94.43%, respectively.

To enhance the spatial representation of the EEG signal, this paper employs a detailed
transformation technique that maps the frequency band’s sequential signal into a two-
dimensional matrix. This approach rectifies the loss of spatial information in the baseline
features. Additionally, the more indicative frequency features, namely, DE and PSD, are
utilized as the matrix element values to substitute for the sub-band amplitudes in the
baseline features. The results of the binary classification on the four DEAP dataset metrics
are displayed in Figure 12 below.
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Figure 12. (a) Valence dimension recognition results; (b) arousal dimension recognition results;
(c) dominance dimension recognition results; and (d) liking dimension recognition results.

It is evident that the average accuracy of the suggested feature extraction method in
this article is 99.21% and 97.84% for training and testing in valence, arousal, dominance,
and liking states, respectively. This is approximately a 3% improvement over the test
accuracy of baseline features.

4.4. Experiment on Four Classes of Emotion Recognition

There were 32 subjects, 40 groups of affective experiments per subject, and
1280 data groups in total. They were labelled and categorized according to four modalities:
LALV, LAHV, HALV, and HAHV. Among them, the baseline features have 88.92% and
84.70% training and testing accuracy on the four classifications, respectively, and the feature
extraction approach proposed in this article has 90.15% and 88.46% training and testing
accuracy, respectively, on the model. The test accuracy improved by nearly 4% compared
to the baseline features. The results are shown in Figure 13.
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4.5. Ablation Experiments

In Section 3.2, three forms of electrode mapping were proposed to determine the
optimal mapping method for the deep learning model presented in this article. The
performances of these mapping methods were experimentally compared, and the results
are presented in Table 4. The sensitive transformation method, which includes more precise
electrode locations and provides spatial information that is more consistent with emotional
neural features, yielded the highest accuracy. Furthermore, the time consumption of this
method was comparable to that of the compact mapping method and approximately one-
third of that of the sparse mapping method. Therefore, considering both time and accuracy,
the sensitive transformation method is the most suitable approach.

Table 4. Experimental comparison of different mapping methods.

Shape
Valence Arousal Valence–Arousal

Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s)

Compact Mapping 8 × 9 97.09 89 s 96.85 86 s 87.59 93 s
Sparse Mapping 19 × 19 97.32 255 s 97.06 247 s 88.07 262 s

(Ours) 9 × 9 98.12 95 s 97.72 91 s 88.46 103 s

The present study focuses on the recognition task by employing window segments as
samples, which depends on the interframe correlation to extract temporal features. The
selection of an appropriate time window and frame length is crucial, and thus, this study
conducts experiments to determine optimal values. The accuracy of the model is compared
for different values of u and t, as presented in Table 5.

Table 5. Experimental comparison of different time windows and frame lengths.

DEAP–Valence DEAP–Arousal Valence–Arousal

t = 0.25 s t = 0.5 s t = 1 s t = 0.25 s t = 0.5 s t = 1 s t = 0.25 s t = 0.5 s t = 1 s

u = 3 s 95.87% 96.62% 94.08% 95.85% 96.23% 93.83% 87.98% 88.11% 85.38%
u = 4 s 96.83% 97.53% 95.02% 97.15% 97.64% 94.58% 88.12% 88.20% 85.05%
u = 5 s 97.43% 98.12% 95.90% 97.30% 97.72% 95.82% 88.30% 88.46% 85.46%
u = 6 s 95.82% 96.72% 95.17% 96.57% 96.89% 94.53% 87.95% 88.14% 85.49%
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Based on the results, it is apparent that the optimal classification performance for
the DEAP dataset was achieved when u = 5 s and t = 0.5 s. Regarding binary valence
and arousal, the maximum difference in accuracy was 4.04% and 3.89%, respectively, and
the maximum difference in the four classifications was 3.41%. For window segments of
different lengths, the increase in the number of frames enables Bi-LSTM to extract richer
temporal information. t = 0.25 s/0.5 s will be higher than the accuracy of 1 s frame division
for the same window segment. However, when t = 0.25 s, the doubling of the number of
frame sequences does not bring a continuous increase in accuracy, and the overall accuracy
is close to the experimental data for t = 0.5 s, but the computational effort of the network is
greatly increased.

Furthermore, although the proposed model approach in this paper showed good
performance for both binary and four classifications, the effectiveness of individual modules
within the model remains unknown. To address this issue, we designed five models
with different structures for ablation experiments, and their compositions and results
are presented in Table 6. The task identification of all models is based on 4D features
designed in this paper, and the baseline CNN is designed without an attention mechanism.
The unspecifically labelled LSTM model takes the output of the last time step as the
input to softmax. For the binary classification task, the combined CNN and LSTM model
achieves an average accuracy of 84.45%, indicating that the combined model can integrate
the temporal–frequency–spatial information of the multidimensional features well and
produce good results. Bi-LSTM overcomes the limitation of LSTM in learning sequences
only sequentially by learning sequences in both directions and combining the hidden
layer states to determine the output results, which improves accuracy by approximately
4% compared to the CNN-LSTM model. SENet can focus on important channels in the
feature matrix and improve model accuracy by assigning different weights. FcaNet uses
two-dimensional discrete cosine variations to compress the feature map, avoiding the loss
of frequency components caused by SENet and improving accuracy by 2% at a subtle
computational cost. Additionally, to highlight the importance of different frame moments
in the sample, the weighted sum of all time step hidden layer states is chosen as the output,
achieving the best accuracy of 94.58%.

Table 6. Ablation experiments for different structural models.

Methods Metrics Accuracy (%)
(avg)

Training
Time (s)

Testing
Time (s)

CNN-LSTM

Valence
Arousal

Dominance
Liking

84.45 90.51 11.67

CNN-BiLSTM

Valence
Arousal

Dominance
Liking

88.53 93.05 12.26

CNN-SENet-BiLSTM

Valence
Arousal

Dominance
Liking

90.02 86.20 11.47

CNN-FcaNet-BiLSTM

Valence
Arousal

Dominance
Liking

92.25 88.57 11.82

Ours

Valence
Arousal

Dominance
Liking

94.58 89.43 11.87
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4.6. Experimental Comparison

In conclusion, the proposed approach is compared with models from other refer-
ences in the literature, as shown in Tables 7 and 8. In binary classification, some studies,
such as [10,11], applied only 1D convolution to extract temporal information in EEG data,
whereas Xu [20] constructed 3D spatial–frequency features of DE and selected a fully convo-
lutional residual network recognition model, and Saha [27] used 3D convolutional kernels
to extract and process the spatiotemporal features of EEG data. However, none of the
above networks fully considered the feature information of the three dimensions, and their
average accuracies were lower than the combined model of references [23,24,26], except
for the studies where Xu [20] and Saha [27] used channel attention to augment the model
accuracy. These findings demonstrate that attention mechanisms and consideration of mul-
tidimensional information are significant for the performance improvement of recognition
systems. In this article, we employed Bi-LSTM based on LSTM to learn sequence signals
for future sentiment information and used FcaNet to compensate for the shortcomings of
SENet. Consequently, we achieved the best accuracy of 98.10% for binary classification.

Table 7. Comparison of different deep learning methods for binary classification.

Literature Metrics Dataset Features Test Accuracy
(%)

F1-Score
(%) Methods

Wang Z [13] Valence
Arousal DEAP Temporal 83.97

83.72 N/A Multiscale CNN

Singh K [14]

Valence
Arousal

H/M/L valence
H/M/L arousal

DEAP Temporal
91.31 (avg)

---
89.32 (avg)

N/A 1DCNN-Bi-
LSTM

Bai Z [22]
Valence
Arousal

Negative/neutral/positive

DEAP
---

SEED

Spatial
Frequency

88.75 (avg)
---

90.04 (avg)
N/A CNN (DC + PC +

Residual)

Xu X [23] Negative/neutral/positive SEED Spatial
Frequency 96.01 (avg) N/A

CNN (channel
attention +
Residual)

Meng M [26]
Valence
Arousal

Negative/neutral/positive

DEAP
---

SEED

Frequency
temporal spatial

94.85
94.43

---
94.16 (avg)

N/A VGG16-LSTM

Li Q [27]
Valence
Arousal

Negative/neutral/positive

DEAP
---

SEED

Frequency
temporal spatial

95.02
94.61

---
95.49 (avg)

96.29
95.72

---
95.57

CNN-ON-LSTM

Zhang Y [29]
Valence
Arousal

Negative/neutral/positive

DEAP
---

SEED

Frequency
temporal spatial

85.86
84.27

---
92.47 (avg)

N/A CNN-attention
LSTM-attention

Saha O [30] Valence
Arousal DEAP Temporal

Frequency
97.06
97.34 96.39 3DCNN-channel

attention

Ours

Valence
Arousal

Dominance
Liking

DEAP Frequency
temporal spatial 97.84 (avg)

97.22
97.02
97.17
97.11

CNN-BiLSTM-
FcaNet
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Table 8. Comparison of different deep learning methods for four classifications.

Literature Metrics Dataset Test Accuracy (%) Methods

Zubair [7] H/L V-A DEAP 45.40 mRMR

Guptal [8]
H/L V-A

Negative/neutral/positive
On beta gamma

DEAP
---

SEED

71.43
---

83.33 (avg)
FAWT-SVM

Aguiñaga [9] Valence/arousal
H/L V-A DEAP 84.20 (avg)

80.90 WP-NN-SVM

Mei [21]

Valence
Arousal
H/L V-A

Theta alpha gamma

DEAP
83.60
83.0

73.10
CNN

Sharma [39]
Valence
Arousal

H/L V-A
DEAP

84.16
85.21
82.01

PSO-BiLSTM

Chao [40]
Valence
Arousal

H/L V-A
DEAP

85.53
85.88
76.77

Multiscale CNN

Ours H/L V-A DEAP 88.46 CNN-BiLSTM-FcaNet

In the context of the four-classification task, prior works such as those in [4–6] utilized
wavelets to extract time–frequency features for emotion recognition using SVM and mRMR
algorithms. However, these methods did not incorporate the spatial information and
dynamic temporal features of EEG. Mei [18] and Chao [36] represented features by con-
structing a connectivity matrix of brain structures, followed by extracting spatial features
using CNN. Similarly, PSO-BiLSTM [35] utilized DWT to decompose the signal, applied a
third-order cumulant transformation to a high-dimensional space, and then reduced the
dimension to eliminate redundancy. However, this approach also did not consider spatial
feature learning. In contrast, the four-dimensional data used in this paper contain more
information than the two- and three-dimensional data used in prior works. Furthermore,
the proposed approach in this article constructs a combined network that can adapt to
multidimensional features and extract spatial–frequency and temporal features. It also em-
ploys the more advanced FcaNet and fully considers information from all frame moments.
These advantages make the proposed method more effective compared to those in prior
examples in the literature.

5. Conclusions

This study proposes a cascaded convolutional recurrent neural network based on
multidimensional features for emotion recognition. To address the limitations of the
previous literature, a 4D matrix is constructed to incorporate emotional features of the
signal in the temporal, frequency, and spatial dimensions. Additionally, a hybrid deep
learning model is proposed to better fit the extracted feature matrix. The convolutional
encoder is mainly used to extract spatial–frequency features from 4D input data, and the
residual network composed of DC and PC improves the real-time performance of the
recognition system. FcaNet assigns more accurate weights to different feature channels at a
negligible computational cost, allowing useful feature information to be further highlighted.
Finally, to emphasize the temporal significance of the frame windows in the sample, the
weighted sum of the hidden layer states of the Bi-LSTM at all frame moments is utilized
as input to the softmax layer. The experimental results demonstrate that the proposed
method in this paper performs well compared to the rest of the literature, with an average
accuracy of 97.84% in the two classification experiments and 88.46% in the four-classification
experiments. In future work, we will explore a more expressive feature extraction method
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and apply a more streamlined network to the recognition task, making emotion recognition
more rapid in the HCI domain.
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