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Abstract: At the very deepest molecular level, the mechanisms of life depend on the operation of
proteins, the so-called “workhorses” of the cell. Proteins are nanoscale machines that transform
energy into useful cellular work, such as ion or nutrient transport, information processing, or
energy transformation. Behind every biological task, there is a nanometer-sized molecule whose
shape and intrinsic motions, binding, and sensing properties have been evolutionarily polished for
billions of years. With the emergence of structural biology, the most crucial property of biomolecules
was thought to be their 3D shape, but how this relates to function was unclear. During the past
years, Elastic Network Models have revealed that protein shape, motion and function are deeply
intertwined, so that each structure displays robustly shape-encoded functional movements that can
be extraordinarily conserved across the tree of life. Here, we briefly review the growing literature
exploring the interplay between sequence evolution, protein shape, intrinsic motions and function,
and highlight examples from our research in which fundamental movements are conserved from
bacteria to mammals or selected by cancer cells to modulate function.
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1. From the Structure–Function Paradigm to Structure–Motion–Function

Over 60 years ago, Anfinsen’s postulate that “the native secondary and tertiary struc-
tures are contained in the amino acid sequence itself” [1] laid out the foundations of the
central dogma of structural biology, i.e., that the sequence of a protein contains the in-
formation required to adopt a defined 3D-structure and, hence, function (see historical
overview in [2]). This so-called structure–function paradigm was formulated during the
time when biomolecular crystallography was flourishing. According to Martin Karplus,
X-ray crystallography created “the misconception . . . that the atoms in a protein are fixed
in position” [3]. This view is also shared by cryo-EM pioneer Joachim Frank, who wrote
that “the idea of “a” molecular structure has been largely created by X-ray crystallographic
practice” [4]. As a consequence, a static view of proteins, in which one sequence folds into
a unique “native conformation” responsible for function, became prevalent. Nevertheless,
an alternative, dynamic view of proteins as an ensemble of conformations, more akin to
the principles of physics, had been proposed long before by Pauling, Landsteiner, and
others in the 1930s [5]. Fast forward in time to our days, and this early dynamic vision
appears prescient. As our technology to capture proteins in action evolved (NMR, cryo-EM,
etc.), it became clearer every day that proteins do not fold into a single static “native”
structure, but are rather dynamic machines in continuous motion that explore complex and
rugged energy landscapes [6], transitioning between multiple meta-stable minima. Such
transitions encompass a wide hierarchy of time and length scales—from picosecond atomic
fluctuations to microsecond or millisecond allosteric changes or breathing motions—and,
importantly, are instrumental for proteins to sense and respond to environmental signals
like ions or ligands [6–8].

Protein motions not only mediate or execute biological work—channel gating, ion
pumping, transport, etc.—but also reshape interactions with other partners. Therefore, they
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are central for molecular recognition [9–11], no matter whether it involves conformational
selection or induced fit [12,13]. Even eminently local processes such as enzyme catalysis
can involve dynamic changes such as side chain fluctuations or the unfolding of binding
sites [14–16]. For intrinsically disordered proteins, flexibility is so extreme that the classical
concept of a discrete number of well-defined native 3D shapes or conformers becomes
almost meaningless; they can only be statistically described as ensembles of interconverting
conformations [17,18]. Nevertheless, a majority of proteins fall in the middle ground
between perfect rigidity and chaotic disorder, a boundary where discrete rigid domains
or subunits exquisitely rearrange in response to signals. Cooperative motions, allosteric
propagation, and large-scale conformational changes spontaneously emerge from this
frontier of harnessed flexibility to create function, as pioneering work by Dorothee Kern
showed [16].

Back in 1987, Elber and Karplus first noted the similarity of MD fluctuations with
evolutionary changes across the globin family [19], inaugurating a fruitful line of evolu-
tionary and structural dynamics comparisons to this day. Since then, structural data have
grown exponentially, and Elastic Network Models (ENMs) [20–23] have revealed that such
fluctuations are largely defined by molecular shape and determine functional motions.
Overall, this has led to a new structure–motion–function dogma, where molecular shape
determines intrinsic motions, and motions make function, a concept increasingly supported
via cryo-EM ensembles [24,25]. Therefore, it is time to ask: if molecular motions mediate
function, are they maybe a key object of evolutionary selection? Here, we briefly review
evidence from structural biology and ENMs research, that points to shape-encoded motions
as an essential matter for evolution.

2. ENMs Overview and the Surprising Accuracy of Shape-Encoded Harmonic Motions

A central problem in the study of protein dynamics has always been the difficulty
of capturing motion, i.e., fully sampling conformational spaces. Protein flexibility is
challenging to trap, describe, and predict, both experimentally and computationally [26].
Despite advances in hardware and algorithm parallelization, fully atomistic Molecular
Dynamics (MD) simulations are still only feasible for ns–µs timescales and middle-sized
proteins. To gain insight into the mechanisms of bigger sub-mesoscopic systems or the slow
large-scale transitions associated with biological function, the physical description needs to
change accordingly to lower-resolution Coarse-Grained (CG) models. Among the plethora
of CG methods to model the dynamics of proteins, ENMs stand out as possibly the most
simple and powerful, considering the balance between their minimal computational cost
and striking predictive power. ENMs can be described as the CG flavor of Normal Mode
Analysis (NMA), a classical mechanics technique used since the 1940s–1950s to analyze
the vibrational spectra of simple molecules [27,28]. Soon after the first MD simulations, in
1982–1983 [29–33], NMA was applied for the first time to proteins to gain insight into their
near-equilibrium dynamics. Instead of numerically solving Newton’s equations as MD
does, NMA assumes the harmonicity of the system around an energy minimum and, thus,
through diagonalization of the mass-weighted Hessian matrix, allows the computation
of a unique analytical solution, i.e., a set of linearly independent Normal Nodes (NMs)
(see details in [21,34]). NMs are a series of eigenvectors (νi) ordered by their eigenvalues
or frequencies (λi), that describe the natural motions of the system. Importantly, the first
5–10 ones, the so-called lowest frequency, “soft” or “slow” modes, capture the largest
amplitude, more collective, and energetically “easiest” movements, which usually coincide
with the experimentally and biologically relevant ones, as we will discuss below.

Despite its simplicity versus MD, NMA was still computationally heavy for large
systems, as it required energy minimization and significant memory resources for matrix
diagonalization. Inspired by early “random networks” and “beads-and-springs” polymer
models developed by Flory and Rouse [35,36], ENMs took the simplification of NMA one
step further, replacing detailed physical force fields with a minimalist representation of
proteins as networks of residue nodes connected with elastic springs, devoid of chemical
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or sequence information. Moreover, the system was assumed to be already at a minimum,
skipping energy minimization. The first ENM [37] was still an all-atom model but with a
simple pairwise Hookean potential: the native structure was defined as the minimum, and
detailed interactions were replaced with a squared potential and a uniform constant within
a cutoff. Shortly after, Bahar’s one-dimensional Gaussian Network Model (GNM) [38]
introduced the coarse-graining of structures to the Cα trace, and finally, the Anisotropic
Network Model (ANM) [39] combined Tirion’s 3D-model with GNM coarse-graining,
becoming the basis for most ENM methods nowadays [22,40]. The similarity of the motions
described using coarse-grained ENMs with the atomistic Tirion’s model, and of Tirion’s
with classical NMA based on accurate molecular potentials, was initially puzzling. How
can such minimal one- or two-parameter models reproduce the vibrational properties of
a complex macromolecule? The answer lies in the fact that soft modes involve coherent
motions of large groups of atoms, and thus are mostly defined by the overall mass/domain
architecture. For that matter, CG and atomistic mappings are nearly equivalent.

ENM–NMA can have apparent simplicity—with “toy” ad hoc force fields and the
naïve assumption that structures are in an energy minimum—but it is often unsurpassed
in the prediction of experimentally observed large-scale conformational changes (Figure 1,
center). There have been endless studies comparing ENMs with functional transitions
between bound/unbound, active/inactive and open/closed pairs derived from X-ray con-
formers, NMR ensembles, etc., which show that the lowest-frequency modes are indeed
both biologically and functionally relevant [41–44] and can unravel complex allosteric
mechanisms [45], even for subtle transitions such as those seen in GPCRs [46–48]. Protein
conformational changes often involve large rigid-body motions, e.g., domain swapping,
hinge-bending, or shear movements, which are strikingly well described via a small num-
ber of ENM modes [49–51]. An early study on the first database of molecular motions,
MolMov [52], determined that 95% of experimentally observed transitions can be described
using just a couple of soft ENM modes. Further benchmark studies have confirmed that
large-scale motions also coincide with the collective modes extracted from MD simulations
or experimental ensembles [53–57] via Principal Components Analysis (PCA, see [58–60]).
Systematic comparison with MD of representative meta-folds in the MODEL database as
well as with experimental data [61,62] confirmed that ENMs are extremely robust to spring
definitions and perform exceedingly well in predicting large-scale transitions, occasionally
surpassing MD simulations.

Nevertheless, as often happens with CG models, a major weakness of ENMs is the lack
of a consistent and universal consensus on force-field parameterization, i.e., the functions
used to determine the “springs” connecting different residues or “beads”. This has both
positive and negative aspects. On one hand, although ENMs can predict the preferred
directions for conformational change, the time and length scales of the motions (i.e., the
magnitudes of the eigenvalues) are usually arbitrary. On the other, and paradoxically, this
weakness reflects their major strength: ENMs are determined by protein shape, topology,
and local packing density, and are thus insensitive to fine details. Despite these shortcom-
ings and their dramatic simplicity, soft ENM modes are surprisingly accurate at predicting
anharmonic, far-from-equilibrium transitions [20,40]. Together with the lack of a solvent
and thus damping, this was initially a major point of controversy, questioning the validity
of both NMA and its CG approximation [63]. What is the time and length scale of NMs?
How can harmonic NMs capture anharmonic, damped and slow transitions over high
energy barriers? It has been argued that proteins oscillate around the equilibrium, with
energy increasing as they stretch along NMs’ directions. This could elegantly agree with a
dynamical systems perspective, as the Kolmogorov Arnold Moser (KAM) theorem assures
the persistence of quasi-periodic motions under small perturbations [21,64]. Under this
view, NMs would define major directions around a potential well, that hold relatively
far from equilibrium. Following these, the high energy states reached would be further
stretched and stabilized by different ligands or signals capable of “tipping” the free energy
landscape (the so-called pre-existing equilibrium model [65,66], experimentally observed
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in enzymes [16]). Already in the 1990s, MD studies showed that indeed, the energy surface
probed via simulations is well-approximated by a rescaled version of the harmonic poten-
tial [67,68]. Recent work has related anharmonicity to mode collectivity: low-frequency
modes that are collective enough, remain harmonic even for large displacements and better
correlate with experimental transitions [69]. The power of ENMs to explore the boundaries
of free energy minima is thus being more and more recognized, to the point that they
are now used to enhance sampling via MD [70]. Regarding the timescales question, it is
clear that NMs cover all the protein motion timescales, from MHz (µs) large-scale motions
to 1–10 THz (ps) backbone/atomic vibrations. However, the actual NM eigenvalues are
typically meaningless and need rescaling, with few exceptions like the nearest-neighbors
ED-ENM model [54]. Apart from this arbitrary amplitude of single modes, ENM–NMA
tends to spread variance at higher frequencies in comparison to MD Essential Dynamics
(ED) modes [58,71], probably as a consequence of the absence of damping. Our ED-ENM
model [54], developed from database-wide comparisons with MD force fields, attempted
to solve these issues by fitting spring functions not only to predict conformational changes
but also to obtain realistic amplitudes for the eigenvalues and their distribution (i.e., the
actual time and length scales in solution). This study also revealed that even extremely
simple ENMs, just connecting the first three neighbors in the peptide chain, can predict
MD and experimental flexibility, which critically depend on peptide backbone topology
and local cohesiveness.

In brief, despite their many weaknesses—inconsistent parameterization, arbitrary time
and length scales, lack of damping—the ability of ENMs to track functional large-scale
motions—regardless of CG levels, spring definitions, or any sequence or local details—is
stunning. Precisely in this fact lies the greatest physical insight they reveal: that proteins’
overall packing, local connectivity, and shape determine intrinsic collective motions that
poise them for function. These motions hold far beyond equilibrium and also across
extremely long evolutionary scales, as we will discuss now.
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grams comparable to those derived from sequence and structural similarity; see Ref. [72]. 
(b) Perturbative ENM suggests structural divergence relates more to mutational sensitiv-
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Figure 1. Shape-encoded ENM Normal Modes (NMs) and protein dynamics evolution examples from
recent literature. (a) Signature Dynamics (SignDy) allows to build dynamics-based dendrograms
comparable to those derived from sequence and structural similarity; see Ref. [72]. (b) Perturbative
ENM suggests structural divergence relates more to mutational sensitivity (RMSDMM) than selection
(v), which only deepens the profiles. See details in Ref. [73]. (c) Prokaryotic–eukaryotic conservation
of NMs coupled to function and (d) Mutational convergence to favor an NM transition towards an
oncogenic intermediate characterized by the exposure of a cryptic epitope (purple circle). See also
the discussion in Section 4 and further details in Figure 2 and Refs. [74,75], respectively. Images (a,b)
have a Creative Commons Attribution License and (c,d) are adapted by the author from her work.
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outward and inward states. Right: Projections onto PC1 of the experimental ensemble track the con-
formational inward-to-outward pathway and assigns the conformational status of the solved struc-
tures along it. (b) ENM of the mammalian NHE9 structure and derived “elevator-like” NM. (c) Sim-
ilarity between NMs, PC1 and the prokaryotic NapA transition are all above 70%, despite the low 
sequence identities. Overlaps between vectorial spaces shaded in gradient; note that overlaps 
around 20% are considered random and from 40–50% significant. Adapted from figures and data 
by L. Orellana in Ref. [74], under the Creative Commons Attribution 4.0 License. 
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Figure 2. A closer look at CPA exchangers’ “elevator modes” conserved from bacteria to mammals.
(a) Left: Core alignment between a mammalian exchanger, NHE9 (black) and distant bacterial
homologs NapA, PanNhaP and MjNhaP1 (sequence identity ≈ 20%). The first principal component
(PC1) of this ensemble of n = 8 structures renders the well-known “elevator-like” motion that
distinguishes outward and inward states. Right: Projections onto PC1 of the experimental ensemble
track the conformational inward-to-outward pathway and assigns the conformational status of the
solved structures along it. (b) ENM of the mammalian NHE9 structure and derived “elevator-like”
NM. (c) Similarity between NMs, PC1 and the prokaryotic NapA transition are all above 70%, despite
the low sequence identities. Overlaps between vectorial spaces shaded in gradient; note that overlaps
around 20% are considered random and from 40–50% significant. Adapted from figures and data by
L. Orellana in Ref. [74], under the Creative Commons Attribution 4.0 License.

3. Lowest-Frequency Modes and Evolution

At the macroscopic level, we can easily appreciate how form, biological motion, and
function evolve together under the laws of physics, shaping animal and plant morpholo-
gies [76]. Evolution seems to select the shapes best suited to perform functional motions. In
the molecular world, if we assume the structure–motion–function paradigm, i.e., from mo-
tion comes function, it just follows to wonder whether evolution is selecting dynamics and
resulting function rather than sequence or shape. Is there evidence of direct evolutionary
pressure on protein motion? It is in this arena—where molecular evolution meets protein
biophysics—that conformational dynamics becomes central [77]. Lowest-frequency modes
allow for quantitative comparisons of the dynamics linked to function between similar
cores [78], which are shedding new light on these questions.

Back in the 1980s, as soon as enough structures accumulated in the Protein Data
Bank, it emerged that homologous proteins share similar folds, but this similarity wanes
with increasing evolutionary distance [79,80]. Still, in practice, proteins with sequence
similarities as low as 20% can display identical cores. The space of protein sequences is
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known to be much larger than that of structures, close to optimal [81] and restrained by the
length, stability, and topology of each fold [82]. Importantly, from this fact, it also follows
that structural folds, i.e., protein shapes, are highly robust against mutations. What about
conformational spaces? ENMs have revealed that each structure preferentially samples
a limited set of elemental motions; the shape determines the conformations/motions,
and the motions define the function. Being defined by global shape, soft modes are also
incredibly robust to perturbations like mutations [83] or local structural features, and
therefore hold across protein families and even remote homologs. Hence, when two
sequences have low but sizeable sequence similarity, they often share a common core,
motions, and probably function [84]. Moreover, proteins sharing one similar conformation
often share other conformations, i.e., their conformational spaces are conserved, a concept
exploited to predict new conformers or model conformational changes [85]. Therefore, we
could argue that, in the same way the sequence space is bigger than the structure space,
the structure space is bigger than the motion space—and this inversely relates to fold and
function robustness.

Based on mounting evidence from ENMs [20] and parallel studies on residue flexibil-
ity [86], protein global dynamics has been suggested to be maximally conserved versus
sequence and structure. Nevertheless, the degree of conservation of conformational spaces
as well as the contributing factors are unclear. Due to the entanglement of function, motion,
and shape, together with protein biophysical and evolutionary constraints, the issue is
intensely debated [87–89]. There are two central questions to be addressed: Is it function
that primarily drives the conservation of dynamics? Or is it due to physical constraints such
as stability, topology, local packing, etc., or properties like mode energies or robustness?
What about evolutionary constraints such as population sizes, mutational rates or bias?
In other words: are soft modes conserved because they are functional or because they are
energetically “easy” and robust? Probably, the truth is in the middle.

Evidence for direct evolutionary pressure on normal modes is still scarce, as quantita-
tive comparisons of functional dynamics are relatively recent [78]. It has been proposed
that there is negative selection against the divergence of functionally important modes,
while other studies suggest that they are conserved just because they are more robust
to mutational perturbations (Figure 1a,b). Soon after ENMs were developed, it became
evident that proteins with similar architecture shared similar motions [90]. Early studies on
the evolution of soft modes, led by Ortiz and colleagues, focused on how structural cores
modify their shape across homologous proteins [91–93]. These pioneering works revealed
significant similarity in the conformational ensembles explored within a superfamily and
the soft modes, i.e., proteins seem to evolutionarily diverge along soft modes or, vice versa,
protein topology constrains evolutionary divergence. In parallel, Echave also showed that
the lowest-frequency modes are conserved in homologous proteins [94], and there is a sig-
nificant correlation between mode collectivity and its conservation [95]. The conservation
of lowest-frequency modes is apparent in residue fluctuation patterns, which can be easily
aligned for homologous proteins [96]. Some studies have also pointed out that protein
sites evolve at different rates depending on properties such as their solvent accessibility,
packing density, and flexibility [97,98]. In general, there is an inverse relation between local
flexibility and evolutionary rates [99] i.e., exposed and flexible loops are less conserved than
cores or rigid regions [100], which can act as hinges for global motions. Consequently, ENM
analyses show clear correlations between sequence evolution and structural dynamics,
especially relevant for hinge regions [100,101]. These rigid regions are so critical that hinge
migration has been proposed as a mechanism for protein evolution [102]. Moreover, cancer
and disease-related mutations tend to focus on hinge-like areas [103,104]. Therefore, ENM
dynamics is a key predictor of functional impact for point mutations [105,106] as well as
for insertions and deletions [107], further discussed below.

Importantly, even in the case of random mutations, structural changes correlate with
the lowest frequency modes [108], as happens also for ensembles of the same protein deter-
mined in different experimental conditions [109]. Perturbative ENMs indicate that the con-
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servation of soft modes might arise precisely from their robustness against mutations [110]
and, conversely, structural divergence is proportional to mutational sensitivity [73]. Only
mutations targeting critical regions such as rigid hinges could thus have the potential to
change ENM mode patterns and function, causing either disease or driving evolution.
The majority of changes would have no effect due to mode robustness, which would be
the primary factor for evolutionary conservation. Apart from mode robustness, protein
modularity and size also contribute to the overlap between the NMs and evolutionary
modes and explain their low dimensionality, according to recent studies [111]. Altogether,
these studies point out that biophysical properties are key for mode conservation.

Nevertheless, the functional motions observed experimentally seem to correlate with
the soft modes more than expected based on just their amplitude and energies, indicating
that selection plays a central role [112]. ENM studies indicate that selection guides sequence
evolution to favor dynamical properties required for function, such as allosteric behavior or
protein–protein interactions [113,114]. An exhaustive study by the Bahar group on nearly
27 K proteins representing 116 CATH superfamilies [72] characterized the cooperative
mechanisms and convergent/divergent features that underlie the shared/differentiated
dynamics of family members, developing an integrated pipeline to evaluate the signa-
ture dynamics of families based on ENMs (SignDy). They confirmed that global lowest-
frequency modes of motion are conserved within a family, but there is a subset of motions
that sharply distinguishes subfamilies at low-to-intermediate frequencies and is responsible
for functional differentiation. Then, modulation of robust/conserved global dynamics
via low-to-intermediate frequency fluctuations could be a versatile mechanism ensuring
fold adaptability and subfamily specificity, subject to both positive and negative selection.
Finally, taking one step further with this “selectionist” view, recent works have attempted
to predict functional dynamics directly from sequence evolutionary couplings, skipping
structures altogether [115].

4. Examples of Evolutionary Conservation, Convergence and Divergence

As we have seen, it is extremely difficult to disentangle the relevance of sequence,
structure, and dynamics for evolutionary selection as they are intertwined. Database-wide
comparative quantitative studies of protein dynamics are essential, but it is also impor-
tant to keep in mind that, in the biological realm, “the devil can be in the details”, and
a closer look at key conserved systems can be illuminating to understand how and to
what extent evolution polishes protein shape and motions (Figure 1c,d). This is especially
true for proteins executing the most fundamental life processes, prevalent in almost all
living species; it is also true for the disease almost intrinsic to the mechanisms of pluri-
cellular life, cancer, which can be viewed as an evolutionary process in miniature [116].
For example, it is well known that cells critically depend on pH and ion homeostasis, as
well as membrane transport. Unsurprisingly, solute carriers and ion channels mediating
these processes are incredibly well conserved from bacteria to humans, despite diverging
2–4 billion years ago [117,118]. Despite very low sequence identities, prokaryotic and
eukaryotic versions of proteins such as cation/proton antiporters (CPAs), major facilitator
superfamily transporters (MFSs), or pentameric ligand-gated ion channels (PLGICs), are
incredibly conserved from a structural and conformational point of view. CPAs mediate the
exchange of protons and monovalent cations such as Na+ or K+, while MFS facilitates the
movement of small solutes in response to gradients through cell membranes. Both MFSs
and CPAs operate through an alternating-access mechanism, which requires a transition
between states, where the substrate-binding site is exposed to opposite sides of the mem-
brane alternately [119]. Structures show that MFSs follow a “rocker-switch” or “rocking
bundle” mechanism, where the substrate-binding site is located at the interface of the
so-called “transport” and “scaffold” domains. In contrast, CPAs work through an “elevator
mechanism”, where the substrate-binding site is confined largely to a single “transport”
domain that traverses the membrane along a relatively rigid, immobile, and central “core”.
In the first, the barrier re-shapes and moves across the membrane while the substrate stays,
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while in the second, it stays at a fixed position, and it is the substrate that moves across it.
Both transport mechanisms are dependent on large-scale transitions between the so-called
“inward” and “outward” states. Remarkably, despite sequence identities around just 20%,
structures of the mammal SLC/NHE CPA family of Na+/H+ exchangers bear striking simi-
larity with prokaryotic ones, like those of bacterial Thermus thermophilus NapA, archaeal
Pyrococcus abyssii PaNhaP or Methanocaldococcus jannaschii MjNhaP1. This makes it possible
to extract a highly conserved structural core (756 residues per homodimer) to achieve
an incredibly low RMSD near 3.0 ± 1.3 Å [74], which corresponds to the conformational
transition tracked in the ensemble—when only one conformation is included, RMSD drops
to 2 Å, close to thermal fluctuations (Figure 2 and Table 1). Both bacterial and mammal
structures are thus solved in inward- and outward-facing states, and therefore, their core
ensemble’s main Principal Component (PC, see [26,60]) tracks the elevator motion respon-
sible for transport. Significantly, this motion is also encoded in each one of the proteins:
there is a high overlap (70–80%) between the transitions seen in the prokaryotic–eukaryotic
ensemble and the lowest-frequency ENM modes from every individual member (Figure 2).
Similarly, for MFSs, it is also possible to build a eukaryotic–prokaryotic “core” ensemble
(353 residues) encompassing human, bovine, and rat GLUTs to Plasmodium PfHT1 or Es-
cherichia coli XylE [120], that despite the sequence identity around 30% has an RMSD as
low as 2.7 ± 1.2 Å and extremely similar rocking-bundle movements embedded on each
structure. In the case of PLGICs, the notable resemblance between eukaryotic neurotrans-
mitter channels and their simple prokaryotic counterparts like Gloeobacter GLIC has turned
the latter into the perfect model to study gating mechanisms. As often happens with
ancestral protein machines, their function (channel opening/closing) requires complex
motions (extracellular blooming coupled to tilting/twisting of intracellular pore-gating
helices), which are both embedded in their pentameric ring-like architecture and extremely
conserved across evolution [55,121,122].

Table 1. Sequence, structural and dynamical similarity between mammalian NHE9 and bacterial
proton exchanger NapA 1.

Identity Similarity TM-Score

NHE9—NapA 22% 42% 0.82
Overlap NHE9—NapA NMA 75%

Overlap NHE9—NapA X-ray transition 82%
1 Adapted from Ref. [74].

Finally, another example of evolutionary selection acting on conformation could be
behind mutational asymmetries in cancer, which tend to target signaling proteins. Global
dynamics is a predictor of missense mutation pathogenicity [105,123] and in cancer genes,
it has been shown that mutations tend to cluster in specific functional spots and specifically
hinge regions as determined via ENMs [104]. One striking example is the oncogene EGFR,
which displays a puzzling tissue-specific mutational asymmetry. In brain glioblastoma
(GBM), mutations are highly heterogenous but tend to cluster on the extracellular ligand-
binding domain (ectodomain, ECD), even coexisting in the same tumor. In contrast,
mutations in lung cancer concentrate in the intracellular kinase domain (KD), mostly
focused on the catalytic cleft. This asymmetry results in intriguingly opposite responses
to drugs binding to different KD conformers. Our ENM study of the ECD revealed that
GBM mutations neatly cluster at hinge and interdomain regions, which control a large-scale
conformational change of nearly 25 Å between the closed-unbound and open-bound states.
Further MD simulations revealed that GBM mutations favor spontaneous ECD opening
following the lowest frequency modes, to acquire a transient conformation known to exist
but never trapped experimentally. This ENM/MD intermediate was validated through
structural, in vitro, and in vivo experiments [75,124,125], is shared by missense mutants
from different ECD hotspots, and mimics the configuration of the most frequent change in
GBM, the deletion EGFRvIII (Figure 1d). Specifically, the first tandem repeat of EGFR is
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deleted in EGFRvIII but rotates in missense mutations. The ultimate goal of this remarkable
structural “equivalence” or “convergence” trick is to allosterically activate the KD in a
specific way, distinct from that favored by lung cancer mutations, which explains their
different sensitivity to drugs. Importantly, lung and brain cancer mutations are known to
activate different signaling pathways [126], and our ENM–MD studies suggest that this
is directly governed by the different conformational dynamics they favor. On one hand,
this could be an example of convergent evolution of missense mutations and deletions to
achieve a similar functional outcome, driven by positive selection of those variants that
explore the soft modes opening the structure in a “GBM-preferred” mode. On the other,
the same protein, EGFR, apparently experiences divergent evolutionary trajectories in
GBMs versus lung cancer to fine-tune its conformation and trigger cell growth in different
niches—a potentially compelling case of evolution selecting lowest-frequency dynamics to
modulate function.

In summary, the examples discussed above provide food for thought to question
both the “selectionist-functional” view and the “biophysical-energetical” view of protein
structure and dynamics evolution. Some works have focused on the interpretation of
flexibility patterns under a predominantly evolutionary prism, while others favor the idea
that the main cause of structural–dynamical divergence lies in the physical properties of
proteins, such as their sensitivity to mutations. Observing the degree of conservation in
ancestral proteins such as CPAs over scales of billions of years, despite having sequence
identities in the “twilight” zone, strongly suggests a role for natural selection to keep key
functional, structure-embedded mechanisms intact, especially for those proteins perform-
ing the most fundamental cellular tasks. These intrinsic motions have survived almost
intact, from archaebacteria to the human species, probably because of both their biophysical
robustness and their biological fitness. Conversely, the striking clustering of mutations
observed in cancer proteins to modulate not only their intrinsic dynamics but also their
interactions with other proteins, etc., shows that, at high mutational rates and under se-
lection pressure, evolution can quickly remodel and adapt what we could call protein
“molecular phenotypes” [77], directly determined by their conformational dynamics and
the resulting biological function. Importantly, there is mounting evidence that even local
dynamics coupled to processes such as enzyme catalysis show clear footprints of evolution-
ary selection [127–131]. Looking forward, there are wide opportunities to apply ENMs to
deepen studies of molecular evolution, which can illuminate its connections with protein
biophysics or even guide protein design [132]. From analysis of the conservation of flexible
versus rigid regions and how they relate to function, to evolutionarily classifying proteins
based on their shape-encoded dynamics rather than strict sequence information, ENMs
will allow us to explore the interplay of flexibility and evolutionary changes in the different
kingdoms to an extent never imagined before, even more thanks to the incredibly expanded
structural spaces that AI has opened [133,134].

Overall, we foresee that as experimental and computational evidence accumulates,
and the increasingly active research on ENMs and evolution develops, we might reach
a new paradigm. One in which biomolecular dynamics and, specifically, the large-scale
motions intrinsic to 3D structures, could effectively be considered what biologist Ernst
Mayr called “an object of selection” [135] at the most basic, microscopic scale of life.

Funding: This research was funded by Karolinska Institute, the Swedish Foundations for Cancer
Research (Cancerfonden Junior Investigator Award CF 21 0305 JIA and Project Grant CF 21 1471
Pj), the Swedish Scientific Research Council (Vetenskapsrådet, VR 2021-02248) and the Jeanssons,
Hedlund and Sagen Foundations.

Data Availability Statement: Data used to generate the figures are available upon request.

Conflicts of Interest: The author declares no conflict of interest.



Appl. Sci. 2023, 13, 6756 10 of 14

References
1. Anfinsen, C.B.; Haber, E.; Sela, M.; White, F.H. The Kinetics of Formation of Native Ribonuclease during Oxidation of the Reduced

Polypeptide Chain. Proc. Natl. Acad. Sci. USA 1961, 47, 1309–1314. [CrossRef] [PubMed]
2. Daggett, V.; Fersht, A. The Present View of the Mechanism of Protein Folding. Nat. Rev. Mol. Cell Biol. 2003, 4, 497–502. [CrossRef]

[PubMed]
3. Karplus, M.; McCammon, J.A. The Dynamics of Proteins. Sci. Am. 1986, 254, 42–51. [CrossRef] [PubMed]
4. Frank, J. New Opportunities Created by Single-Particle Cryo-EM: The Mapping of Conformational Space. Biochemistry 2018,

57, 888. [CrossRef] [PubMed]
5. James, L.C.; Tawfik, D.S. Conformational Diversity and Protein Evolution—A 60-Year-Old Hypothesis Revisited. Trends Biochem.

Sci. 2003, 28, 361–368. [CrossRef] [PubMed]
6. Henzler-Wildman, K.; Kern, D. Dynamic Personalities of Proteins. Nature 2007, 450, 964–972. [CrossRef]
7. Karplus, M.; Kuriyan, J. Molecular Dynamics and Protein Function. Proc. Natl. Acad. Sci. USA 2005, 102, 6679–6685. [CrossRef]
8. Karplus, M.; McCammon, J.A. Molecular Dynamics Simulations of Biomolecules. Nat. Struct. Biol. 2002, 9, 646–652. [CrossRef]
9. Amaral, M.; Kokh, D.B.; Bomke, J.; Wegener, A.; Buchstaller, H.P.; Eggenweiler, H.M.; Matias, P.; Sirrenberg, C.; Wade, R.C.;

Frech, M. Protein Conformational Flexibility Modulates Kinetics and Thermodynamics of Drug Binding. Nat. Commun. 2017,
8, 2276. [CrossRef]

10. Tuffery, P.; Derreumaux, P. Flexibility and Binding Affinity in Protein–Ligand, Protein–Protein and Multi-Component Protein
Interactions: Limitations of Current Computational Approaches. J. R. Soc. Interface 2012, 9, 20–33. [CrossRef]

11. Teague, S.J. Implications of Protein Flexibility for Drug Discovery. Nat. Rev. Drug Discov. 2003, 2, 527–541. [CrossRef] [PubMed]
12. Changeux, J.-P.; Edelstein, S. Conformational Selection or Induced-Fit? 50 Years of Debate Resolved. F1000 Biol. Rep. 2011, 3, 1–15.

[CrossRef] [PubMed]
13. Csermely, P.; Palotai, R.; Nussinov, R. Induced Fit, Conformational Selection and Independent Dynamic Segments: An Extended

View of Binding Events. Trends Biochem. Sci. 2010, 35, 539–546. [CrossRef]
14. Thulasingam, M.; Orellana, L.; Nji, E.; Ahmad, S.; Rinaldo-Matthis, A.; Haeggström, J.Z. Crystal Structures of Human MGST2

Reveal Synchronized Conformational Changes Regulating Catalysis. Nat. Commun. 2021, 12, 5721. [CrossRef]
15. Mhashal, A.R.; Romero-Rivera, A.; Mydy, L.S.; Cristobal, J.R.; Gulick, A.M.; Richard, J.P.; Kamerlin, S.C.L. Modeling the Role of a

Flexible Loop and Active Site Side Chains in Hydride Transfer Catalyzed by Glycerol-3-Phosphate Dehydrogenase. ACS Catal.
2020, 10, 11253–11267. [CrossRef]

16. Henzler-Wildman, K.A.; Thai, V.; Lei, M.; Ott, M.; Wolf-Watz, M.; Fenn, T.; Pozharski, E.; Wilson, M.A.; Petsko, G.A.;
Karplus, M.; et al. Intrinsic Motions along an Enzymatic Reaction Trajectory. Nature 2007, 450, 838–844. [CrossRef] [PubMed]

17. Babu, M.M.; Van Der Lee, R.; De Groot, N.S.; Gsponer, J. Intrinsically Disordered Proteins: Regulation and Disease. Curr. Opin.
Struct. Biol. 2011, 21, 432–440. [CrossRef]

18. Uversky, V.N. Intrinsically Disordered Proteins and Their “Mysterious” (Meta)Physics. Front. Phys. 2019, 7, 10. [CrossRef]
19. Elber, R.; Karplus, M. Multiple Conformational States of Proteins: A Molecular Dynamics Analysis of Myoglobin. Science 1987,

235, 318–321. [CrossRef]
20. Bahar, I.; Lezon, T.R.; Yang, L.-W.; Eyal, E. Global Dynamics of Proteins: Bridging between Structure and Function. Annu. Rev.

Biophys. 2010, 39, 23–42. [CrossRef]
21. Bastolla, U. Computing Protein Dynamics from Protein Structure with Elastic Network Models. Wiley Interdiscip. Rev. Comput.

Mol. Sci. 2014, 4, 488–503. [CrossRef]
22. López-Blanco, J.R.; Chacón, P. New Generation of Elastic Network Models. Curr. Opin. Struct. Biol. 2016, 37, 46–53. [CrossRef]

[PubMed]
23. Sanejouand, Y.-H. Elastic Network Models: Theoretical and Empirical Foundations. Network 2011, 26, 601–616.
24. Bonomi, M.; Vendruscolo, M. Determination of Protein Structural Ensembles Using Cryo-Electron Microscopy. Curr. Opin. Struct.

Biol. 2019, 56, 37–450. [CrossRef] [PubMed]
25. Krieger, J.M.; Sorzano, C.O.S.; Carazo, J.M.; Bahar, I. Protein Dynamics Developments for the Large Scale and CryoEM: Case

Study of ProDy 2.0. Acta Cryst. D Struct. Biol. 2022, 78, 399–409. [CrossRef]
26. Orellana, L. Large-Scale Conformational Changes and Protein Function: Breaking the in Silico Barrier. Front. Mol. Biosci. 2019,

6, 117. [CrossRef]
27. Herzberg, G. Molecular Spectra and Molecular Structure; D. Van Nostrand Company, Inc.: Princeton, NJ, USA, 1945.
28. Wilson, E.B.; Decius, J.C.; Cross, P.C. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra; McGraw-Hill: New

York, NY, USA, 1955.
29. Brooks, B. Harmonic Dynamics of Proteins: Normal Modes and Fluctuations in Bovine Pancreatic Trypsin Inhibitor. Proc. Natl.

Acad. Sci. USA 1983, 80, 6571–6575. [CrossRef]
30. Go, N.; Noguti, T.; Nishikawa, T. Dynamics of a Small Globular Protein in Terms of Low-Frequency Vibrational Modes. Proc. Natl.

Acad. Sci. USA 1983, 80, 3696–3700. [CrossRef]
31. Levitt, M.; Sander, C.; Stern, P.S. The normal modes of a protein: Native bovine pancreatic trypsin inhibitor. Int. J. Quantum Chem.

1983, 24, 181–199. [CrossRef]
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