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Abstract: The process quality capability indicators Cp and Cpk are widely used to measure process
capability. Traditional metric estimation methods require process data to be explicit and normally
distributed. Often, the actual data obtained from the production process regarding the measurements
of quality features are incomplete and do not have a normal distribution. This means that the use of
traditional methods of estimating Cp and Cpk indicators may lead to erroneous results. Moreover, in
the case of qualitative characteristics where a two-sided tolerance limit is specified, it should not be
very difficult. The problem arises when the data do not meet the postulate of normality distribution
and/or a one-sided tolerance limit has been defined for the process. Therefore, the purpose of this
article was to present the possibility of using the Six Sigma method in relation to numerical data that
do not meet the postulate of normality of distribution. The paper proposes a power transformation
method using multiple-criteria decision analysis (MCDA) for the asymmetry coefficient and kurtosis
coefficient. The task was to minimize the Jarque–Bera statistic, which we used to test the normality
of the distribution. An appropriate methodology was developed for this purpose and presented on
an empirical example. In addition, for the variable after transformation, for which the one-sided
tolerance limit was determined, selected process quality evaluation indices were calculated.

Keywords: process capability; non-normal data; Six Sigma; enterprise management

1. Introduction

Six Sigma is a method of managing organizations with the goal of striving for excel-
lence. This method evolved from the Total Quality Management (TQM) theory and is seen
as the most modern stage in the evolution of quality management [1,2]. It is defined as a
management system that aims to improve process efficiency and reduce defects [3,4]. It is a
business strategy enabling identification and later elimination of the causes of problems,
errors or anything that can lead to customer dissatisfaction. Numerous scientific considera-
tions indicate that Six Sigma implementation is an effective way to improve processes and
reduce costs, contributing to significantly better results [5].

The origins of Six Sigma date back to the 1980s. Its forerunner was Motorola, and
the premise was to reduce the number of errors in the manufacturing process and the
cost of poor-quality products, which at the time accounted for 15–20% of revenue from
all sales [6,7]. The low efficiency of production processes and the high proportion of
products that did not meet customer requirements required radical changes. Since then,
Six Sigma methodology has been successfully applied in a multitude of organizations,
primarily in the production industry, to improve customer satisfaction, reduce costs
and increase productivity and competitiveness. It is used by large corporations such
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as Sony, Texas Instruments, Honeywell, Kodak, Allied Signal, Du Pont, Boeing and General
Electric [8–10]. Its effectiveness caused its rapid spread into other areas and industries as
well. It is implemented for a number of business processes, products and services.

It is used, for example, in the medical industry, primarily to improve patient treatment
results, reduce medical errors and increase the efficiency of the treatment process [11,12]. It
is used to improve the quality of healthcare services by identifying factors that contribute to
patient satisfaction, including in the administrative area [10,13,14]. It is used in areas such
as pharmaceutics, internal logistics, equipment maintenance and medical records [15,16].

It has been successfully employed in the field of education to improve the meth-
ods used by improving the process of designing, developing and implementing curric-
ula and conducting courses to ensure the desired learning outcomes. Six Sigma can
be used to improve student achievements by identifying factors that contribute to their
potential success, measuring the effectiveness of teaching methods and implementing
strategies to improve results. It also promotes the streamlining of administrative pro-
cesses, such as registration, recruitment, and financial assistance. Identifying inefficien-
cies in these areas allows the development of strategies, reducing errors and increasing
productivity [14,17]. Six Sigma can be used to improve business processes, reduce costs
and increase customer satisfaction in the financial industry. The method can be used
to identify and eliminate inefficiencies in financial processes, improve compliance and
ensure standards in accordance with requirements governing financial practices or
profitability [18–20].

Six Sigma can be used to improve quality and increase efficiency in almost any process,
including telecommunications (identifying and eliminating the source of network fail-
ures, reducing customer complaints and optimizing network capacity [21,22]), in logistics
(streamlining supply chain processes, reducing errors and increasing efficiency, reducing
lead times and improving delivery performance [23,24]) or in the service sector (improving
service quality, reducing customer complaints, optimizing service delivery processes and
increasing efficiency). This practice has been successfully used, for example, in the hotel
industry [13,25,26], retail [27,28] and banking [29,30]. The multitude of applications shows
that there is a need to develop and improve the method itself as well, so that its application
is also possible for less typical enterprises or processes whose characteristics differ from
the classic assumptions of the method.

Six Sigma projects typically involve an interdisciplinary team of employees [31,32] who
work together to identify and resolve process inefficiencies, eliminate waste and improve
quality. Six Sigma methodology is based on decision-making using data extracted from the
process, its statistical analysis and continuous improvement. It can be used in two varieties:
DMAIC (an acronym from the first letters of the words Define—Measure—Analyze—
Improve—Control), which aims to improve the performance of business processes and will
be discussed in more detail below, and DMADV (an acronym from the first letters of the
words Define—Measure—Analyze—Design—Verify), to design new objects [33–35].

The DMAIC methodology involves a structured approach with five phases: defining,
measuring, analyzing, improving and control. Defining the problem is the first and crucial
step for the success of the project. It requires defining the relevant issue for the company
and type of business in a clear way, including its current and desired value, as well as ways
to verify (measure) the results. In doing so, it is worth noting the nature of the variable
under study—better results are provided by continuous rather than discrete variables. The
measurement phase involves a numerical characterization of the current performance of a
process, product or service and allows the current state to be determined, especially from
the customer’s perspective. In the analysis phase, the product or service is considered to
determine the source or sources of variability that are causing the problem. This provides
an opportunity to make sure that the true root cause is identified, not just the symptom. In
this regard, process capacity indicators are used to identify whether the produced goods
are within the accepted specification limits defined by the customer.
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The last two phases are improvement, which involves the presentation of imple-
mentable changes to the process, product or service to ensure the desired outcome of
the project; and control, where the proposed changes are implemented, the supporting
systems are updated, and the process, product or service, is audited—usually a statistical
control of the process—to ensure that the solution is fully implemented in a sustainable
manner [36,37].

The key assumption of the presented method Is the postulate that the random variables
under study, such as the number of products produced, working time, etc., are described
by a normal distribution. This is justified because, in practice, most business processes tend
to follow a normal distribution. In the Six Sigma method, the normal distribution is used to
define specification limits and control process quality. It defines the variability expressed in
standard deviation σ, meaning that no more than 3.4 defects/errors per million possibilities
of occurrence can be expected in a process. Thus, the basic assumption of the Six Sigma
method is to achieve production correctness of 99.997%. The remaining 0.003% is 6σ, which
is six times the standard deviation [38,39].

Normal distribution is therefore a key condition for using the Six Sigma method. More-
over, research indicates that abandoning this assumption leads to erroneous results [29]. If
this postulate is not met, alternative statistical tools and methods, based on appropriate
nonparametric tests, can be used to analyze the data and make improvements [40]. An
example of such a method is an approach that focuses on ranking data and comparing the
distribution of different groups using, for example, the Wilcoxon rank-sum test, which can
be used to compare the distribution of a process before and after an improvement initia-
tive [41,42]. Another approach is to transform the data to obtain a more normal distribution.
Typical transformations include logarithmic, elemental and Box–Cox transformations [40].
Methods of approximating the normal distribution by replicating the data are also]. The
transformed data can then be analyzed using standard Six Sigma tools such as control
cards used [43] and process capability analysis. However, classical transformations do
not always yield the expected results, and ignoring the form of the distribution leads to a
higher probability of Type I or II error [43,44]. This is why data for further analysis must be
properly prepared [45,46].

Therefore, this paper proposes a power transformation method using multiple-criteria
decision analysis (MCDA) for the asymmetry coefficient and kurtosis coefficient. The
task is to minimize the Jarque–Bera statistic, which we used to test the normality of
the distribution.

The adopted test method is discussed in detail in the statistical background of the study.
Summarizing the above, the aim of the article was to present the possibility of using the Six
Sigma method in relation to numerical data that do not meet the postulate of normality
of distribution. An appropriate methodology was developed for this purpose, which was
then presented on an empirical example. Additionally, selected process indicators were
calculated for the variable after transformation.

2. Indicators for Assessing the Quality Capability of the Process

Process quality capability indicators are measures used to assess whether a process
meets certain quality standards and is capable of producing products or services that
meet customer requirements. These indicators allow an objective assessment of process
capability and identification of potential areas for improvement [47–49].

Testing the qualitative capability of a process involves determining how well a pro-
cess meets the requirements for a particular characteristic. Quality indicators refer to
the requirements set by the customer. These requirements usually relate to one specific
feature [50–52].

The basic indicators of process quality capability include the Cp and Cpk indicators.
The Cp indicator is used to determine the spread of the process given the specification limits
and how much the process is centered, i.e., how much the value of a feature is equal to
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the nominal capacity. It also implies the possibility of systematic errors in the production
process [53,54]. The Cp indicator is calculated as follows (1):

Cp =
USL− LSL

6σ
(1)

where: USL—upper specification limit; LSL—lower specification limit; σ—standard devia-
tion of sample.

The Cp value helps to better understand the performance of the process. If it is more
than 1.33, which corresponds to a percentage of incompatible elements of 63 parts per
million (ppm), the process performance is satisfactory for a centered process. The quality
conditions and corresponding Cp values are shown in Table 1 [50,54].

Table 1. Quality conditions and Cp values.

Quality Condition Cp

Super Excellent Cp ≥ 2.00
Excellent 1.67 ≤ Cp < 2.00

Satisfactory 1.33 ≤ Cp < 1.67
Capable 1.00 ≤ Cp < 1.33

Inadequate 0.67 ≤ Cp < 1.00
Poor Cp < 0.67

The Cpk indicator is used to relate the variability of a process, showing how the process
conforms to its specifications. Cpk is usually used to relate “Natural tolerances (±3 σ.” with
the specification limits. Cpk describes how well a process falls within specifications, relative
to the process average [50,55]. The Cpk indicator, which refers to the actual offset from the
nominal value, is determined according to Formula (2):

Cpk = min (
USL− x

3σ
;

x− LSL
3σ

) (2)

where USL—upper specification limit; LSL—lower specification limit; x and σ—mean value
and standard deviation of sample. From among the calculated values, the lower value is
selected. The desired value of the Cpk indicator to be able to speak of a qualitatively stable
process, as in the case of the Cp indicator, is at least 1.33 (Table 1).

3. Problem Formulation

The indicators of process quality capability, Cp and Cpk, are widely used to measure
process capability. Traditional methods of estimating indicators require process data
to be explicit and have a normal distribution [55,56]. Often, however, actual data on
measurements of quality features are ambiguous and do not have a normal distribution,
and therefore using traditional methods to estimate them can lead to erroneous results.
Therefore, in order to determine these indicators, incomplete data and data that do not
have a normal distribution are not analyzed, because the results of the analysis may contain
errors and high uncertainty [45,57]. In addition, in the case of quality features, where
a bilateral specification limit has been defined and the basic principles of sampling and
measurement have been observed, the determination of these indicators should not be very
difficult. However, a problem can arise with products where only a unilateral specification
limit, i.e., USL or LSL, is specified.

The article is structured as follows: Section 4 describes the methods used. Section 5
discusses in detail the proposed data transformation method. Section 6 contains the results
and analysis of the empirical data. The article closes with conclusions and directions for
further research.
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4. Statistical Background of the Study
4.1. Box-Cox Transformation

Let x1, x2, . . . , xn denote the sequence of realizations of the analyzed feature X. In
some cases, Box–Cox transformations were used to satisfy certain properties [58]

y(λ)i =

{
xλ

i −1
λ , for λ 6= 0,

ln(xi), for λ = 0.
(3)

in order to minimize the variance [59]. Nevertheless, such a designated parameter λ does
not ensure that the transformed feature Y(λ) meets the postulate of normality
of distribution.

4.2. Normality Test

To test the normality of the distribution, among the available tests, [60] the Jarque–
Bera test was chosen [61]. For the sample {xi}1≤i≤n of feature X at the level of significance
0 < α < 1, we define a null hypothesis:

H0 : X ∼ N
(

m, σ2
)

(4)

against an alternative hypothesis

H0 : X � N
(

m, σ2
)

(5)

The Jarque–Bera test is based on measures of skewness and kurtosis. At the same
time, it takes into account deviations from the normality of the distribution caused by both
the coefficient of the skewness as well as flattening. The test statistics are described by
following the formula:

JB =
n
6

(
S2 +

(K− 3)2

4

)
(6)

The estimator of skewness S is calculated as follows:

S =
1
n ∑n

i=1(xi − x)3(
1
n ∑n

i=1(xi − x)2
)3/2 (7)

whereas kurtosis K is:

K =
1
n ∑n

i=1(xi − x)4(
1
n ∑n

i=1(xi − x)2
)2 (8)

where the estimator of the mean x is equal:

x =
1
n ∑n

i=1 xi. (9)

The test statistic (6) has χ2 distribution with two degrees of freedom. Test probability
for Jarque–Bera test is equal p.val = 1− Fχ2(2)(JB), where Fχ2(2) denotes the χ2 distribution
function with two degrees of freedom.

4.3. Quality Capability Indicators for Unilateral Specification Limit

Let {xi}1≤i≤n be the sample drawn from a population with normal distribution
N
(
m, σ2), and an unilateral specification limit defined as LSL or USL be assumed. In

the case of a unilateral specification limit, the probability of obtaining good products:

P(LSL ≤ X ≤ USL) = P(X ≤ USL)− P(X ≤ LSL)
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can be determined by numerically determining the integral (10) or (11) depending on
whether the tolerance is specified as LSL or USL.

P(X ≤ LSL) =
∫ LSL

−∞

1√
2πσ

e
−(x−m)2

2σ2 dx (10)

P(X ≤ USL) =
∫ USL

−∞

1√
2πσ

e
−(x−m)2

2σ2 dx (11)

This probability can also be determined using the properties of the distribution of the
standard normal distribution N(0, 1)—(12) or (13) for LSL or USL, respectively:

P(X ≤ LSL) = FN(0,1)

(
LSL−m

σ

)
(12)

P(X ≤ USL) = FN(0,1)

(
USL−m

σ

)
(13)

where FN(0,1)(z) =
∫ z
−∞

1√
2πσ

e
−x2

2 dx. The method of determining the probability and
values of Cp and Cpk indicators should include the following steps:

1. Determination of the mean value from the collected sample x and standard
deviation σ.

2. Calculation and determination of the absolute value from (14) or (15) depending on
whether the specification limit is specified as LSL or USL.

FN(0,1)

(
LSL− x

σ

)
(14)

FN(0,1)

(
USL− x

σ

)
(15)

3. Determine the probability of obtaining of goods products

P(LSL ≤ X ≤ USL) = FN(0,1)

(
USL− x

σ

)
− FN(0,1)

(
LSL− x

σ

)
4. Read the Cp value from the graph (Figure 1) corresponding to the determined

probability value.

Figure 1. The Cp value for the value of the distribution function.
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5. The Cpk value should be determined from Equation (2) depending on whether the
specification limit is specified as LSL or USL. The value of this indicator should be
referred to the value in Table 1.

5. Proposed Solution for Non-Normal Data

Let {xi}1≤i≤n denote the sample, representing the product treatment times. To deter-
mine the interval ±3− sigma, it is necessary to perform a transformation of the product
treatment times, so that the realization {xi}1≤i≤n meets the postulate of normality. Below, a
power transform is used, and therefore determines the interval ±3− sigma based on the
sample

{
xλ

i
}

1≤i≤n, where λ 6= 0. To determine the optimal value of λ, the statistic (6) is
minimized and the following task is solved:

min
λ 6=0

(
1
n ∑n

i=1
(

xλ
i − xλ

)3
)2

(
1
n ∑n

i=1
(

xλ
i − xλ

)2
)3 +

1
4

 1
n ∑n

i=1
(
xλ

i − xλ

)4(
1
n ∑n

i=1
(
xλ

i − xλ

)2
)2 − 3


2

(16)

where:
xλ =

1
n ∑n

i=1 xλ
i . (17)

By solving (16), the power of λ is determined, where for the sequence
{

xλ
i
}

1≤i≤n the
highest test probability for the postulate of normality of distribution is reached. As an
estimator of the standard deviation, the following is assumed:

σ̂λ =

√
1
n ∑n

i=1

(
xλ

i − xλ

)2 (18)

For transformed values, the interval ±3 sigma is given as (xλ − 3σ̂λ, xλ + 3σ̂λ), while
for actual operating times are defined as:(

(xλ − 3σ̂λ)
1/λ, (xλ + 3σ̂λ)

1/λ
)

(19)

6. Research Results
6.1. Scope of Analysis

Product treatment time was analyzed for three selected production stations. The
Jarque–Bera test was used to test the normality postulate. In the absence of normality of the
data distribution, the proposed solution was used to transform the data. Process quality
capability indicators were determined for the transformed data.

6.2. Distribution Normality Analysis and Transformation for Machine 1

Figure 2 shows the distribution of treatment time for actual values and
post-transformation values for machine 1. Meanwhile, Table 2 shows the basic statistics
and results of the Jarque–Bera test for both real and transformed data. The
p-value < 0.0001 for the actual data clearly indicates the non-normality of the data distribu-
tion. In addition, the skewness value (3.4916) shows their asymmetry, while the kurtosis
value (15.6714) shows more extreme outliers than in a normal distribution (Figure 2).

After applying the proposed power transform, the p-value (0.9403) for the trans-
formed data clearly indicates that the data distribution is close to a normal distribution.
In addition, the value of skewness (−0.0165) and the value of kurtosis (−0.1170) show no
major asymmetry or outliers. The value of the transformation parameter for machine 1 is
λ = −0.1775. For the transformed values, the interval 6− sigma is (1.4684; 3.1929), while
after the inverse transformation we obtain (0.0014; 0.1149).
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Figure 2. Densities for real time and time after transformation for machine 1.

Table 2. Based statistics and result of Jarque–Bera test.

Statistics Treatment Time Treatment Time Transformation

mean 0.0117 2.3306
st. deviation 0.0112 0.2874

min 0.0021 1.5609
1Q 0.0055 2.1230
3Q 0.0144 2.5154

max 0.0814 2.9871
skewness 3.4916 −0.0165
kurtosis 15.6714 −0.1170

JB statistic 2452.9973 0.1232
p-value <0.0001 0.9403

USL 0.1000 1.5050

6.3. Distribution Normality Analysis and Transformation for Machine 2

Figure 3 shows the distribution of treatment time for actual values and
post-transformation values for machine 2. Meanwhile, Table 3 shows the basic statis-
tics and results of the Jarque–Bera test for both real and transformed data. As with machine
1, the p-value (0.0000) for the actual data clearly indicates non-normality of the data distri-
bution. Additionally, the value of skewness (2.0826) shows their greater asymmetry, while
the value of kurtosis (4.3153) indicates the presence of numerous outliers (Figure 3).

Figure 3. Densities for real time and time after transformation for machine 2.



Appl. Sci. 2023, 13, 6721 9 of 14

Table 3. Based statistics and result of Jarque–Bera test.

Statistics Treatment Time Treatment Time Transformation

mean 0.0363 57.5813
st. deviation 0.0213 24.1257

min 0.0180 11.3862
1Q 0.0229 41.3097
3Q 0.0390 76.1573

max 0.1199 100.4055
skewness 2.0826 −0.0974
kurtosis 4.3153 −0.9380

JB statistic 94.4231 2.4092
p-value <0.0001 0.2998

USL 0.1200 11.3771

After applying the proposed power transform, the p-value (0.2998) for the transformed
data clearly indicates that the data distribution is close to a normal distribution. As with
machine 1, the value of skewness (−0.0974) and the value of kurtosis (−0.9380) show no
major asymmetry or outliers. The value of the transformation parameter for machine 3 is
λ = −1.1468. For the transformed values, the interval 6− sigma is (−14.7956; 129.9583),
while after the inverse transformation we obtain (−0.0878; 0.0143).

6.4. Normality Analysis and Transformation for Machine 3

Figure 4 shows the distribution of treatment time for actual values and
post-transformation values for machine 3. In addition, Table 4 shows the basic statistics and
results of the Jarque–Bera test for both real and transformed data. As with Machine 1 and
Machine 2, the p-value (0.0000) for the actual data clearly indicates the non-normality of
the data distribution. Additionally, the value of skewness (1.6794) shows their asymmetry,
while the value of kurtosis (3.2309) indicates the presence of extreme values (Figure 4).

Figure 4. Densities for real time and time after transformation for machine 3.

As in the case of machine 1 and 2 using the proposed power transform, the p-value
(0.0172) for the transformed data clearly indicates that the distribution of the data is close
to a normal distribution, whereas the value of skewness (−0.0189) and the value of kurtosis
(−0.9942) also show no major asymmetry or outliers. The value of the transformation
parameter for machine 3 is λ = −0.3279. For the transformed values, the interval 6− sigma
is (1.7249; 6.3091), while after the inverse transformation it is (0.0036; 0.1897).
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Table 4. Based statistics and result of Jarque–Bera test.

Statistics Treatment Time Treatment Time Transformation

mean 0.0184 4.0170
st. deviation 0.0123 0.7640

min 0.0057 2.3738
1Q 0.0090 3.4294
3Q 0.0233 4.6852

max 0.0716 5.4588
skewness 1.6794 −0.0189
kurtosis 3.2309 −0.9942

JB statistic 178.2859 8.1258
p-value <0.0001 0.0172

USL 0.1000 2.1279

6.5. Process Quality Capability Analysis

According to the methodology outlined in item 4.3, the values of Cp and Cpk indices
were determined for each production site analyzed for the data after transformation. Each
process had a unilateral specification limit for the product treatment time—USL. Table 5
shows the results obtained: the statistical values for each machine, including the upper
specification limit (USL) for the data before and after the transformation, the absolute
values, the values of the distribution and the process performance indicators (Cp, Cpk). It
should be noted that the parameter indicators λ for the proposed power transform obtained
negative values, which resulted in the specification limit for the transformed data being
“swapped”. Its value and location for the transformed data (red dotted line) are marked for
each machine in Figures 2–4.

Table 5. Statistical values and Cp, Cpk for the stations analyzed.

Process Machine 1 Machine 2 Machine 3

USL before transformation 0.10 0.12 0.10
USL after transformation 1.5050 11.3771 2.1279

λ −0.1775. −1.1468 −0.3279
Absolute value 2.87 1.91 2.47

Distribution function value 0.997882 0.971930 0.993053
Cp 1.0 0.8 0.9
Cpk 1.0 0.7 0.8

Condition of the process Capable Inadequate Inadequate

For Machine 1, the Cp and Cpk indicators are 1, which means that the process is capable
of producing products within tolerance. For Machine 2, the Cp indicator is 0.8 and Cp is
0.7, suggesting that the process is less stable and may lead to more defective products. For
Machine 3, the Cp indicator is 0.9, and Cpk is 0.8, which means the process is less stable than
Machine 1, but more stable than Machine 2.

Analysis of these results can help identify machines that require additional investi-
gation and improvements to the production process to improve process performance and
production quality.

The values of the distributions for all three machines are very high, which means that
almost all products produced by these machines are within tolerance. At the analyzed
stations, if the manufacturer wants to improve product quality, the focus should be placed
on machines that have lower process performance indicators. For Machine 2, whose
Cpk indicator is the lowest, the cause of the low performance should be identified and
appropriate corrective action taken.

It is also important to consider other factors, such as the costs associated with stream-
lining the process and making changes. Depending on the situation, it may be more
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cost-effective to focus on machines with higher process performance indicators that also
have a low deviation from the specification limit.

Identifying machines that need to be improved in process performance helps ensure
higher production quality and increase customer satisfaction, but it is equally important to
consider costs and choose corrective actions that are most cost-effective for the company.
Therefore, the next step after analyzing the results for individual machines should be
to conduct a more detailed study of the production process for each machine. A more
accurate identification of factors affecting the quality of production and the identification
of specific areas that need improvement slowly to implement solutions dedicated to the
diagnosed problems.

For example, a manufacturer can focus on reducing deviations in the production
process, such as reducing the number of rejected products and ensuring that each machine
is calibrated and set to optimal operating parameters.

It is necessary to carry out in-depth studies especially in the case of Machine 2, whose
Cpk indicator is the lowest. This will allow to identify the causes of low productivity,
which may be calibration problems, tool wear or improper parameters of the production
process. Only after they are identified will the manufacturer be able to take effective
corrective action.

It is also important, to constantly monitor the production process and conduct regular
tests to ensure optimal production efficiency and quality. This will allow problems to
be detected and resolved quickly, minimizing costs and reducing the risk of producing
defective products [36].

7. Conclusions

The results achievable in a company through the use of the Six Sigma method prompt
us to expand its applicability to non-normal distributions as well. This article presents
a method that makes this possible. The transformation of the data developed by the
authors made it possible to obtain from the original set of observations that did not meet
the postulate of normality one that, in statistical tests, did not allow the rejection of the
hypothesis that the studied empirical distribution was consistent with a normal distribution.
This made it possible to use Six Sigma and calculate the basic indicators that characterize
the process. The indicators chosen were Cp and Cpk. Calculations were made for three
selected machines, and the results were compared and recommendations for further action
were presented.

A particular strength of the article, however, is the proposed transformation. Failure
to confirm that the data obtained from production conforms to a normal distribution causes
entrepreneurs to abandon the implementation of Six Sigma tools, or worse, to overlook this
assumption and perform further analysis. This can lead to false results. Making decisions
based on them can result in negative consequences for the company. Poor evaluation of the
quality of the production process or adoption of wrong directions for improvement can
have dire consequences.

The next step of the research will be the development of models using other methods,
as well as the comparison and evaluation of the obtained results. This will allow enterprises
to expand the methods of analysis and evaluation of the implemented processes. Not
only will it enable the use of the Six Sigma tool in relation to distributions other than
normal, but it will indicate the possibilities of implementing other methods dedicated to
parametric distributions.
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