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Abstract: The federated learning (FL) approach in machine learning preserves user privacy during
data collection. However, traditional FL schemes still rely on a centralized server, making them
vulnerable to security risks, such as data breaches and tampering of models caused by malicious
actors attempting to gain access by masquerading as trainers. To address these issues that hamper
the trustability of federated learning, requirements were analyzed for several of these problems.
The findings revealed that issues, such as the lack of accountability management, malicious actor
mitigation, and model leakage, remained unaddressed in prior works. To fill this gap, a blockchain-
based trustable FL scheme, MAM-FL, is proposed with the focus on providing accountability to
trainers. MAM-FL established a group of voters responsible for evaluating and verifying the validity
of the model updates submitted. The effectiveness of MAM-FL was tested based on the reduction
of malicious actors present on both trainers’ and voters’ sides and the ability to handle colluding
participants. Experiments show that MAM-FL succeeded at reducing the number of malicious actors,
despite the test case involving initial collusion in the system.

Keywords: federated learning; blockchain; trustability

1. Introduction

Federated learning (FL) is a method of preserving user privacy during data collection
in machine learning. However, traditional FL schemes rely on a centralized server to
aggregate model updates, making them vulnerable to security risks, such as data breaches,
unauthorized access, and tampering with models [1]. An example of a data breach is the act
of eavesdropping on communication channels during weight and gradient updates [2,3].
The effect of such an act can cause loss of privacy, reduced public trust in FL systems,
and legal and financial liabilities. Additionally, Sybil attacks, where an attacker creates
multiple fake identities, manipulates FL results, and consumes resources, can also hurt
the trustability of FL in general. Another set of problems is the reliance on a single central
server, which is vulnerable to denial-of-service attacks as the system expands [4]; moreover,
there is a concern regarding the emergence of bad faith actors who may destabilize the
system as more people become involved [1].

To counteract the vulnerabilities in traditional FL, as mentioned above, replacing
the server with a blockchain as an aggregator has been a solution utilized in multiple
works [5–16]. References [5,11,12] added incentive mechanisms that encouraged honest
parties. References [6–8] introduced generic designs for efficient and private FL systems
that protect against inference attacks on clients’ model updates by using secure aggregation.
References [10,13–16] focused on blockchain infrastructure. These studies leveraged smart
contracts, improved consensus algorithms to evaluate participant contributions, and im-
plemented incentive mechanisms within the framework. One common aspect among the
mentioned works is the absence of accountability management. During training, trainers
might misbehave, and the system cannot differentiate whether a trainer is fully trustworthy
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until the end. For example, a hacker might gain access to a trainer’s account and use its iden-
tity to inject bad updates to the model, while masquerading as a normal, uncompromised
account. There is also the unmentioned problem of model leakage during transmission,
which can allow attackers to access the data by eavesdropping on the communication
channels, or masquerading as a participant in the scheme.

In order to tackle the problems, such as the lack of accountability management, ma-
licious actor prevention, and model leakage, MAM-FL, a scheme that addresses vulner-
abilities, is proposed. First, in MAM-FL, signcryption is adopted to prevent model and
privacy leakage by providing encryption, signature authentication, and integrity verifi-
cation. An accountability-checking mechanism is integrated through a party of voters
to verify the accuracy claims of trainers. Adding a verifying party will create a need for
trainers to assume responsibility, which provides accountability and ensures consistency in
the quality of the model updates. MAM-FL consists of an initial setup, leading up to the
creation of the next global model, in which the selected model updates are chosen through
the result of ranking the scores in the model updates. Throughout MAM-FL, blockchain
and the InterPlanetary File System (IPFS) [17] act as communication channels to provide
reliability and resistance toward single-point-of-failure (SPoF) caused by DDoS attacks and
spam, which is a property of a decentralized system. Finally, to motivate participants to
join and then perform honestly, a reward system is proposed, which grows proportionately
based on the participant’s initial deposit.

The following contributions are provided in this paper:

1. We address several concerns of traditional federated learning and formulate seven
requirements based on existing solutions. We provide reasoning to explain how
MAM-FL can fix the problems mentioned in the seven requirements.

2. Signcryption is integrated into the initial model transmission to provide confidential-
ity; blockchain provides reliable protection against single points of failure and verifies
the integrity of data during communication.

3. An FL protocol utilizing a voting-based mechanism is proposed. The voting system
is combined with a dynamic reputation system that affects the weight of the votes.
The purpose is to introduce accountability measures that can detect and prevent
malicious actors from jeopardizing the FL ecosystem.

The rest of this paper is organized as follows. First, the definitions are listed in
Section 2. In Section 3, seven proposed requirements are shown, along with the state-of-
the-art blockchain-based FL protocols. MAM-FL protocols are described in Section 4, and
the whole scheme is evaluated in Section 5. Finally, Section 6 concludes the whole paper.

2. Preliminaries
2.1. Federated Learning

Federated learning is a machine learning technique that enables the training of models
across multiple decentralized devices or servers, without transferring data to a central
location [18,19]. In federated learning, the data remain on local devices, and the model is
trained locally, with only the updated model parameters being sent to a central server for
aggregation. This approach creates robust and scalable models while maintaining data
privacy and security, as the raw data never leave the local device. Federated learning finds
applications in scenarios where data are both sensitive and decentralized.

2.2. Blockchain

A blockchain is a decentralized and distributed digital ledger technology that enables
secure and transparent record-keeping of transactions across a network of computers.
A blockchain consists of a series of blocks containing a previous block’s cryptographic hash,
a timestamp, and transaction data. To provide a tamper-proof and immutable record of all
transactions, once a block is added to the chain, it cannot be altered [20].

A single-point-of-failure is a component or node that, if it fails, causes the entire system
to stop functioning. This is a concern in many centralized systems. A blockchain avoids
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this problem by replicating the data and transactions across multiple nodes that form a
peer-to-peer network. Even if some nodes are offline, corrupted, or malicious, it can still
operate, as long as the majority of nodes are honest and reachable [21].

2.3. IPFS

IPFS is a distributed and decentralized peer-to-peer file-sharing system that aims to
create a permanent and decentralized method of storing and sharing files on the inter-
net [17]. IPFS stores files based on their content instead of their location, using a global
network of interconnected nodes for faster and more efficient content distribution.

One of the key benefits of IPFS is that it allows for decentralized and censorship-
resistant file sharing, making it useful for applications, such as content distribution and file
archiving. It can also be used as a building block for decentralized applications, providing
a secure and reliable method of storing and sharing data in a distributed network.

2.4. ZSS Signcryption

Reference [22] proposed a signcryption scheme, as depicted in Algorithm 1, which in-
corporated an improved version of a signature algorithm by Zhang, Safavi-Naini, and Susilo
(ZSS). In prior signcryption work by [23], the user forwarded the original message m to a
trusted third party (TTP). By doing so, user data might have leaked to the TTP and were
no longer private. In the ZSS signature generation, the author included a random value
r. The user also needed to pass the r value to the TTP, which allowed the TTP to compute
a symmetric encryption key, k, by using H3(r), making it dangerous. Different from [23],
the author suggests that in the process of verifying a message, the original message itself
does not need to be sent to the verifier. This ensures that the message remains private
and improves the efficiency of the verification process, as the verifier does not have to
download the message beforehand.

Algorithm 1 Modified ZSS signcryption by [22]

Signcryption: When a user acts as the sender S, they generate a signcryption σ for the
message m, as follows:

1. Generate v = (Hash1(m) + SKS)
−1.

2. Choose r ←R {0, 1}d and generate V = vP, X = r⊕ Hash2(V, PKR, vPKR). Then,
generate k = Hash3(r), which is a symmetric encryption key. So, Y = Enck(m).

3. Therefore, the signcryption σ = (V, X, Y), where V is a ZSS signature of message
m, X is the randomness of the encryption key generation, and Y is the encryption
of the message m.

Unsigncryption: After receiving σ = (V, X, Y) from the sender S, the recipient R starts the
unsigncryption process.
1. R parses σ to obtain (V, X, Y).
2. Compute r = X⊕ Hash2(V, PKR, VSKR) and k = Hash3(r).
3. Decrypt Y to obtain message m. So, m = Deck(Y).
4. If Equation (1) holds, unsigncryption succeeds; otherwise, R rejects σ from

the sender.
e(Hash1(m)P + PKS, V) = e(P, P) (1)

• Setup Phase

– ParamGen. Given the security parameters b and d, let G1 be a cyclic additive
group and G2 be a multiplicative cyclic group with the prime order p; P is the
generator of group G1. The bilinear mapping e: G1 × G2 → G2, three hash
functions Hash1: {0, 1}∗ → Zp, Hash2: G3

1 → {0, 1}d, Hash3: {0, 1}d → {0, 1}b,
and a symmetric encryption scheme (Enc, Dec) are utilized. Therefore, the system
parameters are {b, d, G1, G2, P, e, Hash1, Hash2, Hash3, Enc, Dec}.
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– KeyGen. The sender chooses a random number from Zp, sets it as the secret
key SKS, and computes the public key PKS = SKSP. The recipient chooses a
random number from Zp, sets it as the secret key SKR, and computes the public
key PKR = SKRP.

3. Requirements for Trustability in Federated Learning

First, multiple requirements to satisfy trustability in a federated learning setting are
defined. In each requirement, a discussion is made on how the property has partially been
met by existing solutions previously researched.

R1 Confidentiality.
Malicious entities can attempt to obtain access to local models and global models by

listening to communication channels and then modifying the model data; this involves
changing the original owner’s data in the model, claiming the model, and then using it for
their own gain. Therefore, this requires a solution that can prevent the model from being
inferred by the adversaries. One particular solution involves performing encryption [24]
during the process of aggregating updates and on the original model itself, with a public
key encryption scheme, in such a way that outside entities cannot recognize the contents of
the data exchange.

R2 Attractiveness.
In FL, the organizer needs to provide a method for consistently recruiting new trainers,

as without enough trainers, the resulting global model will not be accurate due to the
limited amount of data. Furthermore, having more trainers will increase data diversity, as
they will train with different datasets based on their own devices. However, from a trainer’s
perspective, engaging in local training imposes a cost on their resources. The workers will
most likely not perform the FL tasks in the vanilla FL without the motivation to perform the
training. To counter this, one author proposed an incentive system to encourage trainers to
join the training, mostly via token-based rewards [25].

R3 Accountability.
The major problem with a centralized FL model is that it lacks mechanisms to hold

each participant accountable in a fair and objective way [26]. Some trainers can perform
training using low-quality datasets on their devices, which can impact the quality of the
expected model, and the absence of accountability can be a problem, as this will cause a
continuous loop of bad updates from the trainers. The system needs to prepare a solution
that can encourage trainers to train with better data while also being capable of detecting
and punishing trainers who intentionally manipulate their model accuracy. One author’s
solution is to impose a reputation system with levels [27], combined with the incentive
system that rewards trainers based on their reputations. This encourages trainers to exhibit
positive behavior and improve their reputations. If a trainer continues to perform honest
training without any detected misbehavior, they will receive increased rewards at the end
of the training, while dishonest ones are punished. By imposing this rule, trainers cannot
easily remove themselves or reduce their participation, since doing so would diminish the
tokens they deposited; this responsibility would compel trainers to continue through the
process with good behavior.

R4 Reliability.
As the number of trainers increases, a single central server might not have enough

capability to handle the communication overhead. Attackers can attempt DDoS (distributed
denial-of-service) attacks, which will generate significant overhead for the central server,
causing the whole FL system to crash and shut down in the process. The authors of
Reference [28] suggested a committee of nodes that could serve as the replacement for the
central aggregator. This committee is selected based on a metric system that takes into
account factors such as liveliness (the rate at which a node remains available and is not
down) and reputation. The most trustworthy nodes will be more likely to be selected as
committee members.
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R5 Consistency.
The lack of trainers with stable internet connectivity might hamper the ability to

upload complete parts of their updates since an unreliable network cannot guarantee the
full transfer of the update parameters. Malicious trainers can also use this method of
dropping and rejoining the model training to intentionally submit low-quality updates.
All of this will cause the global model to be updated with broken chunks of updates,
hampering accuracy. One proposed scheme [27] imposes a time limit to prevent low-
connectivity trainers from sending broken or corrupt updates to the server. This solution
attempts to prevent trainers with low connectivity from submitting their updates, which
can harm the model’s accuracy because the broken parts are being submitted instead of the
whole parts.

R6 Integrity
Model integrity is critical in FL because the accuracy and effectiveness of the machine

learning model depend on the quality and reliability of the data used for training. Any
tampering or corruption of the data can lead to inaccurate or biased results, which can
impact the performance of the model and its ability to make accurate predictions. In an
FL environment, data are distributed across multiple devices or clients, and updates
are made to the model by aggregating the results of the training performed on each
device. As a result, it is essential to ensure that the data used for training are complete,
accurate, and consistent across all devices. Blockchain technology can be used as an
integrity solution for the federated learning training process by providing a transparent and
tamper-proof ledger of all transactions and computations performed during the training
process [20]. By using a blockchain, participants in the federated learning network can
record their contributions to the training process, including the models they trained and
the data they used. These contributions can be verified by the other participants in the
network by using the blockchain, ensuring that all participants are contributing in a fair
and transparent manner.

R7 Authentication
Authentication is critical in FL because it ensures that only authorized devices or

clients participate in the training process and make updates to the machine learning model.
Without authentication, there is a risk of unauthorized access to the data and the model,
which can lead to data breaches, theft of intellectual property, and other security issues.
In an FL environment, authentication is typically achieved through secure communication
protocols, such as transport layer security (TLS) and secure sockets layer (SSL) [29]. These
protocols encrypt the data being transmitted between devices or clients, ensuring that they
cannot be intercepted or modified by unauthorized parties. Authentication can also be
achieved through the use of digital certificates and public key cryptography. Each device
or client can be issued a digital certificate that contains a public key, which is used to verify
the identity of the device or client during the authentication process. The device or client
can then use the private key to sign the updates it makes to the model, ensuring that they
are authentic and cannot be tampered with.

Previous Approaches and Limitations

Several blockchain-based frameworks and protocols, such as BFL [5], BEAS [6], By-
toChain [8], DeTrustFL [9], ModelChain [13], Twin FL [14], and SEC-CL [15] lack incentive
mechanisms in their systems, which may cause participants to have no motivation to share
their data or model updates with the model’s owner, leading to low participation rates and
poor learning performances. Meanwhile, DeepChain [12] offers blockchain-based FL with
incentive- and deposit-based systems; however, it does not integrate a reputation system,
which could serve as a vulnerability as attackers can masquerade as trainers.

References [5,16] utilized practical Byzantine fault tolerance (PBFT) as an alternative
to PoW consensus during training. However, PBFT is limited in that the system cannot
tolerate a number of malicious nodes in the network equal to or greater than one-third
of the total number of nodes. While the reputation system can enhance the reliability of
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the system to some extent, there is a lack of external verification of the reputation, such as
through a third-party review process.

Reference [7] proposed a blockchain-based FL framework with differential privacy
as encryption. Differential privacy helps protect the privacy of individuals in a dataset by
adding random noise to the data or the queries. This noise introduces a trade-off; while
providing privacy, it can affect the utility or accuracy of the data analysis [30].

Reference [10] proposed a permissioned blockchain-based federated learning method,
where incremental updates to an anomaly detection machine learning model are chained
together on the distributed ledger. However, this paper focused more on the machine
learning model and did not mention much about the importance of incentive mechanisms
and other aspects, such as security, accountability, or confidentiality of FL.

Reference [11] leveraged blockchain-sharding features to enable collaborative model
training in a more distributed and trustworthy manner. Blockchain sharding, however, can
compromise security and decentralization, as each shard may have fewer nodes and less
hash power than the whole network, making it more vulnerable to attacks or collusion.

Reference [27] proposed a blockchain-based scheme with a leveling system, wherein
trainers gain experience and reputation over time, leading to better rewards for their
performance. However, since the proposed peer-review system forces each trainer to also
act as a reviewer, it can be deemed unreliable due to the necessity of multitasking [31].

The research conducted by [32] centered on the integration of FL in a vehicular ad hoc
network (VANET) environment. The study assessed the performance of devices, the efficacy
of ML and aggregation algorithms, the effects on edge-to-server communication, and re-
source consumption. However, it did not address the incentive mechanism, confidentiality,
and reliability aspects essential for sustaining federated learning.

Reference [33] introduced the incorporation of local differential privacy and zero-
knowledge proof in a blockchain-based FL framework. While this work provides confiden-
tiality using differential privacy and incentives, it does not provide a trust management
system to combat malicious actors masquerading as honest workers.

Based on these observations, Table 1 shows which references satisfied the requirements
listed in Section 3, marked by X, while × is for the unsatisfied ones.

Table 1. List of works and which requirements are fulfilled.

Reference Confidentiality Attractiveness Accountability Reliability Consistency Integrity Authentication

[5] × × X X × × ×
[6] X × X × × × ×
[7] X X X X × × ×
[8] × × X × × × ×
[9] × × X × × × ×
[10] × × X × × × ×
[11] × × × X X × ×
[12] × X × × × × ×
[13] X × × × × × ×
[14] X × × × × × ×
[15] × × X × × × ×
[16] × X × × × × ×
[26] X × × × × × ×
[27] X X X X X × ×
[28] X × × × X × ×
[32] × × × × X × ×
[33] × × × X X × ×
[34] × X X X × × ×

MAM-FL X X X X X X X

To improve accountability, MAM-FL utilizes a voting-based system to select models
for averaging. In the beginning, trainers must first deposit a specific amount of tokens in
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order to join the network and participate in the training and voting process. This deposit
system serves as an added layer of security, as it ensures that clients have a vested interest
in the network and are less likely to act maliciously. The added voting mechanism imposes
responsibility to both trainers and voters; an honest voter will have a more significant
impact on the overall score of the model updates that will be accepted, while a malicious
voter can be identified for collaborating with other malicious trainers, and both will be
punished together, accordingly.

In addition to the voting and deposit systems, MAM-FL adds a reputation system
for participants. This reputation system will track participants’ past behaviors, such as
their participation and contribution to the network, as well as any negative actions they
may have taken. Clients with higher reputations will more likely be selected for model
averaging and receive higher rewards.

Some aspects of importance that previous works have yet to highlight are integrity
and authentication. Blockchain has been used as a method to provide incentive systems
and FL reliability (e.g., SPoF) but prior studies have not highlighted the immutability of
the blockchain as a key feature [5–8,12,13,16,33]. Leveraging the blockchain as a verifi-
cation mechanism can provide a way to ensure integrity of the data transfer process in
federated learning.

4. Proposed Protocol
4.1. Comparison to Traditional FL

The traditional FL scheme depicted in Figure 1a is composed of a central server located
in a cloud-based environment, and trainers interacting with the central server. When a
component of the FL system fails, the entire system’s performance is affected. An attacker
can exploit this weakness by targeting the central server, preventing the scheme from being
executed when the server goes down.

(a) Traditional FL Scheme
Figure 1. Cont.
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(b) MAM-FL
Figure 1. Above is (a) the traditional FL scheme compared to (b) MAM-FL.

Figure 1a shows the relationship diagram of a common FL scheme, where trainers
interact directly with the central server, while Figure 1b, MAM-FL, where trainers and
voters interact with the blockchain and decentralized storage to perform FL training. The
conventional FL approach is prone to SPoF as it relies on a central server to manage
communication between trainers. This increases the risk of models being compromised
during data aggregation through the communication endpoint. To address this issue, MAM-
FL is proposed, as shown in Figure 1b. MAM-FL incorporates blockchain technology to
mitigate the vulnerability of the centralized server. The immutable nature of the blockchain
also enables it to function as a verification mechanism by storing hashes of the initial model
and subsequent updates. However, due to the typically large sizes of models, storing
them in the blockchain can be expensive and resource-intensive. To mitigate this challenge,
a decentralized storage solution is added, which avoids the SPoF that would exist if a
central storage solution were used instead. Overall, the MAM-FL architecture provides
several enhancements over the traditional FL approach, including a reputation and voting
system that ensures accountability and prevents malicious actors from compromising the
FL process.

4.2. Proposed Protocol Details

Figure 2 shows the overall process of MAM-FL. The protocol is composed of interac-
tions between trainers, voters, processing devices, and storage devices. Overall, the protocol
restarts at the end of the sixth stage, with subsequent iterations making use of the average
model in the fifth stage (federated averaging).

Trainers and voters are free to join the FL scheme by first depositing their initial token
numbers. Each will be assigned an initial reputation with equal values. The number of
tokens deposited does not amount to special benefits regarding the participant’s role but
will increase the rewards the trainer will gain at the end of each iteration. The list of
notations used in this paper is available in Table 2.



Appl. Sci. 2023, 13, 6707 9 of 21

Figure 2. The overall proposed FL process.

Table 2. List of notations used in this section.

Notation Description

M0 Initial global model created by the owner
Mu Trainer’s generated model update
MU Array of Mu
t Time limit for trainers to submit the model updates
x Minimum token deposit
r Minimum reputation threshold
α Consists of M0, t, x, and r
δ The accuracy claimed by the trainers
β Consists of Mu and δ
γ Voters’ decisions, can be accept/reject
Ω Resulting model from federated averaging
V ZSS signature of the message m
X Randomness of the encryption key generation
Y Signcryption message (the result of signcryption)
H Hash function
SC Smart contract

4.3. Initial Setup

The initial setup process is depicted in Figure 3; it begins with the global owner of
the model performing signcryption on the model and then submitting it to IPFS. This
setup process ends with the owner submitting the IPFS hash of the encrypted model and
signcryption parameters to the smart contract. By utilizing the blockchain’s immutable
property, the model data can be prevented from being compromised by malicious actors.
The details of the process are explained as follows.

1. The owner of the model prepares the initial model α, consisting of M0 | t | x | r. They
then perform ZSS signcryption (as in Algorithm 1) to generate (Vα, Xα, Yα). In this
case, Vα is the signature of α, Xα is the randomness of the key, and Yα is the encrypted
version of α. Starting from the second iteration, the initial model will use the new
global model, which is the result of the previous iteration’s final model.

2. The owner sends the Yα to IPFS.
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3. IPFS stores Yα.
4. IPFS generates a unique cryptographic hash for the uploaded model (αip f s and returns

it to the owner.
5. The owner submits X, V, αip f s in the SC.
6. The SC stores X, V, αip f s.
7. The SC relays the successful transaction event to the owner of the model.

Figure 3. The sequence diagram for the initial setup.

4.4. Participant Model Aggregation

After the initial setup, participants download the model from the IPFS. The participants
first need to request the initial model’s location URL to the smart contract. The process,
as depicted in Figure 4, is conducted by each participant (both trainers and voters) after
the aggregated model is uploaded to IPFS. The details of the process are explained in the
next passage.

Figure 4. The sequence diagram for participant model aggregation.
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1. The participant requests the initial model URL to the SC.
2. The SC sends Xα, Vα, and αip f s to the participant.
3. The participant requests Yα to IPFS based on the URL provided in αip f s.
4. IPFS returns Yα to the participant.
5. The trainer performs unsigncryption (as illustrated in Algorithm 1) using (Vα, Xα, Yα)

to obtain α.

4.5. Training and Submission

During the training phase shown in Figure 5, the trainers perform training on the
initial models on their devices. When the time limit of the training process is reached, the
trainers claim their accuracies and aggregate their model updates for the current epoch.
The process ends after each trainer submits the IPFS hash of their update and the model
integrity hash to the smart contract for verification purposes. Further details are listed
as follows.

Figure 5. The sequence diagram for each trainer’s training process.

1. The trainer performs model training on M0 to generate β and δ (an accuracy claim
based on the result). Honest trainers make truthful claims, whereas malicious actors
may fabricate the accuracy of results. The trainer then creates Hβ, which is the hash of
β used to verify the integrity of the payload’s content by the voter.

2. The trainer sends β to IPFS.
3. IPFS stores β.
4. IPFS generates a unique cryptographic hash for the trainer’s model update (βip f s) and

returns it to the trainer.
5. The trainer sends Hβ and βip f s to the SC.
6. The SC stores Hβ and βip f s.
7. The SC relays a successful transaction event to the trainer.

4.6. Evaluation and Voting

During the voting phase, as shown in Figure 6, voters request model update informa-
tion from the smart contract for evaluation. In the end, the voters submit their votes to the
smart contract. Details of the process are listed below.
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Figure 6. The sequence diagram of the voting procedure.

1. The voter requests the URL for model updates from the SC.
2. The SC sends Hβ and βip f s to the voter.
3. The voter requests Yβ from the IPFS URL provided in βip f s.
4. IPFS returns the trainer’s β to the voter.
5. IPFS computes Hβ’, the hash of β, and compares the value with the downloaded Hβ

from the SC to verify the integrity of β.
6. The voter decrypts Yα (as shown in Figure 4) and performs training on the decrypted

M0. They claim δ′ and compare their scores with δ, producing γ (the decision of the
voter). If the values are sufficiently close, the voter must choose ’accept’; otherwise,
the voter may choose ’reject’. This step tests the honesty of voters, as dishonest voters
may choose to accept even when accuracy fluctuates while rejecting the model updates
that should have been accepted.

7. The voter sends γ to the SC.
8. The SC records γ.
9. The SC calculates the score of the trainer based on the current voter’s reputation.

For example, if a trainer has a score of x and a voter has a reputation of y, the current
score is x′ = x + y. Note that if the vote is a ’reject’ decision, the value of y is negative.

10. The SC relays a successful transaction event to the voter.

4.7. Ranked Federated Averaging

The Federated Averaging process is shown in Figure 7. The server will group and then
tally the points of the model updates based on the number of ’accept’ and ’reject’ votes,
resulting in ST , which reflects the overall score of the model update from the respective
trainer t. After the score tally is calculated, the T-highest scoring model updates will
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be selected for federated averaging. ). At the end of the process, the owner will apply
punishment to lower-scoring trainers and voters who voted for the punished trainers.

Figure 7. The sequence diagram for the federated averaging process.

1. The owner requests the result of the GetHighestScores() method (as shown in
Algorithm 2) to the SC to obtain the highest scores of trainers based on the tally
of accept and reject votes.

2. The SC invokes the GetHighestScores() method and returns ST (the array of trainer
IDs with the highest scores) to the owner. The value of T is equal to N/2 which
represents half of the total amount of trainers, so only the top half are selected.

3. The owner requests an array of βip f s to the SC based on the trainer IDs in ST .
4. The SC returns βip f s = {βip f s1, βip f s2, ..., βip f sT} to the owner.
5. For each IPFS address, the owner requests respective model updates to IPFS based on

the selected βip f s addresses.
6. IPFS returns MU = {MU1, MU2, ..., MUT} to the owner.
7. The owner then produces Ω, the resulting model from averaging the model updates

(based on Algorithm 3).
8. The owner runs a hash function on the averaged model, producing HΩ.
9. The owner sends Ω to IPFS.
10. IPFS stores Ω.
11. IPFS generates Ωip f s, a unique cryptographic hash for Ω, and returns it to the trainer.
12. The owner submits HΩ, Ωip f s to the SC.
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13. The SC stores HΩ, Ωip f s.
14. The SC relays the successful transaction event to the owner of the model.

Algorithm 2 Get Highest Scores

1: function GETHIGHESTSCORES
2: N ← (number of trainers)
3: S← (array of trainer scores)
4: S′ ← sortDescending(S) . sort the array in descending order from the highest value

first, provided as a function in the smart contract
5: ST ← slice(S′,0,N/2) . returns a section of an array, starting from the index

specified in the second argument and ending at the index specified in the last argument
6: return ST
7: end function

Algorithm 3 Federated Averaging

1: function FEDAVG
2: M0 ← (initial global model)
3: T ← (total amount of selected model updates)
4: MU ← (array of model updates)
5: Ω← M0

T ∑T
t=1 MUt

6: return Ω
7: end function

4.8. Reputation Management

The model owner incorporates reputation management in the sixth and final stage
to evaluate participants’ performances. Based on their reputations and current deposits,
participants are rewarded accordingly. The procedural details are in the ADJUSTREPUTA-
TION() function in Algorithm 4. In the ADJUSTREPUTATION() algorithm, first, it refers to
the GETPUNISHLIST() function depicted in Algorithm 5 to obtain a list of participants who
will receive a reputation penalty. Consider a scenario where there are N number of trainers
with the highest scores, and the highest scores are considered (T1, T2..., TN−1). Trainers
whose scores are below TN−1 will be added to the punish list. For voters, the punished
ones are those who have voted for trainers who were added to the punish list.

Algorithm 4 Reputation Management

1: function ADJUSTREPUTATION
2: PT, PV ← GETPUNISHLIST()
3: for each trainer t = 1, 2, . . . , T do
4: if t ∈ PT then
5: penalize t’s reputation
6: end if
7: reward t
8: end for
9: for each voter v = 1, 2, . . . , V do

10: if v ∈ PV then
11: penalize v’s reputation
12: end if
13: reward v
14: end for
15: end function
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Algorithm 5 Punish List

1: function GETPUNISHLIST
2: PT ← (initialize the empty array of punished trainers)
3: PV ← (initialize the empty array of punished voters)
4: for each trainer t = 1, 2, . . . , T do
5: if St < lowest of ST then
6: add t to PT
7: end if
8: end for
9: for each voter v = 1, 2, . . . , V do

10: Zv ← (obtain the list of trainers that v voted accept for)
11: if Zv ∩ PT then . Check if v voted for a punished trainer
12: add v to PV
13: end if
14: end for
15: return PT, PV
16: end function

5. Experimental and Proposed Scheme Analysis

The experiment was conducted on a machine with Windows 10 as the operating
system with an Intel Core(TM) i7-8700K CPU and 32 GB RAM .A Docker container with
2 CPU cores and 2 GB of RAM was utilized to run Ganache. The smart contract was written
in the Solidity language and deployed to Ganache using Truffle.

In the experiment, 10 iterations with 30 participants of FL simulations were performed,
with the population composed as follows:

• 20 trainers (10 malicious, 10 non-malicious)
• 10 voters (3 malicious, 7 non-malicious)

To participate, trainers and voters must initially stake a minimum of 5 million gwei
(which is equal to approximately ETH 0.005, which, as of 28 April 2023, was equal to
USD 9.58), and will earn rewards that are proportional to their reputations. For example,
a participant with x million gwei and y reputation will receive (y/10)% of their current gwei
deposit, resulting in a new deposit of x + (x ∗ y/10) gwei for the next iteration. Therefore,
maintaining consistent performance and reputation is crucial for participants to maximize
their rewards.

5.1. Reputation Progression

Figure 8a shows that when the same reputations are established for all participants,
malicious trainers are immediately banned from participating in their second iteration.
There is also a slight decrease in the non-malicious trainer reputation in the second iter-
ation, indicating some honest trainers can still submit low accuracies due to unforeseen
circumstances, such as low bandwidth or unstable connectivity. A different parameter test
is conducted with malicious trainers, starting with 60 initial reputation values (as opposed
to honest ones starting with 40), as depicted in the results in Figure 8b. The rationale behind
this test was to simulate a scenario where collusion had occurred, and the majority of the
malicious actors had managed to obtain a higher reputation than the non-malicious ones.
Even though the initial collusion might be successful, as reflected by the higher reputa-
tion scores, the model update ranking allows for the collusion to be detected over time.
Figure 8c,d similarly depicts malicious voters that have a similar reputation progression
to their trainer counterparts. Additionally, the reputation system is designed to identify
trainers who submit low-quality updates, typically caused by connectivity issues. Such
issues result in submitting broken update chunks that may lead to lower-than-expected
accuracy. To ensure model consistency, the system is engineered to select only trainers with
stable performance. During the evaluation phase in Section 4.6, voters detect low-accuracy
updates and vote to reject them. The sum of votes with the accept, reject, and negative
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votes reflects the results of the experiments, demonstrating that the system effectively filters
out inconsistent trainers and malicious actors from the FL scheme.

(a) All trainers start with equal reputation values. (b) Malicious trainers start w/higher initial reputations.

(c) All voters start with equal reputation values. (d) Malicious voters start w/higher initial reputation.

Figure 8. The above two figures depict the average reputation values of malicious vs. non-malicious
trainers at the end of each iteration, (a) starting with equal reputation values, compared to (b) mali-
cious trainers having higher starting values. The below two figures depict the average reputation
values of malicious vs. non-malicious voters at the end of each iteration, (c) starting with equal
reputation values, compared to (d) malicious voters having higher starting values.

5.2. Reward Gain

The correlation between reward and reputation (Figures 8a–d and 9a–d) shows that
maintaining reputation is essential to preventing an account ban. As shown in the ten
iterations, participants with higher reputation values experience exponential increases in
rewards. Compared to the first test with equal reputation values, the malicious participants’
rewards start higher than those of honest ones. However, since the malicious trainer-
submitted models are low in quality, their scores are lower than average and are subject
to punishment. This results in a decrease in their reputation and leads to them being
banned. When participants are banned, their accounts are frozen, temporarily preventing
their deposited tokens from being withdrawn. This measure discourages participants
from creating multiple accounts, as participants would need to stake tokens again to join.
The reward system incentivizes trainers and voters to participate honestly in the schemes,
as their rewards directly correlate with their reputations. Moreover, participants have a
responsibility to maintain the tokens that they deposited at the start.
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(a) All trainers start with equal reputation values. (b) Malicious trainers start w/higher initial reputations.

(c) All voters start with equal reputation values. (d) Malicious voters start w/higher initial reputations.

Figure 9. The above two figures depict the average reward values of malicious vs. non-malicious
trainers at the end of each iteration, (a) starting with equal reputation values compared to (b) malicious
trainers having higher starting values. The below two figures depict the average reputation values
of malicious vs. non-malicious voters at the end of each iteration, (c) starting with equal reputation
values compared to (d) malicious voters having higher starting values.

5.3. Gas Fee

The following tests were conducted using the Truffle testing library in a local Ganache
environment. It has been verified that all of the implemented methods comply with the
Ethereum gas limit standard of 30 million per block [35], rendering them feasible for execu-
tion on Ethereum networks. The gas usage values reported in Table 3 are calculated per
unit, with each unit corresponding to a single instance of the method being executed. Each
method serves a specific function in the smart contract, such as adding a new participant
or updating global accuracy for the next iteration. For instance, “calculateReputation”
calculates a participant’s new reputation at the end of an iteration, and “setReputation”
is used to update the value in the chain. It is important to note that the total number of
transactions required for each method in a federated learning task depends heavily on the
number of participating clients.

Table 3. The table displays the gas usage of methods used in the experiment.

Gas Fee Metrics

Methods Gas Usage per Tx % Limit

addParticipant 301.020 1.003
calculateReputation 154.796 0.516
setGlobalAccuracy 26.646 0.089
setReputation 27.366 0.091
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5.4. Requirement Comparisons Compared to Previous Works

Table 1 in Section 3 details the extent to which previous works have fulfilled the
requirements. Table 4 shows the property comparison between the proposed scheme and
other existing works. The benefits of MAM-FL are directly compared with two selected
sources, namely References [7,27]. These papers were chosen because they meet most of
the requirements compared to the other references.

Table 4. Comparison between works which requirements have fulfilled the most.

Reference Confidentiality Attractiveness Accountability Reliability Consistency Integrity Authentication

[7] Differential
privacy

Deposit and
reputation-

based
reward

Reputation
system

Blockchain
and IPFS - - -

[27] Standard
encryption

Deposit and
reputation-

based
reward

Reputation
system

Blockchain
and IPFS Stage timeout - -

MAM-FL Signcryption

Deposit and
reputation-

based
reward

Voting and
reputation

Blockchain
and IPFS

Accuracy-
based

ranking

Blockchain
hash and

signcryption

Signature in
signcryption

Confidentiality: Reference [7] uses differential privacy to maintain the confidentiality
of data in federated learning. Differential privacy has an advantage over encryption
in that it allows for data sharing and analysis for scientific or social purposes, while
protecting the privacy of individual data entries. However, this technique may introduce
data errors or uncertainty and conflict with other privacy technologies. Reference [27]
adds a standard model encryption in the FL on the participant keys. While encryption
can prevent unauthorized access to data and preserve the exact values, it may limit data
usage and analysis and expose the data to re-identification attacks. MAM-FL uses a
signcryption scheme to encrypt the initial model, which combines the functionalities of
digital signatures and encryptions in a single operation. This is a reasonable trade-off since
signcryption provides other requirements that are not available in standard encryption,
such as authentication and integrity.

Attractiveness: References [7,27] and MAM-FL use rewards to serve as motivation for
participants to maintain good behavior and high performance, ensuring the quality and
effectiveness of the federated learning process.

Accountability: Both [27] and MAM-FL require participants to deposit a certain
amount of tokens to participate, which creates an additional level of responsibility for the
participants to continue the process until they receive their rewards. The risk of losing the
stored tokens also adds protection against Sibyl attacks, hindering attackers who create
multiple accounts. In Reference [27], a peer-review system was added, where each trainer
acted as a reviewer for the other. However, this system can be unreliable since the trainers
have to multitask and may lose focus. In contrast, MAM-FL assigns the roles of verifiers
to voters, who contribute to the ranking of accepted model updates. This further helps
establish accountability for each participant in the process without overwhelming them
with too many tasks.

Reliability: References [7,27] and MAM-FL use blockchain, a distributed ledger, to
record FL transactions. By nature, blockchain can address SPoF by allowing the partic-
ipants to maintain a distributed ledger of the FL process, where each block records the
model’s updates and other relevant information. However, MAM-FL goes beyond simply
integrating the process of each exchange between transmissions by utilizing smart con-
tracts. Because storing model files can be costly, References [7,27] and MAM-FL utilize
decentralized storage, with IPFS being chosen in this case.
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Consistency: Reference [7] uses differential privacy, where the added noise can make
it difficult to achieve convergence of the model across all clients. This is because the noise
added to each client’s data can be different, which can lead to inconsistencies in the model’s
updates. Reference [27] uses stage timeout to limit low-bandwidth trainers from submitting
broken updates. In MAM-FL, a mechanism is included for tracking the reputation of each
trainer based on their performance. Trainers with low reputations may be excluded from
the process, ensuring that only high-performing trainers contribute to the model. This
helps to protect the consistency of the scheme by weeding out low-performing trainers.

Integrity: In References [7,27], there is a lack of mention regarding integrity in FL,
which can render the scheme vulnerable to attackers attempting to steal the model and
perform modifications. In contrast, MAM-FL provides two methods to preserve integrity.
First, to verify the signature of the encrypted model, Equation (1) requires a hash to
be constructed, which will generate a different value if the model has been modified.
Second, throughout the process, hashes of the model updates are verified to ensure the
integrity of the model updates. The hashes are stored in the blockchain, while the model
updates are stored in IPFS, which are then compared to guarantee that the contents are
not modified. The added verification prevents data breaches since in the scenario of the
stolen model, the contents can be compared to determine if the model is still genuine or
not, preserving integrity.

Authentication: In References [7,27], the importance of authentication in FL is not
mentioned. This introduces a vulnerability, where a malicious party could sabotage the
aggregator by distributing fake versions of the model. The validity of the model cannot
be determined. To solve such a problem, the MAM-FL uses signcryption to verify the
legitimacy of the model, confirming whether the model is sent by the real owner or not.

6. Conclusions and Future Works

This research paper examines the requirements for establishing trust in a federated
learning scheme, and identifies seven crucial factors, i.e., confidentiality, attractiveness,
accountability, reliability, consistency, integrity, and authentication. The paper proposes
MAM-FL, an FL scheme to address the requirements. First, the protocol integrates signcryp-
tion to encrypt the initial model to ensure the model’s confidentiality, integrity, and origin
authentication. Then, to enhance attractiveness, trainers and voters are guaranteed rewards
based on their performance. Next, model updates are ranked and scored based on voter
reputation, to address the accountability and consistency in the model updates. Lastly,
the FL scheme is integrated with blockchain and IPFS to address single-point-of-failure,
providing reliability.

To evaluate the effectiveness of the proposed protocol, experiments were conducted
to reduce the number of malicious actors and incentivize honest contributions through
a reputation-based reward system. The results demonstrate that the proposed protocol
successfully mitigates the impact of malicious actors by using voter credibility to determine
their trustworthiness, and the reputation-aware reward system is an attractive incentive
for participants. The protocol was also tested in a scenario where malicious participants
started with higher initial reputations; it still effectively reduced the number of malicious
participants with subsequent iterations.

Future research can focus on measuring the response time of a blockchain-integrated
FL scheme with a voting mechanism to determine its scalability. Additionally, since the
paper defines that voters vote on all trainers, it can be useful to develop a worker selection
algorithm to determine the assignment pairings of trainers and voters.
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