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Abstract: Autonomous driving has the potential to revolutionize mobility and transportation by
reducing road accidents, alleviating traffic congestion, and mitigating air pollution. This transforma-
tion can result in energy efficiency, enhanced convenience, and increased productivity, as valuable
driving time can be repurposed for other activities. The main objective of this paper is to provide
a comprehensive technical survey of the latest research in the field of lateral, longitudinal, and
integrated control techniques for autonomous vehicles. The survey aims to explore a wide range of
techniques and methodologies employed to achieve precise steering control while also considering
longitudinal aspects. Model-based control techniques form the foundation for control, utilizing math-
ematical models of vehicle dynamics to design controllers that effectively track desired speeds and/or
steering behavior. Unlike model-free control techniques such as reinforcement learning and deep
learning algorithms facilitate the integration of longitudinal and lateral control by learning control
policies directly from data and without explicit knowledge of the underlying dynamics. Through
this survey, the paper delves into the strengths, limitations, and advancements in both model-based
and model-free control approaches for autonomous vehicles. It investigates their performance in
real-world scenarios and addresses the technical challenges associated with their implementation.
These challenges may include uncertainties in the environment, adaptability to dynamic conditions,
robustness, safety considerations, and computational complexity.

Keywords: autonomous vehicles; lateral control; longitudinal control; model-based control techniques;
model-free control techniques

1. Introduction

Autonomous vehicles (AVs) have garnered increasing interest in recent decades due to
advancements in computing devices and sensor technology, leading to numerous research
programs involving the car manufacturing industry and academic laboratories [1]. The
objective of this paper is to survey the current state-of-the-art on recent control methodolo-
gies applied to AVs. We start by presenting lateral, longitudinal, as well as the integrated
lateral and longitudinal control of AVs. These methodologies form a base for the surveyed
recent motion-control algorithms, and both the model-based control techniques as well
as model-free control techniques are investigated. The self-driving concept has various
socioeconomic benefits and impacts public transportation systems, including reducing
accidents, improving passenger comfort, and optimizing fuel consumption [2,3]. According
to the World Health Organization (WHO), approximately 1.35 million people die each
year from traffic-related accidents or injuries [4]. Adopting technologies such as advanced
driver-assistance systems (ADAS) and automated driving systems (ADS) can significantly
reduce over 80% of accidents caused by human error [4]. AVs can also reduce travel
time, positively impacting passengers’ mental and physical health, and provide economic
benefits. They are also a viable mobility option for elderly and disabled individuals. In
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Australia, for example, 79% of 9.2 million daily commuters spend an average of 25 min
commuting to work [5]. Table 1 shows the list of acronyms and their definition.

Table 1. List of acronyms and their definition.

Acronyms Definition

AVs Autonomous vehicles

RNNs Recurrent neural networks

DN Deep network

EN Evolutionary network

MPC Model predictive control

ML Machine learning

RL Reinforcement learning

WHO World Health Organization

RADAR Radio detection and ranging

DNN Deep neural networks

DDPG Deep deterministic policy gradient

MCTS Monte Carlo tree search

DQN Deep Q network

TORCS The open racing car simulator

CNNs Convolutional neural network

LSTM Long short-term memory

AI Artificial intelligence

DL Deep learning

LIDAR Light detection and ranging

MFCN Motion-aid feature calibration network

NN Neural networks

MDP Markov decision process

DVSL Differential variable speed limit

DoF Degrees of freedom

GAN Generative adversarial network

PID Proportional integral derivative

OEM Original equipment manufacturer

PPC Pure pursuit controller

However, AVs present several social and technological challenges encountered in
passenger and vehicle safety, efficient maneuvering on different terrains and environments,
and fuel efficiency [6]. The complexity of ADS depends on the required level of autonomy,
which consists of six levels (levels 0–5) ranging from “no autonomy” to “fully autonomous”,
according to the Society of Automotive Engineers’ standard (SAE-J3016) [7]. The level
of autonomy increases with the human subject’s responsibility in the driving task, the
complexity of driving assistance systems, and the operating conditions of the vehicles.

The comparison presented in this survey helps provide insight into the strengths and
limitations of recent control approaches for autonomous driving to tackle these challenges
and assist with design choices. This paper focuses on the advanced control methodologies
applicable to AVs that ensure the stability and safety of the vehicle system. Section 2
presents lateral, longitudinal, and integrated lateral and longitudinal control of AVs, while
Section 3 discusses the control techniques used in autonomous vehicles. Finally, Section 4
offers concluding remarks and prospects for future research.
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2. Control of Autonomous Vehicle

The key technologies for autonomous vehicles are structured into three distinct layers,
as illustrated in Figure 1 [8], with each layer fulfilling a crucial role.
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The first layer, known as perception and localization, involves the interpretation and
understanding of the surrounding environment. It encompasses the utilization of sensor
data from various sources to detect and identify objects, analyze their positions and move-
ments, and accurately determine the vehicle’s own location in relation to its surroundings.

The second layer, referred to as planning and maneuver decision making, focuses on
generating optimal paths and making informed decisions regarding the vehicle’s move-
ments. This involves advanced algorithms and techniques that consider factors such as
traffic rules, road conditions, and potential obstacles. Path-planning algorithms determine
the safest and most efficient routes, while maneuver decision-making algorithms select
appropriate actions, such as lane changes, overtaking, or merging, to navigate the vehicle
through its intended trajectory.

The third layer, known as decision making, involves higher-level cognitive processes
that integrate information from perception, planning, and other sources to make intelligent
decisions. This includes evaluating potential risks, predicting the behavior of other vehicles
and pedestrians, and selecting the most suitable course of action in complex driving
scenarios. Decision-making algorithms ensure that the autonomous vehicle can respond
effectively to changing situations and prioritize safety at all times.

The function of longitudinal control is to regulate the vehicle’s speed and maintain
a safe distance from the preceding vehicle by using acceleration or braking actions. On
the other hand, the primary objective of lateral control is to minimize the vehicle’s lateral
displacement and heading error. This is achieved by precisely adjusting the steering wheel
angle, enabling the vehicle to follow a desired trajectory. Both longitudinal and lateral
control play essential roles in the foundation of an autonomous vehicle’s control system.

2.1. Lateral Control of Autonomous Vehicles
2.1.1. Lateral Model-Based Control Techniques

In the environment for a lane-change maneuver, similar to vehicle dynamics, a vehicle’s
presence in the current and adjacent lane is evaluated using the strategic level. Minimizing
overall braking induced by lane changes (MOBIL) is a model of strategic level that min-
imizes the overall lane changes induced by braking. This model can deduct the rules of
lane changing for mandatory and optional lane changes in different following models of
a car [9]. The challenges of lane keeping, lane changing, safety, and achieving the desired
lateral position are dealt with in lateral control [10,11]. The complicated lateral dynamics
make the lateral control of autonomous vehicles a challenging task. There are several studies
in the literature that designed different control methodologies for the lateral dynamics of au-
tonomous vehicles, involving proportional integral derivative (PID) [12], backstepping [13,14],
LQR [15], and feedback linearization [16]; sliding mode control (SMC) and backstepping con-
trol were designed in [17], a higher sliding mode control technique was developed with
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experiment validation [18], gain scheduling was proposed and compared with LQR and MPC
approaches [19], and fuzzy logic was also tested [20,21]. To improve the transient performance
and ensure the normal path-tracking maneuver, a novel approach based on a fuzzy-observer-
based composite nonlinear feedback (CNF) controller was proposed [21]. This controller was
designed to effectively deal with system disturbances and uncertainties that may affect the
vehicle’s performance. By including a fuzzy observer, the CNF controller is able to estimate
the vehicle’s lateral states accurately. The proposed technique was formulated using linear
matrix inequalities (LMIs) to implement an observer-based controller aimed at enhancing the
tracking performance under challenging conditions such as input saturation and disturbances
in GPS-denied environments. To validate the effectiveness of the approach, high-fidelity
simulations were conducted using CarSim-Matlab/Simulink, and the results demonstrate
the validity of the proposed methodology. A novel Lyapunov-based robust control for lateral
control of an autonomous vehicle utilizing meta-heuristic optimization algorithm is presented
in [17]. First, a double-lane-change path was developed utilizing a fifth-degree polynomial
(quantic) function and dynamic constraints. The double-lane-change maneuver was designed
using a lane-changing path-planning strategy. Then, a two-degree-of-freedom vehicle bicycle
model was used to extract the position and orientation errors. Integration of backstepping
control and sliding mode control (SMC) was applied for steering control. The overall stability
of the proposed control was analytically demonstrated using the Lyapunov stability theorem.
Additionally, a particle swarm optimization algorithm was proposed to determine the optimal
parameters of the combined controller. Simulation studies were carried out using CarSim
software and Matlab/Simulink, and the proposed controller showed superior performance
compared to the backstepping controller in low road friction scenarios.

A 3 (DOF) nonlinear vehicle model was developed in [22], which accounts for yaw,
lateral, and roll motions, and chaotic behavior was then simulated using the Lyapunov
exponent method. To control this chaotic behavior, a sliding mode variable structure
control (SM-VSC) was designed. To further improve lateral vehicle stability and reduce
chattering under maximum operating conditions, a fuzzy control technique was used to
realize an adaptive power-reaching law. The SM-VSC system performance was simulated
using Matlab/Simulink. The results of the simulation showed that the adaptive-reaching
SM-VSC control approach was effective in quelling the chaotic phase of the vehicle’s lateral
motion. Overall, the study demonstrated the usefulness of combining SM-VSC with fuzzy
control techniques to control chaotic behavior and enhance the stability of lateral vehicle
motion under challenging operating conditions.

A novel and efficient control strategy for the path following of autonomous vehicles was
proposed in [23]. The control strategy was designed to handle uncertainties and mismatched
disturbances in the system. The sliding mode control (SMC) was used in combination
with a radial basis function neural network (RBFNN), gain scheduling with fuzzy system,
and disturbance observer (DOB). The RBFNN estimates uncertainties, the fuzzy system
compensates for changes in system parameters, and DOB estimates mismatched disturbances.
The stability of the closed-loop system was guaranteed using the Lyapunov stability theorem.
The proposed control was tested for path-following tasks of autonomous vehicles under
different road adhesion conditions and at high speeds in hard driving conditions. Simulation
results demonstrated that the proposed control is more efficient than other robust strategies
such as H∞ and the principle of immersion and invariance. The proposed control strategy has
potential for use in real-world applications of autonomous vehicle control. A block diagram
of the lateral control scheme is depicted in Figure 2.

A technical survey on the latest research on lateral control techniques applied for au-
tonomous vehicles and the path-tracking task was proposed in [24]. Many concepts of control
formulation are demonstrated and discussed, and the challenges and strengths of each control
technique are mentioned and compared. Model predictive control (MPC) is one of the best con-
trol techniques for the task of path tracking because of its capability to ensure input and state
constraints and its challenge is the stability analysis. SMC, H∞, and back-stepping control are
great control approaches to deal with disturbances, parameter uncertainties, and nonlinearities
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on account of complex design techniques and theoretical derivations. LQR, geometry-based,
and PID controllers are appropriate for the applications of low-speed and simple models with
negligible uncertainties and disturbances. Most model-based controllers except MPC cannot
impose constraints on system states, inputs, and outputs. This is a crucial quality for comfort
and safety insurance in automated guidance for imposing actuator limits and maintaining
stability conditions. Otherwise, model-free controllers are a crucial solution when modeling
becomes a challenging task. These techniques are useful in the case of available sufficient
data and can guarantee multitasking without being affected by the system nonlinearities.
AI-based techniques can be utilized to improve model-based controllers by learning control
algorithms and complex models. The drawbacks of these techniques are the difficulty of
interpretability and the nature of black box, which cannot ensure some physical properties
and stability. Generally, in spite of the great progress in the field of autonomous driving, many
problems such as steering systems, unmeasurable parameters, and discontinuous data still
continue and need great efforts to be solved.
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A detailed overview and comparison of different control methods that can be utilized for
the purpose of path tracking in autonomous ground vehicles (AGVs), with a focus on car-like
autonomous vehicles, was presented in [25]. It covers several control techniques, including
feedback linearization (FL), H∞ controller, sliding mode controller (SMC), Lyapunov’s direct
method (LDM), Stanley controller, pure pursuit controller (PPC), neural network (NN) controller,
model predictive control (MPC), and linear quadratic regulator (LQR). The performance of each
technique was evaluated through a simulation study in urban path tracking. The simulation
results and pros and cons of each technique were presented in detail, with nonlinear model
predictive control (NMPC) being the most appropriate technique for highway driving. The
article concluded that geometric control techniques (i.e., PPC and Stanley) are not suitable for
highway driving due to their low performance at higher speeds, while robust control techniques
(i.e., SMC) have lower-quality performance for external disturbances and may cause discomfort
to passengers due to chattering. The optimization-based control techniques, such as NMPC and
LQR, have been shown to achieve minimum lateral and orientation errors with disturbance
compared to the other control techniques. In uncertain environments, the stability and safety
of the autonomous vehicles are important prospects. The operating range of the vehicles can
be unsafe due to the nonlinear tire–terrain dynamics and saturation. The states of the system
should be restricted within certain bounds to solve this problem.

A multi-input multi-output (MIMO) model reference adaptive control (MRAC) ap-
proach was designed in [26]. The purpose was to improve vehicle stability by acting as an
advanced driver-assistance system (ADAS). This approach enhances the yaw and handling
stability of the vehicle’s lateral dynamics. A nonlinear integrated adaptive control strategy
was proposed, using a constraint optimization algorithm. The efficiency of the proposed
control technique was compared with a linear time-varying MRAC and a nonlinear in-
tegrated adaptive controller. Simulation results for the double-lane-change (DLC) and
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J-turn maneuvers at low tire–road friction coefficients and high speeds demonstrated the
superiority of the proposed controller over the conventional MRAC in terms of the handling
of sideslip limitation and yaw rate tracking.

Despite the existence of several studies that have utilized the barrier function approach
in autonomous vehicle research [27,28], there is currently no significant body of research
that addresses the control of lateral dynamics in autonomous vehicles using the barrier
function approach in combination with sliding mode control (SMC) in the presence of
curvature angle, nonlinear tire-forces, and parametric uncertainties.

In addition to addressing the challenges posed by road curvature angle, unknown lateral
tire forces, and parametric uncertainties, the sliding mode control (SMC) approach with barrier
Lyapunov function implemented in [29] was also designed to keep the system outputs of
the autonomous vehicle’s lateral dynamics within realistic bounds. This further enhances the
effectiveness and practicality of the control approach. The paper [30] introduced a new approach
called Type-II zeroing control barrier function (ZCBF), which was designed to ensure both the
robustness and forward invariance of a constraint set. Unlike the original ZCBF formulation,
Type-II ZCBF is more general and allows for the accommodation of multiple Type-II ZCBFs,
which have non-intersecting boundaries for the constraint set. This property ensures that input
constraints are respected. The proposed method was applied to a classical unicycle system.
Furthermore, this approach can be extended to handle non-intersecting constraint set boundaries.
The authors in [31] present a system that utilized a finite state machine (FSM) to automatically
switch between different states based on input from the traffic environment and driver. The
system’s optimal inputs were calculated using a quadratic program (QP)-based optimization
problem. The QP was solved by employing rule-based control strategies that leverage control
barrier functions and control Lyapunov functions (CBF-CLF). The system’s safety was ensured
by using a convex quadratic program to perform high-frequency updates, ensuring that the
system operates in a safe and collision-free manner, especially during lane-change maneuvers.

A novel approach utilizing a fractional-order PID control algorithm based on data-
driven control was proposed to enhance tracking precision in autonomous driving [32].
The algorithm’s parameters were optimized using the particle swarm optimization (PSO)
algorithm. Comparative analysis against PID control and linear quadratic regulator (LQR)
was performed using MATLAB/CarSim. Experimental results showed that the fractional-
order PID control effectively reduces tracking error caused by path curvature changes while
maintaining comfort, stability, and safety.

In [33], a control algorithm based on a lateral dynamic model was introduced for path
tracking in autonomous vehicles. To enhance stability at high speeds, an improved model
predictive control (MPC) controller was proposed. By combining the steady-state response
and MPC, the lateral motion of the vehicle can be controlled smoothly, ensuring accurate
path tracking at high speeds. Simulation results obtained using MATLAB were presented
to validate the effectiveness of this approach.

An efficient model predictive control (MPC) approach for lateral control (LC) in
autonomous vehicles was presented in [34]. To address computational time limitations,
a proposed approximate explicit model predictive control (AEMPC) scheme utilized pre-
computed control gains and eliminated the need for online quadratic programming. The
suitability of AEMPC for real-time implementation on automotive electronic control units
(ECUs) was emphasized, and the usefulness of AEMPC in lateral control was demonstrated
through computational experiments.

A lateral control for autonomous vehicles aiming to compare the performance of three
controllers (PID, Stanley, and sliding mode control) across multiple environments was
investigated in [35]. By evaluating their performance in seven environments, the study
identified the controllers that excel in each specific setting. These findings enable the design
of an efficient controller suitable for diverse environments. Table 2 summarizes the lateral
model-based control techniques existing in the literature.
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Table 2. Lateral model-based control techniques.

Papers Publication
Year Control Technique Vehicle Model/Vehicle

Type Modeling
Output/Primary

Objective Validation Advantages Disadvantages

[12] 2011 Nested PID Simplified single track
vehicle model

Steering control
and lane keeping

Simulation
and real

− Performs path following for roads of an
uncertain curvature;

− Robust against uncertain vehicle physical
parameters and speed variations.

Does not consider the interactions between the
proposed controller and the driver both in normal
driving and during emergency conditions.

[13,14] 2018, 2019 Backstepping

Reduced second-order
model of lateral vehicle

motion and a vehicle–road
system model

Lane keeping and
steering control

Simulation
and real

− The proposed approach is robust to
disturbances, including external disturbances
and modeling uncertainties;

− The control structure is simple.

&

− Good real-time performance, tracking accuracy,
and robustness against vehicular velocity.

There is no guarantee of the boundedness of the lateral
offset in transient response.

[15] 2018
Hierarchical

vision-based lateral
control

The vehicle lateral model Steering angle
control Simulation

− The introduced control scheme balances well
between the predicted performance and the
amount of online calculation;

− Provides a potential low-cost solution for
lateral control of autonomous vehicle.

[17,18] 2019, 2013
Backstepping controller

and sliding mode
control (SMC)

Two-degree-of-freedom
vehicle bicycle model and

dynamic bicycle model

Steering
control/angle and
trajectory tracking

Simulation

− The accurate tracking in low (0.3) and high
(0.9) frictions and also in different maneuver
durations.

&

− The robustness of the sliding mode controller
against nonlinearities and parametric
uncertainties in the vehicle model while
reducing chattering of first-order sliding mode;

− Achieves robust lateral path tracking at
high speed.

− The long running time of the proposed
control law.

&

− There is no robustness against uncertainties and
noisy measurements;

− the control law does not consider the cant and
the slope of the road.

[19] 2021 Gain scheduling
Two-degree-of-freedom
(2-DOF) lateral vehicle

model

Tracking
references of

lateral position
and heading angle

Simulation − Robustness against time-varying system
parameters.

[20,21] 2015, 2020 Fuzzy logic

Lateral kinematic model
of an autonomous vehicle
and Takagi-Sugeno (T-S)
vehicle lateral dynamic

model

Steering control
and path-tracking

control
Simulation

− Ensures the safety and stability of autonomous
vehicles.

&

− Lowers the oscillations and overshoots, saves
the control energy, and improves the transient
performance of the controlled output.

[22] 2019 Sliding mode variable
structure

Three-degree-of-freedom
(DOF) nonlinear model

Improved a
vehicle’s lateral
stability under

extreme operating
conditions

Simulation

− The adaptive-
reaching SM-VSC control approach is more
efficient in eliminating the chaotic phase of the
lateral motion of the vehicle and significantly
ameliorates a vehicle’s lateral stability under
extreme operating conditions.



Appl. Sci. 2023, 13, 6700 8 of 29

Table 2. Cont.

Papers Publication
Year Control Technique Vehicle Model/Vehicle

Type Modeling
Output/Primary

Objective Validation Advantages Disadvantages

[23] 2020
SMC in conjunction with

disturbance observer
and gain scheduling

The model of the vehicle
lateral dynamics, including

the modeling of the
external disturbances

Path-following
control Simulation

− Chattering is completely removed;
− Can treat all perturbations;
− Has greater robustness against parameters

variation;
− Stability is robust.

− Requires bounded disturbances.

[25] 2021

Feedback linearization
(FL); two most common
robust controllers: H∞
controller and sliding

mode controller (SMC),
the Lyapunov’s direct
method (LDM); two

geometry-based
controllers: Stanley
controller and pure

pursuit controller (PPC);
neural network (NN)
controller; and two
optimization-based
controllers: model

predictive control (MPC)
and linear quadratic

regulator (LQR)

Kinematic and dynamic
vehicle model

Path-following
task of

autonomous
ground vehicles

(AGVs)

Simulation

(FL)

− Allows use of well-defined linear control
techniques.

&
(LDM)

− Is stable for a large range of gain values.

&
(Stanley)

− Easy to implement;
− Low computational cost;
− No look-ahead distance requirement;
− Performs well at varying path conditions.

&
(PPC)

− Easy to implement;
− Low computational cost;
− Good performance at lower vehicle speeds;
− Good tracking performance when starting on

the reference path (low lateral and heading
error).

&
(Adaptive)

− Good performance with parametric
uncertainty;

− No prior information about dynamic
parameter if an intelligent algorithm (NN, FLS)
is used.

&
(MPC)

− Ability to handle multiple variables;
− Constraints can be included in states and

control;
− Optimized performance based on a cost

function.

&
(LQR)

− Control effort and system response can be
optimized.

(FL)

− Lacks robustness
− Presence of internal dynamics (for input-output

linearization).

&
(LDM)

− Lyapunov candidate function is not easy to
construct.

&
(Stanley)

− Performance depends on proper tuning of
parameters;

− Does not perform well in case of path
discontinuity;

− Less robust than PPC.

&
(PPC)

− Does not consider the orientation of the vehicle
at the target point; -Does not perform well in
case of large initial lateral and heading error;

− Performance depends on the proper tuning of
look-ahead distance, which may vary for
different trajectories;

− Performance degrades at higher vehicle speeds.

&
(Adaptive)

− Not robust against non-parametric uncertainty;
− Parameter drifting problem.

&
(MPC)

− Solves online optimization problem, which is
computationally expensive.

&
(LQR)

− Use of linear model increases uncertainty;
− Not robust in the presence of uncertainty.
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Table 2. Cont.

Papers Publication
Year Control Technique Vehicle Model/Vehicle

Type Modeling
Output/Primary

Objective Validation Advantages Disadvantages

[26] 2021

Multi-input
multi-output (MIMO)

model reference
adaptive control
(MRAC) strategy

Single-track (ST)
2-degree-of-freedom (DOF)

vehicle model

Yaw rate tracking
and handling of

sideslip limitation
Simulation Improves the handling and yaw stability of the lateral

dynamics of the vehicle.

[29] 2021
A sliding mode control

(SMC) with barrier
Lyapunov function

Nonlinear second-order
system—following the

model reduction approach
in the literature, the slow
and fast system dynamics
are separately controlled

Tracking the
system’s desired

outputs while
restricting the

output in certain
bounds

Simulation

− SMC with barrier function is used to track the
system’s desired outputs while restricting the
output in certain bounds;

− SMC with barrier function provides better
tracking performance than the conventional
SMC.

[30] 2021 Type-II ZCBF Nonlinear affine system

Ensuring forward
invariance and
robustness of a
constraint set.

Simulation
− Can be applied for a larger class of systems

(e.g., passivity-based) while still ensuring
robustness.

− Does not address non-intersecting constraint set
boundaries.

[31] 2021 CBF-CLF Kinematic bicycle mode

Guaranteeing a
vehicle’s safety

during
lane-change
maneuvers

in a complex traffic
environment.

Simulation

− Guarantees a vehicle’s safety in a complex
traffic environment during lane-change
maneuvers;

− Ensures the system’s safety at a high update
frequency.

− The zero slip angle assumption limits the ego
vehicle’s lateral acceleration and the controller’s
performance;

− The small angle assumption also creates a
mismatch between the real dynamics model and
the used approximated nonlinear affine
dynamics model.

[36] 2018 Hierarchical controllers Two-DOF bicycle model/
SIMO system

Guaranteeing the
stability and

robustness under
various

environments

Simulation

− The vehicle can track any “feasible” references
with the designed controller at a constant
speed, and the lateral deviation converges to
zero within a short period.

− Does not consider the presence of uncertainties
and disturbances.

[37] 2013
A distributed model

predictive control
approach

Model of lateral
inter-vehicle dynamics

between
two adjacent vehicles

Steering control Simulation The proposed approach can deal with the actuator,
comfort, and safety constraints.
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2.1.2. Lateral Model-Free Control techniques

There are complex road situations such as crosswalks, dense traffic, intersections,
etc. Due to these reasons, artificial intelligence (AI) techniques, reinforcement learning
(RL), and deep learning (DL) learn from their environment to outperform the model-based
control techniques to take accurate control command, such as steering [38].

A recent study proposed an end-to-end control system for steering autonomous
vehicles using a convolutional neural network (CNN), referred to in [39]. The system does
not rely on explicit hand-engineered algorithms for path planning, lane detection, or object
detection and instead maps pixel data directly to steering commands using the trained
neural net. This means that any other sensors are not required for the system to function.
The performance of the controller was evaluated by comparing its steering behavior with
that of a human driver.

In [40], the study detailed the training of an end-to-end model for controlling the
lateral motion of autonomous vehicles (AVs). The authors demonstrated that CNNs can
drive in similar but previously unseen scenarios. To train the network, a small amount
of training data was used within a simulation to control the car. Furthermore, the study
suggests that this approach can be extended to integrate longitudinal control of AVs by
training the network to use both steering angles and vehicle speed to achieve the desired
steering angles and vehicle speed.

An end-to-end autonomous driving system that combines long short-term memory
(LSTM) and CNN architectures was proposed in [41]. The integration of LSTM and CNN
allowed the system to extract both spatial and temporal features, and changes in the
steering-wheel angle of the vehicle were considered over time. However, data collection
from real-world vehicles was limited due to the challenges in processing vehicle data. To
overcome this issue, the authors used a driving simulator to train the proposed approach
for the steering wheel angle. The study suggests that a complete end-to-end driving system
could be constructed using large-scale vehicle data, provided solutions to the limitations in
vehicle data collection are found.

In [42], a deep neural network technique was proposed to explore the potential of
event cameras in predicting the steering angle of a vehicle, which is a challenging task in
motion estimation. The performance of this approach was evaluated on a publicly available
dataset of large-scale event-camera data. The simulation results demonstrated that the pro-
posed approach performs well using event cameras under different conditions, including
challenging illumination and fast motion, compared to traditional standard cameras.

In [43], a novel network architecture was developed to enhance the end-to-end learning
of the steering angle based on baseline vision using auxiliary tasks. The architecture
incorporated vehicle kinematics, recurrence modules, segmentation of auxiliary image,
introduction of optical flow, and transfer from existing tasks as distinct auxiliary tasks.
The Imagenet recognition task was used to learn features that were useful for on-road
driving in the steering task. By enhancing the mask of the pre-trained segmentation
with more information, a more accurate prediction could be obtained. Additionally, the
precise addition of vehicle kinematics led to a more concrete representation of the state and
boosted performance. The proposed approach was evaluated using the Comma.ai dataset
and Udacity simulator, demonstrating its effectiveness in improving end-to-end learning
of the steering angle.

An advanced chauffeur hybrid method was utilized to steer autonomous vehicles in
various situations, including changing from one road to another, lane changes, traffic signs,
and traffic lights [44]. CNNs were used to extract data features from the Udacity simulator,
and both recurrent neural networks (RNNs) and CNNs were employed. However, one
limitation of this method is that it does not consider other road users or obstacles, which
can pose significant challenges for autonomous vehicles in real-world driving scenarios.

Three major architectural parameters of CNN were evaluated and compared in [45] to
demonstrate their impact on the overall performance of the network. An optimal design
of deep networks and the best performance of the network were achieved based on this
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comparison. The performance of CNN models was further enhanced by a new MSE-based
ensemble approach, which was used for regression problems. A bagging method was
utilized to demonstrate the superior performance of this new approach.

A vision-based lateral control approach for autonomous driving using reinforcement
learning and deep learning methods was proposed in [46]. The approach consists of a per-
ception module and a control module. The perception module takes a driver-view image as
input and predicts track features using a neural network of multi-task learning. The control
module generates control decisions based on these features using reinforcement learning.
The approach was evaluated using Visual TORCS (VTORCS) and a deep reinforcement
learning environment based on the open racing car simulator (TORCS) to improve data
efficiency. The trained reinforcement learning controller outperformed the model predictive
control (MPC) and linear quadratic regulator (LQR) controllers on various tracks. The
experiments showed that the perception module performs well, and the controller can
effectively steer the vehicle along the center of the track using visual input.

A data-driven simulator and an engine for training are proposed in [47] to learn
control policies for end-to-end autonomous vehicles using sparse rewards. The simulator
allows the policies learned to be generalized for navigating previously unseen real-world
roads without the need for human-labeled training data. The effectiveness of the learned
policies was demonstrated through experiments conducted on a full-scale autonomous
vehicle in complex and novel scenarios, such as near-crash situations and new roads.
The proposed approach leverages scalable reinforcement learning techniques and can be
applied to achieve robust operation and efficient perception of autonomous vehicles in the
physical world. Additionally, the approach enables autonomous vehicles to detect and
avoid obstacles, including pedestrians, other vehicles, and trees, on the road.

In [48], a deep Monte Carlo tree search (MCTS) algorithm based on reinforcement
learning for vision-based control of autonomous driving was introduced. The algorithm
uses driver-view images as input, captured by a camera mounted on the vehicle, and does
not require human knowledge for vehicle control. The deep-MCTS algorithm performed
virtual simulations of driving to predict maneuvers and enhance the stability of driving
trajectory and steering control. Compared to current approaches, the proposed technique
shows a significant improvement in the training efficiency, stability of driving trajectory,
and stability of steering control, with 50.0%, 59.06%, and 66.30% improvement, respectively.
The technique has the potential to be applied in real-life scenarios.

A reinforcement learning (RL) approach for training a vehicle agent to perform au-
tomated lane changes in various scenarios was proposed in [49]. The RL algorithm uses
a Q-function approximator to compute a closed-form greedy policy, enabling efficient
computation of deep Q-learning with continuous action and state spaces. The simulation
results demonstrated the effectiveness of the vehicle agent in learning efficient and smooth
driving policies for lane changing. Furthermore, the adaptability and robustness of the RL
agent were improved by testing in different traffic flow conditions and road geometries,
making it suitable for complex driving scenarios.

A novel model-free adaptive control (MFAC) algorithm called the dual successive
projection (DuSP)-MFAC method was proposed and analyzed in [50]. The DuSP method is
used for analysis, examining the MFAC controller and its parameter estimator. The DuSP-
MFAC scheme was successfully implemented in the autonomous car “Ruilong” to address
lateral tracking control. By utilizing the proposed preview-deviation-yaw angle, trajectory
tracking was transformed into stabilization. Real road tests in Fengtai, Beijing, China, and
participation in the Chinese Smart Car Future Challenge Competition demonstrated the
satisfactory performance of the MFAC-based lateral tracking control method.

A neural-network-based robust lateral control strategy was proposed for an au-
tonomous vehicle (AV) in [51]. A radial basis function neural network (RBFNN) was
used to decrease the effect of unknown external disturbances for inaccurate model infor-
mation and tackle the problem of chattering, which is faced by the conventional sliding
mode controller (SMC), by estimating the equivalent control. Further, a switching control
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based on higher-order sliding mode (HOSM) was developed to compensate the external
disturbances effect. The simulation results demonstrate the effectiveness of the proposed
control in terms of lateral stability and lane keeping in the high-fidelity environment of
Carsim-Matlab Simulink in diverse road and environmental conditions.

In [52], a speed-adaptive model-free lateral control strategy was developed with a
wide range of operation in order to increase the situations where the autonomous vehicles
steer without intervention. A minimum level of comfort and safety were considered. A
systematic procedure was used to test the performance of controllers on trajectories with
different dynamic constraints and shapes. The simulation and real-world tests explained
that the speed-adaptive model-free Control (MFC) has a superior performance compared
to other controllers with the same structure, such as a MFC and a PID. The simulation and
real vehicle results demonstrated that the proposed control strategy has a high degree of
accuracy, comfort, and safety.

The necessity of accurate vehicle models in traditional automated vehicle path-tracking
algorithms, which are challenging to obtain due to complex interactions and unknown
disturbances, was emphasized by the aim of this work [53]. Furthermore, the popularity
of path tracking using data-driven controllers such as model-free control (MFC) was
highlighted. The objective of addressing the trial-and-error nature of control gain tuning
in MFC and the potential issues associated with existing adaptive gain-tuning methods,
such as chattering or unbounded control gains, was pursued. To improve the performance
of MFC, the integration of MFC with extremum-seeking control (ESC) was proposed,
aiming to enable real-time updates of the control gain. The effectiveness of this adaptive
model-free controller was demonstrated through simulations and field tests conducted in
Simulink-CarSim.

2.2. Longitudinal Control of Autonomous Vehicles
2.2.1. Longitudinal Model-Based Control Techniques

To ensure proper longitudinal control, four types of information are required: the
speed and acceleration of the ego vehicle, the speed and acceleration of the preceding
vehicle, the distance to the preceding vehicle, and the speed and acceleration of the leader
vehicle in a platoon scenario. The OEM speed sensors and accelerometers can measure
the speed and acceleration of the ego vehicle, as shown in Figure 3. Range sensors such
as vision, ultrasonic, LIDAR, and radar can measure the distance to the preceding vehicle,
with radar being the most common sensor used. The physical principle of automotive
radar is the main reason for its success and provides unique characteristics of performance
at a reasonable cost. These characteristics include design compatibility, vehicle integration
independent of environmental conditions (weather and light), multiple fields-of-view
capability, Doppler velocity, and directly measured spatial parameters. Radar works in
case of the failure of other sensors. This radar can virtually observe the perspective effect
of vehicles by utilizing the reflection between the vehicle floor and the road surface to
make invisible objects visible. Mutual interference between vehicle radars represents a
challenging problem that must be considered. For example, the consequences can be
unimaginable, and the radar can misjudge the surrounding environment when the speed is
high, when two autonomous vehicles are driving beside each other, and when the radars
affect each other [54].
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The speed and acceleration of the preceding vehicle can be measured in two ways: by
using range sensors and deriving the information from the ego vehicle or by communicating
the information between the vehicles. In a platoon scenario, the lead vehicle’s speed
and acceleration can be obtained through communication. However, the reliability of
communication cannot be fully trusted.

The autonomous vehicle Leonie utilizes the adaptive longitudinal control system
described as [55]. This system was designed to respond to changing weather and road
conditions through a calculation known as the grip value. The grip value influences several
key factors, including the safe time headway, the magnitude of acceleration demands,
and the maximum allowable vehicle speed for both the longitudinal controller and the
entire vehicle-guidance system. By incorporating the grip value calculation, the results of
test drives demonstrated a smoother acceleration profile and reduced interference from
electronic stability control (ESC) and automatic traction control (ATC) systems.

In [56], a comparison was made between four different longitudinal controllers. The
first was a classical proportional-integral (PI) control, which is a well-established control
method. The second was an advanced i-PI control, which incorporates an intelligent
component into the traditional PI control. The third was a fuzzy control system based
on human experience, and the fourth was a neuro-fuzzy control system. The aim of the
comparison was to evaluate the performance of these controllers under various driving
conditions and identify the most suitable control method for autonomous vehicles. The
proposed control techniques were validated by numerical simulations in first step, and
experiment results were highlighted on a real vehicle in the second one.

A longitudinal controller for an automated driving bus was developed in [57]. A
linear longitudinal model was presented by approximating a rolling resistance force and an
aerodynamic drag force in a low speed range. Then, the feedback gains of a proportional
integral (PI) control were determined using a root locus method to consider the longitudinal
grade of the road with a constraint derived from the Chien–Hrones–Reswick (CHR) method.
The vehicle predicts the traffic light for the smooth passing of a signalized intersection.
Further, the novel adaptive cruise control (ACC) was proposed for the automated driving
bus for the acceleration reduction of the vehicle. Pilot tests were used to validate the
controller’s performance on public roads.

A methodology was proposed in [58] for selecting a longitudinal model and improving
velocity control in an autonomous car. The inverse model compensates for nonlinear
dynamics in the transmission system and engine. The modeling method works for any
automated car with actuated throttle and braking, relying on data without prior knowledge.
The control system uses two loops for throttle and braking, achieving good performance
on uneven surfaces. It maintained acceleration around 2.5 m/s2 in the 0–40 km/h speed
range, which is suitable for passenger comfort. The methodology was validated through
simulations and experiments, proving its effectiveness in enhancing safety and performance.
A controller for a longitudinal ADAS system of a test vehicle was designed in [59]. A robust
H∞ cruise control based on a feedforward and a feedback control design was proposed
to ensure a precise velocity tracking and robustness against longitudinal disturbance
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effects such as aerodynamic forces, mass parameter variations, rolling resistance, and road
slopes of the vehicle. The parameter variation (dynamics) of the actuator was considered
in a simplified form in the control formulation. The proposed control algorithm was
implemented in CarSim. The method efficiency was illustrated during simulation scenarios
on the Mulhouse-Belfort highway section. The introduced control design will be applied to
various vehicles because it needs a small number of vehicle parameters.

An MRAC approach for ACC systems in vehicles, which is capable of effectively man-
aging uncertainties in low-level dynamics, was introduced by the authors of [60]. The linear
longitudinal dynamic model incorporates uncertainties in the state and input matrices, and
the system was designed based on error dynamics. The velocity of the lead vehicle was
considered an exogenous disturbance, and the uncertainties were addressed by the control
structure to maintain the desired distance. Despite model uncertainties, the proposed
control demonstrated superior performance compared to a linear-state feedback control
in MATLAB/Simulink. This controller is suitable for practical implementation, as it only
requires a sensor in addition to vehicle velocity to measure the relative distance between
the lead and controlled vehicle. In [61], a longitudinal control algorithm was developed for
an autonomous vehicle without the need for vehicle parameter identification. The modified
MRAC approach was studied with appropriate initial conditions, ignoring powertrain
dynamics and road slope changes. Despite these simplifications, the adaptive algorithm
effectively tracks speed profiles with comfortable acceleration and robustness to environ-
mental variations. The control architecture is suitable for vehicles with approximately
known parameters. Simulation using a CarSim-Simulink setup demonstrated the feasibility
of the approach, evaluating vehicle performance under different dynamic conditions.

In [62], a novel longitudinal control method for autonomous vehicles was presented.
The approach utilizes the reverse plant model of the vehicle to address non-linearity in
the powertrain at low speeds and rapid acceleration/deceleration caused by surrounding
vehicles. The parameters known to original equipment manufacturers (OEMs) were used
to design the complete controller, incorporating an inner controller for brake requests and
accelerator pedal percentage, and an outer controller for desired speed based on the lead
vehicle’s speed. The inner controller employs a reverse plant model with a virtual load
sensor and follows a PI control strategy, enabling the control of vehicles with non-linear
powertrain dynamics. The performance of the controller was validated on a city bus with
automatic transmission and a diesel engine, demonstrating its capability to effectively
control autonomous vehicles with non-linear powertrain dynamics at low speed. Table 3
summarizes the longitudinal model-based control techniques existing in the literature.

2.2.2. Longitudinal Model-Free Control Techniques

The function of longitudinal control is the automated guidance. Therefore, the longitu-
dinal control regulates the autonomous vehicle (AV) speed to ensure comfort and safety.
The labeled training data are collected in simulation environments or the real world to
estimate the right speed using DL as a longitudinal control technique.
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Table 3. Longitudinal model-based control techniques.

Papers Publication Year Control Technique Vehicle Model/Vehicle Type
Modeling

Output/Primary
Objective Validation Advantages Disadvantages

[57] 2020 Adaptive cruise
control A linear longitudinal model Reducing the acceleration of

the vehicle Simulation Improved ride comfort in urban areas.

The maximum delay from
reference and the maximum

overshooting rate are
especially large in rural areas,

which affects the ride
comfort.

[58] 2014
Model identification

and
velocity control

Model of longitudinal
dynamics of a commercial

car
Velocity control Simulation and

real

− The proposed strategy improves the velocity control
of the vehicle;

− The controller utilizes the inverse model of the
vehicle to compensate for the nonlinear dynamics
resulting from the transmission system and the
engine of the car;

− The control architecture is simple, can be
implemented on a real-time system, and can control
the vehicle in non-flat and uneven surfaces with a
good performance;

− Proposes low-speed longitudinal control
methodology for autonomous vehicles built without
manufacturer support.

[59] 2015 Optimal/
robust H∞ control

Simplified longitudinal model
deals with = structured

uncertainties such as mass
variations and road slope

Precise velocity tracking at
varying vehicle mass and

road inclinations
Simulation

− The introduced control design needs a low number
of vehicle parameters, and thus, the approach can be
applied to various vehicles;

− Provides precise velocity tracking at varying road
inclinations and vehicle mass;

− The system is robust against disturbances and takes
into account actuator dynamics.

[61] 2017
Model reference
adaptive control

(MRAC)

Longitudinal vehicle model
with approximately known

parameters

Tracking the speed profile
with comfort acceleration Simulation

− The introduced control can track the speed profile
with comfort acceleration;

− The proposed architecture can control a vehicle
whose parameters are known approximately.

The initial condition of the
adaptive parameters has to

be properly chosen to
guarantee an effective

implementation.

[62] 2021

This control
methodology

combines an inner
controller and an
outer controller

Reverse plant model of the
vehicle

Controlling an autonomous
vehicle with nonlinear
power-train dynamics

Simulation and
real

− The designed control can control an autonomous
vehicle with nonlinear power-train dynamics even at
low speeds with onboard computational capacity;

− The proposed control is realistic and can easily be
applied by the industry to any vehicle.

The control design is limited
to the parameters known to
OEMs (original equipment

manufacturer).

[63] 2018 Longitudinal control
based on cloud model Cloud model for Mengshi AV

Ensuring the dynamic
stability and tracking

performance of Mengshi AV
Simulation Guarantees the tracking performance and dynamic stability

of Mengshi autonomous vehicle.

The speed and acceleration of
the cloud model are classified

according to experience
without certification.
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Table 3. Cont.

Papers Publication Year Control Technique Vehicle Model/Vehicle Type
Modeling

Output/Primary
Objective Validation Advantages Disadvantages

[64] 2011 Distributed receding
horizon control

Platoon of vehicles with
nonlinear dynamics

Ensuring
asymptotic stability,

leader–follower string
stability, and

predecessor–follower string
stability, following a step

speed change in the platoon

Simulation

− Ensures predecessor–follower string stability,
leader–follower string stability, and asymptotic
stability;

− Conjectural tradeoffs between lead car and following
car control flexibility;

− The proposed string-stable controller does not
require any continuous information from the lead
car to cars down the string, nor does it require
acceleration information from the lead car.

The platoon size depends on
the individual choices and

the behavior of the
constituent vehicles.

[65] 2010

Vehicular adaptive
cruise control (ACC)

(a hierarchical control
architecture composed

of a lower
controller used to
compensate for

nonlinear vehicle
dynamics and to track

the desired
acceleration and
upper controller
designed in the

framework of MPC)

Model of nonlinear vehicle
dynamics

Compensating for nonlinear
vehicle dynamics and
tracking the desired

acceleration

Simulation

− Provides tracking capability and fuel economy;
− Satisfies driver’s desired car-following

characteristics;
− Ensures driver’s longitudinal ride comfort.
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In [66], a neural network-based control was developed for intersections in autonomous
vehicles, aiming to reduce computational complexity in motion optimization. The neural
network was trained using an offline solution, and a robustness analysis examined the
impact of speed and position estimation errors. CarSim simulations demonstrated the de-
sign and analysis, highlighting the trade-off between robust scenarios, position estimation
error, and the need to balance energy loss and sensor network costs. In [67], a sensorless
state estimation approach was presented for brake pressure in vehicles using deep learning,
with the goal of achieving high autonomy and safe driving. The structured deep neural
network (DNN) was trained using techniques such as rectified and dropout units, yield-
ing a highly accurate model for brake-pressure state estimation. Training and validation
were performed using experimental data collected from a real test vehicle connected to a
chassis dynamometer. The effectiveness and applicability of the proposed technique were
demonstrated, with a root mean square error (RMSE) of 0.048 MPa achieved for brake-
pressure state estimation. In [68], an RL model was introduced for optimizing car-following
performance by integrating comfort, efficiency, and safety factors. The RL agent learned
vehicle speed control through simulations using a reward function derived from human
driving data. Collision avoidance was incorporated for safety. Comparative evaluations
with MPC-based ACC and empirical data showed that the proposed RL model outperforms
in terms of time-to-collision values, headways, and comfortable following with smooth
acceleration. It demonstrates potential for advanced autonomous driving systems. In [69],
DRL and MPC were compared for ACC in car-following scenarios. A COM approximates
vehicle dynamics. DRL (trained with DDPG) equals MPC with a long prediction horizon
within the training data range and no modeling errors. DRL’s episode cost is 5.8% higher
than IPO-optimized benchmark. DRL’s performance degrades outside training data range,
indicating poor generalization. DRL matches MPC with small modeling errors and outper-
forms with large errors, disturbances, control delays, and high-fidelity models. Integration
of DRL and MPC can leverage strengths and mitigate drawbacks.

In [70], a multi-agent reinforcement learning approach for cooperative adaptive cruise
control (CACC) in platooning vehicles was presented. The LSTM was trained with policy
gradient for ACC implementation, allowing the LSTM to be adapted for information
exchange and driving coordination. Simulations were conducted with two platoons of
three and five vehicles, evaluating the CACC with the learned communication protocol
against various communication baselines and a jamming attack. The approach incorporates
local and global reward systems, demonstrating faster convergence and higher performance
when utilizing the learned communication protocol and individual rewards.

In [71], a method for predicting nearby vehicles’ paths and controlling autonomous
vehicles (AVs) in urban road conditions was introduced. The trajectory prediction was
performed using a deep learning model based on long short-term memory (LSTM), in-
corporating the historical relationship between a target vehicle and lanes. The interaction
among adjacent vehicles was captured through a graph convolutional network (GCN) with
self-attention. The prediction model utilizes sensor data locally acquired from AVs. The
determination of acceleration inputs is done by model predictive control (MPC), with a
focus on prioritizing safety and ride quality. Comparative studies showed improved accu-
racy compared to baseline approaches, and automated driving tests confirmed the safety
and comfort achieved by the proposed control algorithm with the LSTM-based prediction
model. A safe velocity control method for autonomous vehicles (AVs) was proposed in [72],
considering the following vehicle in car-following models. Trajectories of leading and
following vehicles were extracted from driving data. The soft actor-critic (SAC) algorithm
was used for velocity control, enabling AVs to learn collision avoidance Zero collisions
were observed as the test result of the trained model, demonstrating the SAC agent’s ability
to achieve complete collision avoidance. Furthermore, the driving performance of the SAC
agent and human driving was compared and analyzed to enhance safety and efficiency,
aiming to improve the car-following process.
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2.3. Integrated Lateral and Longitudinal Control of Autonomous Vehicles
2.3.1. Integrated Lateral and Longitudinal Model-Based Control Techniques

Great attention towards the autonomous vehicles’ development has appeared in the
last decades in the academic, research, military, and industry fields. The guarantee of
secure and reliable navigation of vehicles even in critical situations of driving is the main
motivation. The perception and localization, the planning of trajectory, and the control of
the vehicle are the three main steps to achieve vehicle autonomy. Lateral control [37,73]
and longitudinal control [74,75] for the dynamics of vehicles are separately addressed in
most control techniques in the literature, and the control of longitudinal and lateral vehicle
dynamics could be separated or coupled, as shown in Figure 4, depending on the control
methodology, the dynamics model used, the assumptions, considered uncertainties and
parameter variation, and the applications for both dynamics.

The coupling of vehicle dynamics must be considered in the vehicle control design for
the vehicle control and to handle its stability and safety, as shown in Figure 5. The lateral
and longitudinal control problem of vehicle dynamics was recently addressed in a coupled
way by some research groups.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 35 
 

proposed in [72], considering the following vehicle in car-following models. Trajectories 
of leading and following vehicles were extracted from driving data. The soft actor-critic 
(SAC) algorithm was used for velocity control, enabling AVs to learn collision avoidance 
Zero collisions were observed as the test result of the trained model, demonstrating the 
SAC agent’s ability to achieve complete collision avoidance. Furthermore, the driving per-
formance of the SAC agent and human driving was compared and analyzed to enhance 
safety and efficiency, aiming to improve the car-following process. 

2.3. Integrated Lateral and Longitudinal Control of Autonomous Vehicles 
2.3.1. Integrated Lateral and Longitudinal Model-Based Control Techniques 

Great attention towards the autonomous vehicles’ development has appeared in the 
last decades in the academic, research, military, and industry fields. The guarantee of se-
cure and reliable navigation of vehicles even in critical situations of driving is the main 
motivation. The perception and localization, the planning of trajectory, and the control of 
the vehicle are the three main steps to achieve vehicle autonomy. Lateral control [37,73] 
and longitudinal control [74,75] for the dynamics of vehicles are separately addressed in 
most control techniques in the literature, and the control of longitudinal and lateral vehicle 
dynamics could be separated or coupled, as shown in Figure 4, depending on the control 
methodology, the dynamics model used, the assumptions, considered uncertainties and 
parameter variation, and the applications for both dynamics. 

The coupling of vehicle dynamics must be considered in the vehicle control design 
for the vehicle control and to handle its stability and safety, as shown in Figure 5. The 
lateral and longitudinal control problem of vehicle dynamics was recently addressed in a 
coupled way by some research groups. 

Control algorithms for autonomous vehicles operating at tire adhesion limits are pre-
sented in [76]. The algorithms include feedforward and feedback components that repli-
cate the actions of a skilled racecar driver in managing throttle, brakes, and steering. In 
terms of ensuring safe and efficient vehicle operation at the limits, the feedback control, 
specifically heading error feedback, surpassed lookahead error feedback. This approach 
minimizes tracking errors, enhances stability, and guarantees precise trajectory following. 
In [77], a nonlinear cascade control system was developed for longitudinal control, ensur-
ing torque control and reference speed tracking. The longitudinal control is intercon-
nected with a model predictive control (MPC)-based lateral control for full autonomous 
driving. Simulations demonstrated the effectiveness of the longitudinal controller in 
tracking time-varying reference speeds. Real-world trajectory data validated the promis-
ing performance of the automated guidance strategy. 

 
Figure 4. Block diagram of integrated longitudinal and lateral control. 

A method for platoon control was proposed in [78], where longitudinal and lateral 
control were combined to ensure the vehicle remains within a lane. The integration of 
frequency and time domain methods in the longitudinal control allows for consideration 

Figure 4. Block diagram of integrated longitudinal and lateral control.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 24 of 32 
 

avoidance, traffic light detection, and lane keeping. Ablation studies were conducted to 

confirm the design choices, and the proposed method demonstrated high performance by 

winning the camera only track in the CARLA challenge. 

In [87], a dynamic obstacle avoidance model predictive control (MPC) framework 

was proposed for autonomous driving, which incorporates deep learning techniques to 

achieve velocity-based collision avoidance in unknown environments. The main goal of 

this approach was to enable the autonomous vehicle to perform various safe traffic ma-

neuvers in the shortest possible time and with maximum passenger comfort while con-

sidering the vehicle’s dynamics and maneuvering capabilities as well as road boundaries, 

traffic rules, and static/dynamic unknown obstacles. To address the dynamic collision 

avoidance problem, the authors defined local coordinates and collision regions, which al-

lowed them to convert it into a static collision avoidance problem. This conversion sim-

plifies the optimization process, and the authors used an ensemble of deep neural net-

works to estimate collision probabilities and prioritize between safety and mission using 

an uncertainty-based collision cost. The MPC generates a predicted trajectory by leverag-

ing a learning procedure that predicts collisions in advance using labeled data. The pro-

posed method was tested in different simulation environments and scenarios, and the re-

sults demonstrated its safety, good performance, and adaptability to unknown environ-

ments. 

In [88], an overview of deep learning techniques applied in the context of autono-

mous driving was presented. The survey covered recurrent and convolutional neural net-

works, deep reinforcement learning, and AI-based self-driving architectures. These meth-

odologies are crucial for driving scene perception, path planning, arbitration of behavior, 

and motion control algorithms. The article discussed both modular perception-planning-

action pipelines and end-to-end systems that use deep learning methods to build each 

module. However, the current challenges in designing AI architectures for autonomous 

driving include ensuring safety, addressing computational hardware limitations, and ob-

taining adequate training data sources. The survey provided a comparison of the features 

and limitations of AI and deep learning techniques in autonomous driving, which can 

assist in making informed design choices. A block diagram of the deep-learning-based 

autonomous vehicle is shown in Figure 5 [88] and the schematic diagram of a vehicle con-

trol system using RL is depicted in Figure 6. 

 

Figure 5. Deep-learning-based autonomous vehicle. Figure 5. Deep-learning-based autonomous vehicle.

Control algorithms for autonomous vehicles operating at tire adhesion limits are
presented in [76]. The algorithms include feedforward and feedback components that
replicate the actions of a skilled racecar driver in managing throttle, brakes, and steering.
In terms of ensuring safe and efficient vehicle operation at the limits, the feedback control,
specifically heading error feedback, surpassed lookahead error feedback. This approach
minimizes tracking errors, enhances stability, and guarantees precise trajectory following.
In [77], a nonlinear cascade control system was developed for longitudinal control, ensuring
torque control and reference speed tracking. The longitudinal control is interconnected
with a model predictive control (MPC)-based lateral control for full autonomous driving.
Simulations demonstrated the effectiveness of the longitudinal controller in tracking time-
varying reference speeds. Real-world trajectory data validated the promising performance
of the automated guidance strategy.
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A method for platoon control was proposed in [78], where longitudinal and lateral
control were combined to ensure the vehicle remains within a lane. The integration of
frequency and time domain methods in the longitudinal control allows for consideration
of safety, performance, comfort, and actuator limitations, thereby ensuring string stability.
The lateral control, employing LPV-MPC and convex optimization, was utilized to address
speed changes resulting from longitudinal control and attain global optimality. With this
method, the vehicle is maintained within the lane with minimal tracking errors, even
when longitudinal velocities vary. The control strategy for fully automated guidance in
an automotive vehicle, with a focus on longitudinal and lateral control, was discussed
in [79]. Simultaneous utilization of both control types effectively handles the vehicle’s
complex dynamics. Nonlinear model predictive control (NLMPC) achieves steering au-
tomation, while a nonlinear longitudinal control strategy addresses speed tracking and
powertrain dynamics. Simulations validated the approach, demonstrating efficient path
tracking, acceptable lateral errors, and accurate longitudinal speed tracking. Overcoming
the challenge of strong coupling between lateral and longitudinal dynamics in the design
of robust, real-time controllers for real vehicle implementation remains a key consideration.
In [80], two coupled controllers were proposed: one utilizing Lyapunov control techniques
and the other employing immersion and invariance with a sliding mode approach. These
controllers guarantee robust tracking of the reference trajectory and desired speed while
considering the strong coupling between the vehicle’s lateral and longitudinal dynamics.
Validation was conducted via simulation in Matlab/Simulink and experimental tests using
a robotized vehicle (Renault-ZOE).

The proposed approach by [81] for autonomous driving involves coordinated longi-
tudinal and lateral control, prioritizing stability and comfort. It introduced an enhanced
particle swarm optimized proportional-integral-derivative (PSO-PID) method for speed
tracking and an improved linear parameter varying model predictive controller (LPV-MPC)
for lateral dynamics control. The LPV-MPC incorporates an adaptive LPV model and an en-
hanced cost function to enhance performance and stability. Matlab/Carsim co-simulations
validated the controllers for general trajectory tracking and double-lane-change scenarios,
demonstrating reasonable performance and robustness against wind disturbances.

A control framework that improves lateral stability and trajectory tracking accuracy
by jointly estimating multiple parameters using an adaptive unscented Kalman filter was
developed in [82]. This estimation was used to design a lateral control system focusing
on large lateral acceleration and a longitudinal control system for accurate speed tracking,
including compensation for drive and brake forces using road slope estimation. The pro-
posed framework was validated through co-simulation and experimental tests on a hybrid
LincolnMKZ autonomous vehicle platform, showing excellent performance in enhancing
lateral stability and tracking accuracy. Wireless communication-based platoon control
for vehicles was investigated in this paper. An integrated approach for longitudinal and
lateral control within a designated lane was proposed in [83]. The follower vehicle speed is
regulated, and the inter-distance is maintained proportionally to the vehicle speed through
longitudinal control. Stability conditions were formulated using a Lyapunov candidate
function and BMIs. String stability and robust platoon control were ensured through
additional conditions. Constraints such as actuator saturation and limited controller infor-
mation were taken into account. Vehicle lateral control was achieved using a multi-model
fuzzy controller, which maintains road position. The design conditions were expressed as
LMIs solvable with numerical solvers. The effectiveness of the proposed control method
was validated using the CarSim software package. Table 4 summarizes the integrated
lateral and longitudinal model-based control techniques.existing in the literature.
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Table 4. Integrated lateral and longitudinal model-based control techniques.

Papers Publication
Year Control Technique Vehicle Model/Vehicle Type

Modeling
Output/Primary

Objective Validation Advantages Disadvantages

[79] 2014

Nonlinear model predictive
control (NLMPC) for lateral

control and Lyapunov theory
for longitudinal control

Nonlinear bicycle model and
Longitudinal synthesis model

Path tracking at variable
speeds and correctly
tracking longitudinal

speed reference

Simulation and real

− Guarantees the simultaneous
control of longitudinal and lateral
motions;

− Can decouple the problems of speed
and path tracking;

− Enhances the lateral stability level
and improves the autonomous
guidance safety.

Does not consider the road slope in the
trajectory generation to ameliorate

the reference
generation.

[80] 2019

The first controller used
Lyapunov control techniques,

and the second controller
used invariance and

immersion with sliding mode
control technique

Four-wheel vehicle model Trajectory tracking and
robust speed tracking Simulation and real Guarantees a robust tracking of the desired

speed and the reference trajectory.

− The tire model is linear and does not
consider the non-linearity of the
tire/ground contact forces such as
piece-wise linear model, Dugoff’s
model, and others;

− The used simplifications affect the
performance of the controllers and
reduce their robustness;

− The lateral controllers/actuators
cause delay with respect to the
reference trajectory curvature and
the vehicle speed;

− The tuning of the parameter Ls is
not at all a simple task;

− Does not consider stronger
non-linearity and higher speeds
conditions that affect the controllers’
robustness at the stability limits of
the vehicle.

[81] 2022
PSO-PID for longitudinal
control and LPV-MPC for

lateral control

A vehicle consists of several
subsystems for longitudinal

dynamics and an LPV
version of the standard bicycle

model for lateral dynamics

Lateral and longitudinal
tracking with robustness

against wind disturbances
Simulation

− Ensures accurate speed tracking;
− Provides better performance and

stability.

Does not handle both lateral and
longitudinal control simultaneously.

[82] 2022

Lateral and longitudinal
control of AVs based on
multi-parameter joint

estimation

Longitudinal model for
longitudinal dynamics and

3-DOF vehicle model for lateral
dynamics

Improving the
trajectory-tracking

accuracy and vehicle
lateral stability

Simulation and real
Provides excellent performance and
enhances the lateral stability and tracking
accuracy.

The parameters need to be estimated, and
the control structure is not simple.
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2.3.2. Integrated Lateral and Longitudinal Model-Free Control Techniques

By employing both lateral and longitudinal controls in conjunction, we can enhance
both acceleration and steering performance. To this end, various artificial intelligence
(AI) techniques have been developed that allow the estimation of control commands
(e.g., steering, braking, and acceleration) in real time. These approaches leverage the power
of AI to optimize vehicle handling and responsiveness, leading to safer and more efficient
driving experiences.

In [84], a multi-task learning framework was proposed in an end-to-end manner to
simultaneously predict speed control and steering angle. The network utilized image
sequences to predict steering angles and discrete commands of speed because visual inputs
alone were not sufficient to predict accurate speed. To address this, a multi-modal multi-
task network was used, which incorporated both visual recordings and previous feedback
speeds as inputs to predict steering angles and speed values. The proposed approach was
evaluated on a newly collected SAIC dataset and a public Udacity dataset, and the results
demonstrated the accuracy of speed value and steering angle predictions. The problem of
error accumulation was addressed using methods of failure data synthesis in real road tests.

An investigation of the effect of connected and autonomous vehicles (CAVs) on traffic
flow in mixed traffic scenarios, with a focus on on-ramp merging and off-ramp diverging
of vehicles, was presented in [85]. The study explored the impact of increasing market-
penetration rates of CAVs and proposed a lane-changing cooperative strategy based on
reinforcement learning to enable CAVs to make farsighted lane changes and improve
traffic efficiency. Simulation results showed that incorporating CAVs can improve traffic
capacity, flow, and mean speed, with significant impacts on the processes of lane changes
at on/off-ramps. This study highlighted the mixed dynamics of traffic networks and the
potential of CAVs for future mobility.

In [86], a new approach was developed, referred to as “implicit affordances”, for
applying reinforcement learning to urban driving tasks such as vehicle and pedestrian
avoidance, traffic light detection, and lane keeping. Ablation studies were conducted to
confirm the design choices, and the proposed method demonstrated high performance by
winning the camera only track in the CARLA challenge.

In [87], a dynamic obstacle avoidance model predictive control (MPC) framework
was proposed for autonomous driving, which incorporates deep learning techniques to
achieve velocity-based collision avoidance in unknown environments. The main goal of this
approach was to enable the autonomous vehicle to perform various safe traffic maneuvers
in the shortest possible time and with maximum passenger comfort while considering
the vehicle’s dynamics and maneuvering capabilities as well as road boundaries, traffic
rules, and static/dynamic unknown obstacles. To address the dynamic collision avoidance
problem, the authors defined local coordinates and collision regions, which allowed them
to convert it into a static collision avoidance problem. This conversion simplifies the
optimization process, and the authors used an ensemble of deep neural networks to estimate
collision probabilities and prioritize between safety and mission using an uncertainty-based
collision cost. The MPC generates a predicted trajectory by leveraging a learning procedure
that predicts collisions in advance using labeled data. The proposed method was tested in
different simulation environments and scenarios, and the results demonstrated its safety,
good performance, and adaptability to unknown environments.

In [88], an overview of deep learning techniques applied in the context of autonomous
driving was presented. The survey covered recurrent and convolutional neural networks,
deep reinforcement learning, and AI-based self-driving architectures. These methodologies
are crucial for driving scene perception, path planning, arbitration of behavior, and mo-
tion control algorithms. The article discussed both modular perception-planning-action
pipelines and end-to-end systems that use deep learning methods to build each module.
However, the current challenges in designing AI architectures for autonomous driving
include ensuring safety, addressing computational hardware limitations, and obtaining
adequate training data sources. The survey provided a comparison of the features and
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limitations of AI and deep learning techniques in autonomous driving, which can assist in
making informed design choices. A block diagram of the deep-learning-based autonomous
vehicle is shown in Figure 5 [88] and the schematic diagram of a vehicle control system
using RL is depicted in Figure 6.
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The complex and nonlinear system of an autonomous vehicle was successfully sub-
jected to simultaneous longitudinal and lateral control [89]. This was achieved through a
series of steps including selecting an appropriate adaptive neural network that can generate
both linear and complex mappings, developing an adaptive lateral control, and evaluating
its robustness and precision against parametric uncertainty. Additionally, an adaptive
longitudinal control was developed, and its performance was compared with that of a
sliding-mode-based longitudinal control and a simple neural-network-based longitudinal
control. A simultaneous combined control was proposed for the longitudinal and lateral
dynamics of the autonomous vehicle, which outperformed the other control approaches in
achieving simultaneous speed-tracking and path-following objectives, as demonstrated
through simulation results. In [90], lateral and longitudinal control of autonomous vehicles
(AVs) motion was designed utilizing deep learning. The control implementation was de-
veloped and tested utilizing the open racing car simulator (TORCS). The vehicle steering
and speed were predicted by training two separate neural networks based on the road
trajectory. A system that uses artificial intelligence was built, using such an approach to
determine the value of the vehicle speed rather than respecting a set of predetermined rules
and analyzing the environment.

The existing vehicle lateral and longitudinal control techniques using DL and RL are
compared in Tables 5 and 6, respectively.
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Table 5. Integrated lateral and longitudinal control techniques using DL.

Papers Publication
Year Sensor Input Dataset Output Neural Network

Architecture DL Framework Hardware Validation Advantages Disadvantages

[84] 2018 Cameras Udacity and
SAIC

Steering
angle and

speed
command

CNNs and LSTM Not reported GPUs Real

− Predicts steering angles and
speed values accurately;

− Predicts the steering angle
and speed control
simultaneously in an
end-to-end manner.

[90] 2019 Camera TORCS data
Steering

angle and
vehicle speed

CNNs Not reported NVIDIA GeForce
GTX

Simulation
and real

− Predicts the vehicle steering
and speed based on the
road trajectory;

− Determines the value of
vehicle speed rather than
following a set of
predetermined rules.

The system performs
well only on the two
testing tracks due to the
limited training data.

[91] 2015 Camera
LIDAR KITTI

Steering and
acceleration
and brake

CNNs Caffe NVIDIA Simulation
and real

− Drives a car in a very diverse
set of virtual environments;

− Performs well in both virtual
and real environments.

[92] 2018 - Nine-DoF data Steering
angle CNNs Not reported Not reported Simulation

− Handles situations with
strongly coupled longitudinal
and lateral dynamics in a very
short time.

The proposed controller
is a black-box and cannot
be used in standalone.
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Table 6. Integrated lateral and longitudinal control techniques using RL.

Papers Publication
Year Contributions Output RL Technique Scenarios Validation

[93] 2017
Modeling of driver and

vehicle interactions using
game theoretic and RL

Decelerate and
hard decelerate
and maintain

MDP Multi-lane
highways Simulation

[94] 2018
Controllable imitative

reinforcement learning to
achieve higher success

Steering and
brake and

acceleration
DDPG Urban traffic Simulation

[95] 2020 RL model for differential
variable speed limit control Speed limits DDPG Freeway with

five-lane Simulation

[96] 2020
Model-based RL of the

complex driving environment
methodology

Steering and
acceleration and

brake

RNNs and EN
and DN Urban driving Simulation

[97] 2020
Combination of RL and game

theory to learn merging
behaviors

Steering and
velocity DQN Urban traffic Simulation

[98] 2020
Automated lane-change
strategy using proximal

policy optimization-based RL

Lane change and
acceleration NN Highways Simulation

and real

3. Discussion

The most common control techniques utilized in autonomous vehicles are model-based
control techniques, such as lateral, longitudinal, and integrated lateral and longitudinal
model-based control techniques, and model-free control techniques, such as artificial
intelligence (AI)-based lateral, longitudinal, and integrated lateral and longitudinal control
techniques. These techniques rely on mathematical models of the system being controlled,
which can be used to predict the behavior of the system and optimize control inputs.
Furthermore, they are typically more efficient and accurate than model-free techniques,
but they require accurate models of the system, which may not always be available. On
other hand, the model-free control techniques do not rely on explicit models of the system
but instead learn control policies from data through trial and error. These approaches
are often used in situations where the system is highly complex, poorly understood, or
changing rapidly. Model-based control techniques and model-free control techniques are
two approaches to control system design that have their own strengths and weaknesses.
Furthermore, there are some key differences between these two techniques that show the
advantages and disadvantages of both of them, which are as follows:

Model-based control techniques are as follows:

− Require a mathematical model of the system being controlled;
− Use the model to predict the behavior of the system and optimize control inputs;
− Are often more efficient and accurate than model-free techniques when the model

is accurate;
− May be limited by the accuracy and completeness of the model;
− Are typically designed by control engineers who have expertise in modeling and

system identification.
− Model-free control techniques are as follows:
− Do not require an explicit model of the system being controlled;
− Learn control policies from data through trial and error;
− Can be used when the system is highly complex, poorly understood, or changing rapidly;
− Are often more robust to model uncertainties than model-based techniques;
− May require a large amount of data and time to learn a control policy;
− Are typically designed by machine learning experts who have expertise in reinforce-

ment learning or other model-free techniques.
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We suggest combining model-based and model-free techniques to leverage the strengths,
avoid the limitations, improve the performance, and show the effectiveness of both ap-
proaches. For example, one approach to combine these techniques is to use reinforcement
learning (RL) and deep learning (DL). RL is a type of model-free control that learns from
experience to improve control decisions. RL can be used to learn a control policy that
optimizes a performance metric, while a model-based controller can be used to provide
stability guarantees and constraints. Another approach is to use a hybrid controller that
switches between model-based and model-free models depending on the situation. For
example, a model-based controller could be used when the system is in a known operating
regime, while a model-free controller could be used when the system enters an unknown
or highly dynamic regime. Model-based control techniques are commonly used in au-
tonomous vehicles to model the dynamics of the vehicle and its environment and to design
control laws that optimize safety, efficiency, and other performance criteria. For example,
model-based controllers can be used to regulate the vehicle’s speed, steering, and braking
and to ensure that the vehicle stays within its lane and avoids collisions with other objects.
However, model-based control techniques can be limited by the accuracy and completeness
of the model and by the complexity of the system being controlled. This is where model-
free control techniques can be useful, as they can learn control policies directly from data
without requiring a model of the system.

4. Concluding Remarks and Future Works

This paper proposes a review on recent advanced control methodologies applied for
autonomous vehicles (AVs), which can be generally classified into lateral, longitudinal,
and integrated lateral and longitudinal model-based and model-free control schemes.
Because the development of AVs is driven by recent advances in methodologies of vehicle
control, intelligent transportation systems, artificial intelligence (AI) techniques such as
deep learning (DL) and reinforcement learning (RL), and computational systems, this
progress has led to intelligent vehicles, smart roads, intelligent traffic safety, and improved
passenger comfort.

Current research work is focused on handling the main issues related to AVs, such
as model-based and model-free control techniques. Model-based control approaches are
accurate and efficient for an accurate system model but are limited by model uncertainties.
Model-free control approaches are robust against model uncertainties but need more data
and time to learn the control policy, which represent the control issues of intelligent con-
nected vehicles developed on the basis of intelligent vehicles. The choice between these
two approaches relies on the experience of the control system designer, available data and
computational resources, and specific requirements of the control problem. Autonomous
vehicles use both model-based and model-free control techniques to obtain high perfor-
mance and robustness. AVs can take advantage of the strengths of both control types and
alleviate their weaknesses using these approaches.

The potential of recent control techniques in various fields of AVs is highlighted, with
a focus on the objectives that can be achieved in these aspects. The improvements achieved
by advanced control techniques, which overcome the limitations of traditional ones in
autonomous driving, are also demonstrated.

Finally, the main existing research challenges are addressed, and future research
areas in the direction of fully autonomous/driverless vehicles is identified as a vision and
suggestions complementary to this work through the integration of different advanced
control methodologies, with different vehicle models improving their performance under
various assumptions in various driving scenarios and regions in different research areas.
The literature survey presented in this paper will support future research initiatives as a
guideline in autonomous vehicles.
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