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Abstract: The diaphragm is a key component of the lithium-ion battery and largely determines its
performance. Currently, commercial diaphragms suffer from poor thermal stability, low porosity, and
low liquid absorption rate. In this study, we prepared a polyurethane/polyacrylonitrile (PU/PAN)
lithium-ion battery diaphragm using a centrifugal spinning method with PU as the main substrate
and PAN as the additive. The results showed that the PU/PAN nanofiber diaphragm prepared by
centrifugal spinning had a 3D porous structure, and when using 18% PU:PAN = 7:3, the porosity of
the fiber diaphragm was 83.9%, the liquid absorption rate was 493%, and the ionic conductivity was
1.79 mS/cm. The battery system had good electrochemical performance and thermal stability, with
an electrochemical stability window of 5.2 V. The diaphragm did not shrink when heated at 160 ◦C.
In a lithium-ion battery system with lithium iron phosphate (LiFePO4) as the cathode material, the
capacity remained at 147.1 mAh/g after 50 cycles at a 0.2 C rate, with a capacity retention rate of 95.8%.
This indicated excellent cycle stability and a multiplicative performance with good application potential.

Keywords: centrifugal spinning; nanofiber; lithium-ion battery separator; polyurethane; polyacrylonitrile

1. Introduction

Despite rapid scientific and technological development, the world is facing an in-
creasing demand for energy and the need to control the resulting environmental pollution,
which makes the development of new green industries an urgent priority. Lithium-ion
batteries are commonly used in many fields, such as electronic devices and the aerospace
industry, because of their many advantages, such as high energy density, low power con-
sumption, recyclability, and low carbon emissions. The diaphragm is a key component of
the lithium-ion battery and largely determines its performance [1–3]. The film properties
of lithium-ion batteries determine the capacity, cycling stability, and other important bat-
tery characteristics, and therefore the diaphragm must have an adequate thickness, ionic
conductivity, high porosity, and both thermal and electrochemical stability [4–6].

Currently, commercial diaphragms are microporous membranes based on polypropy-
lene (PP), polyethylene (PE), and their composites. These diaphragms have low porosity
and liquid absorption rates and poor thermal stability due to the hydrophobic properties
of the constituent materials. This makes the electrochemical performance of lithium-
ion battery diaphragms poor, and commercial diaphragms are susceptible to shrinkage
when heated, which is not conducive to maintaining the long-term stable operation of
lithium-ion batteries, especially after repeated charging and discharging; the diaphragm
is heated, which can easily cause a short circuit inside the battery. Additionally, their
cumbersome preparation process, difficult equipment control, and high-cost limit their
application in electric vehicles and energy storage systems. These problems can be solved
by using different types of polymer diaphragms and by using different diaphragm manu-
facturing techniques [7,8]. To replace the traditional polyolefin microporous membrane,
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high-performance lithium-ion battery diaphragms have been prepared at the laboratory
scale using dry and wet spinning, electrostatic spinning, and centrifugal spinning methods.
Zhang D. et al. [9] prepared polypropylene/polyethylene (PP/PE) composite diaphragms
with a shut-off function by dry biaxial stretching. When the temperature rises to 135 ◦C,
the PE inside the diaphragm melts, blocking the channels for lithium-ion transport. Dahe
et al. [10] used a wet spinning process to prepare a polysulfone/polyvinylpyrrolidone
fiber diaphragm. However, the wide range of pore sizes of the polyolefin microporous
diaphragm prepared by the wet and dry spinning method resulted in a localized diaphragm
with a resistance that was too high. Unlike the dry-wet method, the fiber diaphragms
prepared by this method usually have high porosity, liquid absorption, and thermal stability
due to the specificity of the electrostatic spinning process.

Li et al. [11] prepared polyacrylonitrile/polyimide (PAN/PI) composite films by
electrostatic spinning, and their composite films had good thermal stability and exhibited
better mechanical properties than the original PAN films. Khan et al. [12] improved
the wettability and ionic conductivity of the diaphragm by the electrostatic spinning of
polyacrylonitrile (PAN) and polymethyl methacrylate (PMMA) to produce lithium-ion
battery diaphragms with embedded graphene nanoflakes. Cheng et al. [13] successfully
modified 3D nanofiber-structured polyurethane (PU) into a novel PU-coated diaphragm
using an electrostatic spinning process. Its fiber morphology was better, and its average
pore size was lower than that of commercial PP diaphragms, but its porosity (63.7%),
liquid absorption(371%), and ionic conductivity were greatly improved compared with
commercial diaphragms, and it had a lower interfacial resistance and good multiplicative
properties.

The electrostatic spinning method is not efficient enough for mass production, while
the fibers spun by centrifugal spinning have good orientation, a uniform diameter dis-
tribution, and the advantages of no voltage, a high yield, a simple structure, no pollu-
tion, and low production costs [14,15]; therefore, providing a good alternative to electro-
static spinning. Yanilmaz et al. [16] prepared polymethyl methacrylate/polyacrylonitrile
(PMMA/PAN) films with different blending ratios by centrifugal spinning, which pos-
sessed a high porosity and wicking rate. For PMMA/PAN (50/50) membranes, the porosity
and wicking rate are 73% and 370%, respectively. Lv et al. [17] prepared poly(vinylidene
fluoride) (PVDF)/polyacrylonitrile (PAN) blended nanofiber diaphragms by centrifugal
spinning, and the cells possessed excellent cycling stability and multiplicative performance,
but their diaphragms still had problems, such as poor electrochemical stability, and there-
fore the preparation of lithium-ion battery diaphragms by a centrifugal spinning method
still needs to be improved.

The development of high-performance composite diaphragms for lithium-ion batteries
is being actively studied. Xie et al. [18] prepared oxide aluminum-coated films by a physico-
chemical wet dipping method using aluminum oxide nanoparticles with a poly(vinylidene
fluoride-hexafluoropropylene) trilayer polymer. The electrolyte affinity of the diaphragm,
the absorption rate, and the thermal dimensional stability of the diaphragm were signif-
icantly improved. Cho et al. [19] coated both sides of a PE diaphragm with aminated
silica particles by immersion to give a higher ionic conductivity with better wettability
and cycling stability than the conventional PE diaphragm. Yang Y et al. [20] used the
non-solvent induced phase separation (NIPS) technique to prepare polyvinylidene fluoride
(PVDF)/vermiculite nanosheet (VNs) lithium battery (LIB) diaphragms. When the VNs con-
tent reached 7.0 wt%, the ionic conductivity of the separator increased from 0.300 mS/cm
to 1.679 mS/cm, and the PVDF/VNs composite films exhibited better performance due
to their suitable pore structure and uniformly distributed VNs fillers, and the cells using
PVDF/VNs The cells using PVDF/VNs spacer films exhibit excellent cycling stability, better
multiplicative performance, and wider electrochemical window. Cai et al. [21] successfully
fabricated a new type of Poly (vinylidene fluoride-co-hexafluoropropylene)/polyimide
(PVDF-HFP/PI) diaphragm for lithium-ion batteries, which combined the excellent prop-
erties of PVDF-HFP and PI, while maintaining a high porosity and thermal dimensional
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stability, and its porosity was 85.9%. Wu Q Y et al. [22] prepared a Poly(vinylidene fluo-
ride)/polyacrylonitrile (PVDF/PAN) co-blended porous membrane by thermally induced
phase separation (TIPS), which had an improved electrolyte uptake and ionic conductivity.
Khodaverdi et al. [23] successfully prepared polyacrylonitrile/Polyvinylalcohol/malonic
acid (PAN/PVA/MA) lithium-ion battery diaphragms. Due to the excellent hydrophilic
properties of PVA, the thermal shrinkage, wettability, and ionic conductivity of the di-
aphragms were significantly improved, and with a wide chemical stability window of 5.2 V.
A polyacrylonitrile (PAN)/styrene-isoprene-styrene (SIS) composite fiber membrane was
prepared by Tang et al. [24] The battery assembled by this composite diaphragm had a
good charge and discharge performance, the initial discharge capacity of the cell assembled
with this composite fiber film was 146.4 mAh/g at 0.2 C rate. From the above study, it was
found that the composite diaphragm had the advantages of good heat resistance and high
safety, but due to the increase in the thickness of the diaphragm, the internal resistance of
the battery increased, and the diaphragm production cost also increased accordingly. Poly-
acrylonitrile (PAN) is a popular material for lithium-ion battery diaphragms with strong
polar organic groups (-CN) on its side chains. It is commonly used for the preparation of
lithium-ion battery diaphragms due to its high dielectric constant, excellent spinnability,
good electrode compatibility, high liquid electrolyte absorption, and excellent thermal
stability [25]. Polyurethanes have a two-phase microstructure, i.e., soft and hard segments,
and are polymers with urethane functional groups that are formed by the polymerization
reaction of (poly)alcohols and (poly)isocyanates. The soft segments can dissolve alkali
metals and do not form ionic clusters [26,27]. They are very environmentally friendly
materials with advantages, such as their good thermoplasticity, and have the potential to
be used as a matrix material for lithium-ion battery separators.

In summary, from the current research in the preparation of lithium-ion battery di-
aphragms, the lithium-ion battery diaphragms prepared by dry and wet methods suffer
from uneven pore size, excessive local resistance, and other problems, and the porosity
and liquid absorption rate are not high compared to the fiber-based diaphragms prepared
by the electrostatic spinning method. In the electrostatic spinning method, due to the
characteristics of the process itself, the mechanical strength and thermal stability of the
prepared diaphragm are poor, low production efficiency, and not suitable for large-scale
production. The fiber-based diaphragm prepared by the centrifugal spinning method has
excellent porosity and liquid absorption rate and is a potential alternative to an electrostatic
spinning method for the preparation of a lithium-ion battery diaphragm.

In this study, we applied a centrifugal spinning method to prepare PU-based lithium-
ion battery diaphragms using PU as the main substrate and PAN as an additive. The
porosity, liquid absorption, ionic conductivity, thermal stability, electrochemical stability
window, cycling stability, and multiplicity of the assembled cells of the PU-based diaphragm
were analyzed to verify the feasibility of a PU-based nanofiber diaphragm for lithium-ion
batteries.

2. Experimental Materials and Methods
2.1. Experimental Materials

The main materials used in the experiments were PU pellets (1190A) (produced by
BASF Polyurethane Specialties (Shanghai, China) Co., Ltd.); PAN (Mw = 150,000) (produced
by Aladdin Chemicals, Shanghai, China); N,N-dimethylformamide (DMAc, chemically
pure) (produced by Sinopharm Chemical Reagent Co. Shanghai, China); and lithium iron
phosphate (LiFePO4) powder, acetylene black, PVDF, and N-methyl-2-pyrrolidone, which
were used to prepare lithium-ion cathode materials. The electrolyte was 1.0 M lithium
hexafluorophosphate (LiPF6) EC:PC = 1:1.
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2.2. Preparation of the PU-Based Nanofiber Membrane

A certain amount of PU particles and PAN powder were weighed and mixed, to which
a certain amount of N,N-dimethylformamide solvent was added to proportion a certain
mass fraction of the mixed solution. Stirring at 80 ◦C for 8 h through a magnetic stirrer to
obtain a well-mixed spinning solution. At room temperature, the spinning solution was
added to the centrifugal spinning machine, as shown in Figure 1. The distance from the
needle to the collection net was 30 cm, and the spinning time was controlled to obtain a
certain amount of PU-based nanofibers, which were collected after the spinning solution
was allowed to stand for a set period. The fiber films were overlapped along the fiber
orientation and repeatedly collected 5–6 times to obtain a certain thickness of fiber septa.
They were placed into a drying oven at 60 ◦C for 1 h to remove the fiber surface solvent,
and finally, the fiber septa were cut into circles for use, stored in the dry, and sealed.
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Figure 1. Preparation of PU/PAN fiber diaphragm by centrifugal spinning.

Through a large number of experiments completed in the early stage, the preparation
scheme of different mass fraction PU/PAN nanofiber septa is shown in Table 1; the mass
fraction of 18%PU/PAN solution can spin a large number of uniform fibers, this is because
due to the high viscosity polymer solution is a non-Newtonian liquid, when the sum of
the mass of PU/PAN is less than 18% of the total mass of the mixed solution, due to the
polymer solution concentration is low, its viscosity is also low, in the centrifugal spinning
process cannot form enough viscoelastic to withstand the external force of the stretch, while
the high solvent content, in the spinning process, cannot be completely evaporated, so the
fibers appear adhesion phenomenon, the diameter of the ejected fibers is large, and the
standard deviation is large, so cannot form a uniform distribution of fiber film, resulting
in low porosity of the diaphragm. When the sum of the mass of PU/PAN as a percentage
of the total mass of the mixed solution is greater than 18%, the higher polymer solution
concentration will lead to a larger viscosity and longer stress relaxation time, thus limiting
the jet stretching and thinning, resulting in an oversized diameter of the jets of fibrous
film [28,29], so the choice of needle aperture selection 26 G, centrifugal spinning machine
speed set to 4200 r/min, the ratio of PU/PAN solution with a mass fraction of 18%.
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Table 1. Preparation schemes of PU/PAN nanofiber separators with different mass fractions.

Number PU/PAN Solution Mass
Fraction (%) Stirring Time (h)/Temperature (◦C) Needle Inner Diameter (G) Rotating Speed

(r/min)

1 14% 8 h/80 ◦C 28 4200
2 14% 8 h/80 ◦C 26 4200
3 16% 8 h/80 ◦C 28 4200
4 16% 8 h/80 ◦C 26 4200
5 18% 8 h/80 ◦C 28 4200
6 18% 8 h/80 ◦C 26 4200
7 20% 8 h/80 ◦C 28 4200
8 20% 8 h/80 ◦C 26 4200

The optimum solution ratios were also determined by varying the ratio of PU and
PAN. The preparation schemes for different ratios of PU/PAN nanofiber diaphragms are
shown in Table 2. When PU:PAN = 7:3 and PU:PAN = 8:2, a large number of uniform
nanofibers were produced on the collector and were able to be pressed into nanofiber
diaphragms, but other solution ratios produced a smaller number of fibers, considering
that it may be due to the better spinnability of PU. Therefore, the mass fractions of 18%
PU, 18% PU:PAN = 8:2, and 18% PU:PAN = 7:3 were chosen for comparative studies in
this paper.

Table 2. Preparation Scheme of PU/PAN Nanofiber Membrane with different ratios.

Number PU/PAN Ratio Stirring Time (h)/Temperature (◦C) Needle Inner Diameter (G) Rotating Speed (r/min)

1 4:6 8 h/80 ◦C 28 4200
2 4:6 8 h/80 ◦C 26 4200
3 5:5 8 h/80 ◦C 28 4200
4 5:5 8 h/80 ◦C 26 4200
5 7:3 8 h/80 ◦C 28 4200
6 7:3 8 h/80 ◦C 26 4200
7 8:2 8 h/80 ◦C 28 4200
8 8:2 8 h/80 ◦C 26 4200
9 9:1 8 h/80 ◦C 28 4200
10 9:1 8 h/80 ◦C 26 4200

2.3. PU/PAN Diaphragm Performance Testing and Structural Characterization

(1) Morphological characterization

Scanning electron microscopy (SEM: GeminiSEM 300, Zeiss, Jena, Germany) was used
to observe the surface morphology and determine the fiber diameter and pore size of the
PU-based lithium-ion battery diaphragm. The diaphragm samples were first cut, then gold
sprayed for 2 min. The freshly prepared PU-based fiber diaphragm film was placed under
the microscope for morphological characterization.

(2) Porosity test

An n-butanol aspiration technique was used to determine the diaphragm porosity.
First, the diaphragm was cut into 2 cm × 2 cm test samples, then the mass of the dry film
without n-butanol was measured. The dry diaphragm was then soaked in an n-butanol
solution for 3 h. The residual n-butanol on the surface of the diaphragm was removed with
paper, and the mass of the diaphragm was measured. The formula used to calculate the
diaphragm porosity was as follows:
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P(%) =
ww − wd

ρb × v
(1)

where P is the porosity of the diaphragm (%); ww is the weight after wetting (g); wd is the
dry weight before wetting (g); ρb is the density of n-butanol (g/cm3); and v is the volume
of the dried septum (cm3).

(3) Absorption rate test

The diaphragm was dried under a vacuum, and the dry weight was recorded. The
diaphragm was then immersed in the electrolyte, and the electrolyte was dried with
1 mol/L lithium hexafluorophosphate (LiPF6) and ethylene carbonate (EC)/methyl ethyl
carbonate (EMC)/dimethyl carbonate (DMC) (mass fraction ratio = 1/1/1) for 10 h. The
residual electrolyte attached to the surface was removed with paper, and the diaphragm
was weighed again. After measuring the mass of the wet film, the absorption rate was
calculated as follows:

Uptake(%) =
w1 − w0

w0
% (2)

where Uptake is the liquid absorption rate of the diaphragm (%); w1 is the weight after
wetting (g); w0 is the dry weight before wetting (g).

(4) Ion conductivity test

An electrochemical workstation was used to measure the ionic conductivity of the
commercial Celgard 2400 diaphragm, which consists of PU-based fiber films. A sample
of the diaphragm was placed between two steel sheets, and a button cell in the order of
steel sheet/diaphragm/steel sheet was assembled in a super clean glove box on an electro-
chemical workstation. A scan frequency range from 1 MHz to 1 Hz with an amplitude of
5 mV was applied, and the intercept between the high-frequency region and the horizontal
axis was expressed as the bulk resistance of the diaphragm. The ionic conductivity of the
diaphragm was obtained from the magnitude of the bulk resistance according to Equation:

σ =
d

Rb × s
(3)

where σ is the ionic conductivity (mS/cm); d is the thickness of the diaphragm (cm); s is the
cross-sectional area of the diaphragm (cm2); and Rb is the bulk resistance of the diaphragm (Ω).

(5) Thermal stability test

To test the thermal stability of the lithium-ion battery diaphragm, samples of the
Celgard 2400 and PU/PAN fiber diaphragms (approximately 4 mg each) were placed in a
crucible. The crucible was sealed and placed into a thermogravimetric analyzer (TG209F1
Netzsch, Bayern, Germany) for a thermal stability analysis. The test was conducted in a
nitrogen atmosphere (50 mL/min) with 10 mL/min of purge gas, and the temperature was
ramped up from 20 to 800 ◦C at a rate of 10 ◦C/min.

A differential scanning calorimetry (DSC) method was then applied. Approximately
4 mg samples of the Celgard 2400 and PU/PAN fiber diaphragms were placed in an alu-
minum crucible. The crucible was sealed and placed into a calorimeter (MDSC 2920, TA
Instruments, New Castle, DE, USA) to measure the melting point (Tm) of the diaphragm
samples. The test was conducted in a nitrogen atmosphere (20 mL/min), and the tempera-
ture was ramped up from 20 ◦C to 350 ◦C at 10 ◦C/min, then cooled down to −70 ◦C also
at 10 ◦C/min.
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(6) Electrochemical stability test

The electrochemical stability window refers to the period in which the battery is
undergoing an electrochemical reaction. The diaphragm can maintain a stable performance
during the most positive and most negative potential intervals, and it does not produce any
decomposition reaction. The electrochemical stability of the diaphragm was analyzed when
the battery was tested for charge and discharge. A button cell was assembled in a super
clean glove box with a sequence of lithium/electrolyte/diaphragm/electrolyte/steel. The
electrochemical stability of the different types of diaphragm was characterized by cyclic
scanning voltammetry (LSV) in the voltage range of 2.5–6.0 V and at a scan rate of 10 mV/s.

(7) Evaluation of the battery performance

In this study, we used the Xinwei battery testing equipment (Shenzhen Xinwei Elec-
tronics Co., Ltd., Shenzen, China) to test the cycle performance, first charge/discharge,
and multiplier performance of a CR2032 coin cell. In the super purification glove box (Water
content < 1 PPM, oxygen content < 1 PPM), in the battery with lithium iron phosphate (LiFePO4)
as the positive electrode and lithium metal as the negative electrode, the battery was assembled
with a battery assembly sequence of cathode sheet/electrolyte/diaphragm/electrolyte/lithium
sheet, then the program was set to determine the battery performance.

3. Results and Discussion
3.1. Analysis of the Septum Morphology

Both PU and PU/PAN nanofiber diaphragms were prepared by a centrifugal spin-
ning device that was constructed in-house. To observe the effect of PAN addition on the
microscopic morphology of the PU/PAN composite diaphragm, the PU and PU/PAN
membranes were characterized using SEM. As shown in Figure 2, the PU nanofiber mem-
brane prepared based on the centrifugal spinning method, with a mass fraction of 18%,
had a smooth surface with uneven fiber thickness and appeared as a series of spindles.
Additionally, the PU nanofibers displayed arbitrary bending. As shown in Figure 3, with
the addition of PAN, when 18% PU/PAN = 8:2, the fiber surface mesh structure and fiber
diameter were more uniform, but the phenomenon of fiber entanglement aggregation was
still apparent. As shown in Figure 4, when 18% PU/PAN = 7:3, the fiber surface was
smooth and had a more uniform diameter. The fiber morphology was very good, and there
were large, interconnected voids between the fibers, forming a 3D porous structure, while
PAN had good spinnability. The use of a PU-based nanofiber diaphragm in the lithium-ion
battery charging and discharging process could prevent a battery internal short circuit.
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3.2. Analysis of Porosity

The role of lithium-ion battery diaphragm is not only to separate the positive and
negative electrodes but, more importantly, to provide a channel for the transport of lithium-
ions, a higher porosity helps to promote electrolyte absorption, making lithium-ion transfer
more efficient. The absorption rate of the diaphragm also indirectly reflects the porosity,
and the performance of both has an important impact on the ionic conductivity, internal
resistance, and cycle life of the battery [30]. The test results are shown in Table 3. As the
commercial Celgard 2400 diaphragm is not hydrophilic, the affinity for n-butanol was
relatively poor, and the diaphragm porosity was only 38%. Cheng C et al. [13] prepared
filled ceramic (Al2O3) materials in polyurethane (PU) and used an electrostatic spinning
technique to prepare new PUC diaphragms with three-dimensional structure, whose
porosity was only 63.7%. The centrifugal spinning process relies on its unique fiber film-
forming mode. Both PAN and PU have excellent spinnability, and PU-based and PU/PAN
composite diaphragms were obtained. The porosity of the PU/PAN fiber diaphragms
were relatively high. The porosity of the pure PU diaphragm was 82.2%, and when 18%
PU:PAN = 8:2 and 18% PU:PAN = 7:3, the porosities were 83.5% and 83.9%, respectively.
In the PU/PAN composite diaphragm, as the percentage of PAN in the polymer solution
increased, the porosity of the diaphragm increased accordingly. The porosity of the PU-
based nanofiber diaphragm was higher than the commercial Celgard 2400 diaphragm,
indicating that the PU-based diaphragm was more capable of preserving the electrolyte,
which promoted the rapid transfer of lithium-ions. Therefore, the PU/PAN composite
diaphragm also had a better electrochemical performance than the PU diaphragm.
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Table 3. Porosity and electrolyte absorption of the commercial Celgard 2400 and PU/PAN
fiber diaphragms.

Sample Porosity (%) Absorption Rate (%)

Celgard 38 116
18% PU:PAN = 8:2 83.5 454
18% PU:PAN = 7:3 83.9 493

PU 82.2 412

3.3. Analysis of the Electrolyte Absorption Rate

The level of diaphragm absorption is usually determined by the porosity, which can
hold a certain amount of electrolyte; the more pores, the more the diaphragm can hold the
electrolyte, and the absorption rate of the diaphragm increases [31]. As shown in Table 3,
the lowest electrolyte absorption rates were 116% for the Celgard 2400 diaphragm, 412%
for the PU diaphragm, and 454% and 493% for 18% PU:PAN = 8:2 and 18% PU:PAN = 7:3
diaphragms, respectively. In the PU/PAN composite diaphragm, the electrolyte absorption
rate increased as the proportional content of PAN increased. Compared to the Sb2O3-
modified polyvinylidene fluoride-co-chlorotrifluoroethylene (PVDF-CTFE) fiber membrane
prepared by Wang L et al. [32] with an absorption rate of only 356%. This was due to
the presence of the nitrile group (CN) in PAN, which interacted with Li+ for better liquid
retention. The commercial Celgard 2400 diaphragm had a relatively poor wettability by
electrolytes, but due to its unique chemical structure and highly interconnected porous
structure between fibers, the porous PU-based film was readily wettable by electrolytes.
The strong polar organic group (-CN) in PAN had good interfacial compatibility with
polar electrolytes, which improved the absorption capacity of electrolytes, and also directly
affected the ionic conductivity of the PU/PAN lithium-ion battery diaphragm.

3.4. Analysis of the Ionic Conductivity

The ionic conductivity reflects how fast the lithium-ions migrate between the positive
and negative electrodes during the operation of a lithium-ion battery and indirectly reflects
the size of the diaphragm resistance. The larger the diaphragm resistance, the smaller
its ionic conductivity; the slower the rate of lithium-ion transfer in the battery, and the
poorer the performance of the battery exhibited [23]. Figure 5 is an impedance diagram
of the commercial Celgard 2400 and PU/PAN fiber diaphragms. The intercept on the
horizontal axis represents the bulk resistance of the diaphragm. The ionic conductivity of
the Celgard 2400 diaphragm was only 0.82 mS/cm, as obtained by Equation (3), but the
ionic conductivity of the PU/PAN fiber diaphragms was improved due to their 3D mesh
structure resulting from the centrifugal spinning method. In the same size diaphragm,
more electrolytes can be absorbed and provides a large number of channels for lithium-ion
penetration in the diaphragm [33]. This structure improved the transport rate of lithium-
ions in the fiber diaphragm.

The ionic conductivities of 18% PU, 18% PU:PAN = 8:2, and 18% PU:PAN = 7:3 fiber septa
were 1.43 mS/cm, 1.68 mS/cm, and 1.79 mS/cm, respectively. The ionic conductivity of the fiber
septa increased with the increasing PAN content and was highest at 18% PU:PAN = 7:3. This
was because the addition of PAN enhanced the liquid absorption and retention capacity
of the diaphragm. Additionally, in the diaphragm of the hot-pressing process, the fibrous
filaments did not melt and form physical cross-linking, and its body resistance did not
increase. The performance of the PU-based lithium-ion battery diaphragm was better than
that of the commercial diaphragm and could meet the high conductivity requirement in
lithium-ion batteries.
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3.5. Analysis of the Thermal Stability

The thermal stability of the diaphragm is critical to the safety of lithium-ion batteries
and is an extremely important indicator. Batteries often charge and discharge at high
rates, and the internal temperature of the battery is prone to rise. This results in a severe
contraction of the lithium-ion battery diaphragm, which can cause a short circuit in direct
contact with the positive and negative electrodes of the battery. To compare the thermal
stability of the Celgard 2400 and PU/PAN fiber diaphragms, a thermal weight loss analysis
was conducted with the results shown in Figure 6. The Celgard 2400 diaphragm started
to show significant thermal decomposition at about 400 to 700 ◦C, with a residual mass
retention rate of no more than 2%, while thermal weight loss of PU/PAN fiber diaphragms
occurred from 310 ◦C to 450 ◦C. This part of the mass loss is the thermal decomposition of PU
caused by the destruction of the structure at high temperatures and was then stable until the
temperature reached 700 ◦C. The final mass retentions of the PU, 18% PU:PAN = 8:2, and 18%
PU:PAN = 7:3 diaphragms were 5.4%, 17.2%, and 32.1%, respectively, which showed that
PAN addition did not reduce the thermal stability of PU/PAN fiber diaphragms and could
improve their residual mass retention. So, the addition of PAN will reduce the mass loss of
the composite diaphragm and improve the thermal stability of the diaphragm, meeting the
thermal stability requirements of lithium-ion battery separators. The DSC results for the
Celgard 2400 and PU/PAN fiber diaphragms are shown in Figure 7. The heat absorption
peak of the Celgard 2400 diaphragm appeared at 118 ◦C, indicating that the melting point
of the Celgard 2400 diaphragm was 118 ◦C, while the heat absorption peaks of the PU,
18% PU:PAN = 8:2, and 18% PU:PAN = 7:3 diaphragms appeared at 300 ◦C, 308 ◦C, and
314 ◦C, respectively, indicating that their melting points were 300 ◦C, 308 ◦C, and 314 ◦C,
respectively. In summary, the thermal stabilities of the PU/PAN fiber diaphragms were
better than that of the commercial Celgard 2400 diaphragm because the polymer chain
segments in the composite diaphragms were separated, while in the commercial diaphragm
they were in a taut state.
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The thermal dimensional stability of the diaphragm is another important indicator of
battery safety performance. Portions of the Celgard 2400 and PU/PAN fiber diaphragms
were cut into samples of the same size and shape, and then subjected to a heat treatment at
160 ◦C for 30 min.

The changes in the dimensions of the different diaphragms are shown in Figure 8.
After the heat treatment, the commercial Celgard 2400 diaphragm was no longer a film,
while there were no significant dimensional changes in the PU/PAN fiber diaphragms. The
thermal dimensional stability of the PU/PAN fiber diaphragms was significantly better than
that of the commercial Celgard 2400 diaphragm, compared to polyacrylonitrile (PAN)/styrene-
isoprene-styrene (SIS) composite fiber membranes prepared by Tang et al. [24] using electrostatic
spinning, PAN/SIS composite fiber membranes curled after heat treatment at 160 ◦C. PU-based
fiber membranes possess advantages as candidates for lithium-ion battery separators.
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3.6. Analysis of Electrochemical Stability

Electrochemical stability is an important performance parameter for lithium-ion bat-
tery diaphragms, which must maintain the stability of the electrolyte and electrode in terms
of electrochemical properties to avoid degradation during the charge and discharge process.
A high electrochemical stability window facilitates the long-term stable operation of Li-ion
batteries at a high voltage. To evaluate the electrochemical stability of the diaphragm,
the potential range was set to 2.5 V–6.0 V to perform LSV tests on the Celgard 2400 and
PU/PAN fiber diaphragms. Figure 9 shows that the electrochemical stability windows of the
PU, PU/PAN = 8:2, and PU/PAN = 7:3 diaphragms were 4.8 V, 5.1 V, and 5.2 V, respectively,
which were much larger than the 4.3 V obtained for the commercial Celgard 2400 diaphragm,
as shown by the voltage corresponding to the sudden increase in current. This was attributed to
the strong chemical stability of the PU/PAN fiber diaphragms, and the increased PAN content
also improved the electrochemical stability window. Li L et al. [11] prepared PAN/polyimide
(PI) composite films by electrostatic spinning to improve the electrochemical performance of a
single PAN diaphragm with an electrochemical stability window of about 4.0 V. The centrifugal
spinning method used to prepare the PU, PU/PAN = 8:2, and PU/PAN = 7:3 diaphragms
resulted in a wide electrochemical stability window. Lithium-ion batteries with a wide
electrochemical stability window will charge and discharge without degradation. The
PU/PAN fiber diaphragms showed a good electrolyte affinity, and the excellent electro-
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chemical stability of PU/PAN composite diaphragm allows it to have better compatibility
with the cathode material in lithium-ion batteries, which can be applied to work in adverse
environments, such as high voltage.
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3.7. Analysis of the Battery Charging, Discharging, and Cycling Performance

Lithium metal as the negative electrode, LiFePO4 as the positive electrode, and PU
and PU/PAN lithium-ion battery diaphragms were used to assemble lithium-ion batteries.
An analysis was conducted to determine whether PU/PAN fiber diaphragms could be
applied to rechargeable lithium-ion batteries by comparing the charge and discharge
performance and cycle stability of the batteries. The first discharge performance of the
PU and PU/PAN composite diaphragm was compared with the commercial Celgard 2400
diaphragm at a current density of 0.2 C rate, as shown in Figure 10. The first discharge-
specific capacities of PU, 18% PU:PAN = 8:2, and 18% PU:PAN = 7:3 nanofiber diaphragm
batteries were 148.1 mAh/g and 152.6 mAh/g. Sabetzadeh N et al. [31] prepared porous
polyacrylonitrile (PAN) nanofiber diaphragm by electrostatic spinning method, and its first
discharge specific capacity at 0.1 C magnification was only 130 mAh/g. The high porosity
of the PU diaphragm enables it to absorb more electrolyte, which provides an efficient
channel for lithium-ion transfer between positive and negative electrodes, and at the same
time, the interface stability between PAN and electrode material The high porosity of the
PU diaphragm enables it to absorb more electrolyte, providing an efficient channel for the
transfer of lithium-ions between the cathode and cathode, and the good interfacial stability
between the PAN and electrode materials, which gives the PU/PAN diaphragm a high first
discharge capacity. With the increase in charging and discharging times, the porosity, liquid
absorption rate, and ionic conductivity of the diaphragm decreased, and the discharge-
specific capacity of lithium-ion batteries decreased [34]. The cycling performances of the
PU/PAN fiber diaphragms were compared with that of the commercial Celgard 2400
diaphragm at a current density of 0.2 C rate, as shown in Figure 11. Due to the poor
absorption of electrolytes by the Celgard 2400 diaphragm, the specific capacity of the first
discharge was only 144.6 mAh/g. After 50 cycles, the discharge-specific capacity remained
at 137 mAh/g, with a capacity retention rate of only 94.7%, while the remaining discharge-
specific capacities of 18% PU:PAN = 8:2, 18% PU:PAN = 7:3, and 18% PU after 50 cycles
were 145.3 mAh/g, 147.1 mAh/g, and 140.5 mAh/g, respectively, with capacity retention
rates of 95.2%, 95.8%, and 94.9%. The capacity retentions of the PU/PAN fiber diaphragms
were higher than that of the Celgard 2400 diaphragm, with an excellent charge/discharge
performance and cycle stability. This was due to the better compatibility of the PU/PAN
fiber diaphragms with the electrolyte, and the existence of large interconnecting voids and
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the 3D mesh structure of the PU/PAN fiber diaphragms, which increases its ionic conductivity
and suppresses the decrease in discharge specific capacity. Therefore, the PU/PAN fiber
diaphragms have the potential to be used in rechargeable lithium-ion batteries.
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3.8. Battery Multiplier Performance

High-power and large-capacity lithium-ion batteries are required in high-performance
electronic devices, electric vehicles, and other applications. Therefore, the ability of PU
and PU/PAN composite diaphragm-assembled batteries to be used under large multiplier
charge and discharge conditions is critical. Battery charging and discharging under large
multiplier conditions can cause heat to collect in the cell and reduce the battery life. To
characterize the performance of the diaphragm for charging and discharging at large
multipliers, corresponding multiplier performance tests were performed. Figure 12 shows
the multiplier performance plots of the commercial Celgard 2400 and PU/PAN fiber
diaphragms in assembled lithium-ion batteries at a different rate. The discharge capacity of
lithium-ion batteries assembled with PU/PAN fiber diaphragms was higher than that of
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the Celgard 2400 diaphragm at 0.2 C, 0.5 C, 1 C, 2 C, and 5 C rates. The lowest discharge
capacity was recorded for lithium-ion batteries fitted with a Celgard 2400 diaphragm. This
was because PU/PAN fiber diaphragms contained many polar groups that could absorb
more electrolytes, and the diaphragm had a low internal resistance and low loss, resulting
in a higher discharge capacity.
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4. Conclusions

A centrifugal spinning method was used to prepare a PU/PAN lithium-ion battery
diaphragm by blending with different ratios of PAN. The properties of the PU/PAN lithium-
ion battery diaphragms were characterized in this study. The results showed that the fiber
films obtained at the blending ratios of 18% PU/PAN = 8:2 and 18% PU/PAN = 7:3 had
a good 3D mesh structure. When 18% PU:PAN = 7:3, the PU/PAN composite fiber film
had the most uniform diameter distribution, the porosity was 83.9%, the liquid absorption
rate was 493%, and the thermal stability also displayed a corresponding increase with
the increasing PAN content. When 18% PU:PAN = 7:3, the ionic conductivity of the fiber
diaphragm increased to 1.79 mS/cm and the electrochemical stability window increased to
5.2 V, with a higher ionic conductivity and wider electrochemical stability window than
the commercial Celgard 2400 diaphragm. In lithium-ion batteries assembled with LiFePO4
as the cathode material, after 50 cycles at 0.2 C rate, the discharge specific capacity of the
PU/PAN lithium-ion battery diaphragm could still be maintained at 147.1 mAh/g, with
a capacity retention rate of 95.8%. Additionally, a high discharge specific capacity was
maintained under different multiplier conditions, with an excellent charge/discharge cycle
stability and multiplier performance. The application of PU and PAN blending can improve
the performance of a single PU matrix, and the resulting membrane can be used as the
preferred material for high performance lithium-ion battery separators.

Meanwhile, the preparation method of PU/PAN nanofiber diaphragm based on
centrifugal spinning method proposed in this paper is characterized by high preparation
efficiency and suitable for industrial production; further optimization of co-blending
formula and process parameters for different polymer materials and different nanofiber
membrane performance requirements is a direction worthy of in-depth research in the
future, which is of great significance for industrial production of nanofiber membrane.
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