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Abstract: In order to meet the requirements of high accuracy and fast algorithm for numerical
heat transfer simulation, an iterative scheme of Proper Orthogonal Decomposition (for short, POD)
dimension reduction based on the classical central difference Galerkin spectral method is proposed
for solving two-dimensional transient heat conduction problems. The POD dimension reduction
spectral method model is constructed by taking the calculation results of classical central difference
Galerkin spectral method as sample data. The numerical algorithm characteristics of flow and heat
transfer are studied by using a partial differential equation as a mathematical model, and the error
estimation is given. Finally, different time intervals are used as parameters to simulate experiments.
The results show that the POD method is applicable to transient nonlinear heat conduction problems,
and the maximum average relative error of the reconstructed temperature field is 0.89675%. Moreover,
the POD method not only has a high calculation accuracy, but also has an average calculation speed
as high as 310.25 times that of the central difference Galerkin algorithm. It can be seen that under the
condition that the error between the solution of POD dimension reduction extrapolation algorithm
and the solution of classical central difference Galerkin spectrum method is small enough, the POD
method can greatly reduce the calculation amount, shorten the running time, and ensure a high
accuracy of the calculation results, thus verifying the effectiveness and feasibility of the algorithm.

Keywords: POD reduced-order extrapolation algorithm; Galerkin spectral method; heat conduction;
SVD decomposition; classical central difference

1. Introduction

At present, the research on the parabolic partial differential equation is becoming
more and more prominent, and its important mathematical structure model and powerful
physical background have attracted the attention of many scholars. It has been widely
used in practical problems such as heat transfer, transportation, chemical reactions, etc. For
example, in reference [1], in the optimization of innovative recycling chemical process, the
partial differential equation model is used to solve the case deviation of the countercur-
rent reactor involving conflicting conversion rates and energy, and their performance is
compared with the classical weighted sum method. In reference [2], the partial differen-
tial heat equation is designed by using the feedback boundary controller of an unstable
system. An unstable linear term is added to the right of the heat equation, and then, the
stability of the system is proved by constructing a Lyapunov function, in reference [3];
the model of vehicle traffic and the crowd phenomenon is established by using a partial
differential equation, and then, the partial differential model is optimized by a regression
analysis. In recent years, the numerical analysis of unsteady flow and heat transfer has
also attracted the attention of many scholars [4]. As one of the numerical solutions to
partial differential equations, the spectral method has a unique weighted margin method

Appl. Sci. 2023, 13, 6665. https://doi.org/10.3390/app13116665 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116665
https://doi.org/10.3390/app13116665
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13116665
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116665?type=check_update&version=2


Appl. Sci. 2023, 13, 6665 2 of 19

and higher computational accuracy, which is incomparable to the conventional finite el-
ement method (FEM) [5,6], finite volume method (FVM) [7,8] and the finite difference
method (FDM) [9]. According to different related test functions, it mainly includes the
Galerkin spectrum method, the Petrov–Galerkin spectrum method, and the configuration
point spectrum method. According to the superiority of the spectral method, this paper
solves the two-dimensional parabolic partial differential heat conduction equation. The
Galerkin spectral method is used for approximation in space direction and the central
difference scheme for approximating in time direction, respectively. Thus, the numerical al-
gorithm for solving the partial differential equation is named the “Galerkin spectral method”
(see, e.g., [10]).

A large number of experimental conditions have confirmed the effectiveness and
feasibility of solving partial differential equations with the central difference Galerkin
spectrum method. However, there is a slight shortcoming: when using the central difference
scheme propulsion technique to solve partial differential groups, the convergence of the
algorithm depends on the selection of different time intervals and in the algorithm process.
It is necessary to carry out a time-effective promotion cycle for all defined time steps. In
the cycle process of each time layer, the system equations that have been formed must
be iterated once. When the number of grids drawn is large, the degree of freedom of the
corresponding unknown element is too large, and the load of the computer solving the
equation is excessive, which leads to the continuous accumulation of errors in the process
of the computer executing the program. Even if the classical central difference iteration
scheme is selected as the best, the floating-point saturation of error accumulation will be too
high after several steps of calculation, leading to the failure of convergence of the numerical
iteration scheme and the failure to reach the expected numerical solution. In this case,
it is very necessary to construct a kind of reduced-order extrapolation algorithm with a
strong convergence error accuracy and with few degrees of freedom. It is one of the reasons
why the classical central difference Galerkin spectral method needs a POD reduced-order
extrapolation when solving two-dimensional parabolic partial differential equations.

The best orthogonal decomposition technique is a fast-computing method, which
can approximate the high dimensional physical process and accurately describe the high
dimensional data in the low dimensional space [11–13]. The POD method was first pro-
posed by Karhunen (1946) and Loeve (1945) and has been used in many fields. In statistics,
this method is called the principal component analysis (PCA) [14]. This method has also
been applied in meteorology and is called the empirical orthogonal function method [15].
Lumely first applied the eigenorthogonal decomposition method to large vortex-dependent
structures that capture turbulence [16,17]. In recent years, the POD method combined
with the Galerkin projection method has been used in a dimensional-reduction solution
of fluid differential equations [18,19]. In reference [20], Ramo combined the POD method
and the flux conservation method (FMP) to calculate the dimension reduction of differ-
ential equations. Hu combined the POD method with the spline interpolation method
in reference [21]. The POD method is also used in the study of cross-scale problems. Du
and Hu used the POD method to study cross-scale problems in air cooling systems [22].
Hazenber Martijn et al. established a POD–Galerkin dimensional-reducing interpolation
algorithm model for two-dimensional plate heat conduction [23].

Although the above literature combined the POD method and the Galerkin method
to deal with parabolic problems, it did not simplify the calculation of FVM, FEM and
FDM for parabolic problems, and their method took the numerical solutions of all the time
difference nodes as sample points (called naPshot, namely, instantaneous image). In this
paper, the classical Galerkin projection space is replaced by the Galerkin subspace spanned
by a POD basis function, and the algorithm format with a higher dimension is simplified
into the POD extrapolation spectral method iteration format with a low dimension. In
particular, it can be seen from theoretical analysis that the scheme does not need to take
all the numerical solutions of time difference nodes as instantaneous images, but only
needs to take a few numerical solutions of time difference nodes as instantaneous images
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to ensure a high enough precision, thus reducing the calculation amount of solving the
POD basis. Therefore, the method in this paper is the improvement and innovation of the
existing method.

2. The Mathematical Model

The governing equation of the two-dimensional unsteady heat conduction problem in
rectangular coordinates is Equation (1) (See, e.g., II of Chapter VI of Reference [12]):

ρc ∂u
∂t = µ( ∂2u

∂x2 +
∂2u
∂y2 ) + S(x, y, t)

u(x, y, 0) = S1(x, y)

ut(x, y, 0) = S2(x, y)

(1)

where (x, y) ∈ Ω,(x, y, t) ∈ Ω× [0, T], Ω = [0, 1]× [0, 1] ⊂ R2, u(x, y, t) represents heat
transfer temperature, ρ is the material density (kg/m3), c is the specific heat capacity of
the material (J/(kg · k)), µ is the thermal conductivity of the material (w/(m · k)) and
S(x, y, t) is the term function of the known radiation heat source. Both S1(x, y) and S2(x, y)
are initial conditions, T is the total time period.

Boundary condition:
In order to facilitate the programming, the three kinds of boundary conditions are uni-

formly expressed as the expression of heat flux. (see, e.g., II of Chapter II of reference [24]).

qw = −b1µ
∂u
∂n

+ b2q + b3h f (uw − u f ) (2)

where in the first boundary condition b1 = 1, b2 = 0, b3 = 0; in the second boundary condition
b1 = 0, b2 = 1, b3 = 0; in the third boundary condition b1 = 0, b2 = 0, b3 = 1.

In the second boundary condition, q is the heat flux, and in the third boundary
condition, u f is the fluid temperature. In the analysis of this article, it considers the position
of adjacent points around the boundary. It is generally assumed that the line between the
boundary points and its adjacent points are perpendicular to each other. Thus, the discrete
expression of Equation (2) can be obtained:

qw = −b1µ
u(A0)− u(A1)

χ
+ b2q + b3h f (u(A0)− u f ) (3)

In Equation (3), A0 is the number of the valid boundary node, the number of its
adjacent internal nodes is marked as A1, and χ is the effective distance between A0 and
A1 nodes.

3. Iterative Algorithm of Two-Dimensional Central Difference Galerkin Spectral Method

Assume that ∆t is expressed as a time step, and finite sequences {xn} and {ym}
represent nodes in the x and y directions, respectively.

Here, Chebyshev–Gauss–Lobatto type configuration points are selected as space nodes.

xn = −cos
nπ

Hx
, n = 0, 1, 2, · · ·, Hx, ym = −cos

mπ

Hy
, m = 0, 1, 2, · · ·, Hy (4)

By combining the theory of the Galerkin spectrum method and the temperature field
function at the time node u(x, y, t) ∈ L2(Ω; [0, T]), i∆t can be constructed:

u(x, y, it) ≈ ui
H(x, y) = ∑H

f=0 ∑H
g=0 ai

f ,gFf (x)Fg(y) (5)

where both
{

Ff (x)
}H

f=0
and

{
Fg(y)

}H
g=0 are Chebyshev orthogonal polynomials (see,

e.g., [25]), and
{

ai
f ,g

}H

f ,g=0
is the spectral coefficient, when x = xn, y = ym, t = i∆t, u(x, y, t)
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can replace u(xn, ym, i∆t), the effective approximate discrete form of temperature field
u(x, y, t) on the space node is obtained. That is, the first discrete form:

u(xn, ym, i∆t) ≈ ui
H(xn, ym) =

H

∑
f=0

H

∑
g=0

ai
f ,gFf (xn)Fg(ym) (6)

In addition, from Chebyshev’s forward discrete transformation, the following equation
can be obtained:

aj =
1

bj H

H

∑
k

1
bk

uH(xn)Fj(xn) (7)

Thus, the second discrete form of the effective approximation function can be obtained:

ui
H(xn, ym) =

H

∑
l=0

Wi
j F(xn) 0 ≤ n ≤ H (8)

where

Wi
j =

2
bj H

H

∑
n=0

1
bn

uH(xn, ym, i∆t) cos
njπ
H

0 ≤ j ≤ H (9)

as well as,

ui
H(xn, ym) =

H

∑
l=0

Vi
j F(ym) 0 ≤ m ≤ H (10)

Vi
j =

2
bj H

H

∑
n=0

1
bm

uH(xn, ym, i∆t) cos
mjπ

H
0 ≤ j ≤ H (11)

where

bj =

{
1

2

1 ≤ j ≤ H − 1

n = 0, H
(12)

Furthermore, the recurrence relation of Chebyshev polynomials is

Fl+1(x) = 2xFl(x)− Fl−1(x) l ≥ 1 (13)

From (13), the following expressions for the first derivative and the second derivative
of Chebyshev polynomials can be obtained.

F′l (x) =
l−1

∑
i=0

2lFl(x)
bi

i+l=odd

, F′′l (x) =
l−2

∑
i=0

lFi(x)
bi

i+l=even

(l2 − i2) (14)

Obviously, from (11) and (14), it is easy to obtain the approximation function of the
second partial derivative of the temperature field in the x direction and y direction on the
Chebyshev–Gauss–Lobatto configuration point.

∂2ui
Hx(xn ,ym)

∂x2 =
H
∑
j

Yi
j F′′j (xn) =

H
∑
j

Wi
j

l−2
∑

i=0

jFi(xn)
bi

i+l=even

(j2 − i2)

∂2ui
Hy(xn ,ym)

∂y2 =
H
∑
j

Xi
jF
′′
j (ym) =

H
∑
j

Vi
j

l−2
∑

i=0

jFi(ym)
bi

i+l=even

(j2 − i2)

(15)

In addition, the first-order partial derivative of the temperature field with respect to
the time direction can also be obtained by the central difference approximation method.
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∂ui
H(xn, ym)

∂t
=

ui+1
H (xn, ym)− ui−1

H (xn, ym)

2∆t
+ O(∆t2)

Assume that uk
i = ui(xn, ym), uHk

i = uH
i(xn, ym), Si

k = Si(xn, ym, i∆t),
Si

1k = S1(xn, ym), Si
2k = S2(xn, ym).

Here, 1 ≤ k = n + 1 + m(H + 1) ≤ G = (H + 1)2, 0 ≤ n, m ≤ H, 0 ≤ i ≤ I = T/∆t.
Therefore, it is easy to obtain the following according to the above conditions. The exact

solution and approximate solution of Equation (1) on the Chebyshev–Gauss–Lobatto type

collocation points can be replaced by sets
{

ui
k
}I

i=1(1 ≤ k ≤ M),
{

ui
Hk

}I

i=1
(1 ≤ k ≤ G), and

ui = (ui
1, ui

2, · · ·, ui
G)

T , ui
H = (ui

H1
, ui

H2
, · · ·, ui

HG
)

T , Si = (Si
1, Si

2, · · ·, Si
G)

T ,

S1 = (S11 , S12 , · · ·, S1G )
T , S2 = (S21 , S22 , · · ·, S2G )

T .
The following matrix relations can be obtained.

∂2/∂x2 =


ui

H(x0, ym)

ui
H(x1, ym)

...
ui

H(xH , ym)

 =


F′′0 (x0) F′′1 (x0) · · · F′′H(x0)

F′′0 (x1) F′′1 (x1) · · · F′′H(x1)
...

...
. . .

...
F′′0 (xH) F′′1 (xH) · · · F′′H(xH)




Wi
0(m)

Wi
1(m)
...

Wi
H(m)

 (16)

∂2/∂y2 =


ui

H(xn, y0)

ui
H(xn, y1)

...
ui

H(xn, yH)

 =


F′′0 (y0) F′′1 (y0) · · · F′′H(y0)

F′′0 (y1) F′′1 (y1) · · · F′′H(y1)
...

...
. . .

...
F′′0 (yH) F′′1 (yH) · · · F′′H(yH)




Vi
0(n)

Vi
1(n)

...
Vi

H(n)

 (17)


Wi

0(m)

Wi
1(m)
...

Wi
H(m)

 = Q


ui(x0, ym)

ui(x1, ym)
...

ui(xH , ym)

,


Vi

0(m)

Vi
1(m)

...
Vi

H(m)

 = Q


ui(xn, y0)

ui(xn, y1)
...

ui(xn, yH)

 (18)

Written down as:{
F′′f (xn)

}H

f ,n=0
= FT

x PT ,
{

F′′g (ym)
}H

g,m=0 = FT
y PT , Pk = ∑n−2

k=0
1
bk

k
(

k2 − n2
)

The element of matrix Fx is Fk(xn) = cos knπ
H , and Matrix Fx can be expressed

as follows:

1 1 · · · 1 · · · 1 1
1 cos π

H · · · cos kπ
H · · · cos (H−1)π

H −1
...

...
...

...
...

...
...

1 cos iπ
H · · · cos ikπ

H · · · cos i(H−1)π
H (−1)i

...
... · · ·

... · · ·
...

...

1 cos (H−1)π
H · · · cos (H−1)kπ

H · · · cos (H−1)2π
H (−1)H−1

1 −1 · · · (−1)k · · · (−1)H−1 (−1)H


(H+1)×(H+1)

Similarly, the matrix of Fy can also be expressed by the above formula.
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Q = 2
H [Q0, Q1, Q2, · · ·QH ](H+1)×(H+1), Q0 = 1

2 [
1
2 , 1, · · · , 1

2 ]
T

QH = 1
2 [

1
2 ,−1, · · · , (−1)i, 1

2 (−1)H ]
T

P = [Q0, Q1, Q2, · · ·QH−2, 0, 0](H+1)×(H+1),

P0 = [0, 0, 23

2 , 0, 43

2 , · · · , 0, H3

2 ]
T

P1 = [0, 0, 0, 33 − 3, 0, · · · , (H − 1)3 − (H − 1), 0]
T

PH−2 = [0, 0, 0, 0, 0, · · · , H3 − H(n− 2)2]
T

From the matrix given above, it is not difficult to find the Galerkin spectral method
iterative format of the following temperature field u(x, y, t).

ρcui+1
H = ρcui−1

H + 2∆tµCui
Hx

+ 2∆tµDui
Hy

+ 2∆tSi

u0
H = S1

ui
H(x0, ym) = ui

H(xH , ym) = 0

ui
H(xn, y0) = ui

H(xn, yH) = 0

(19)

Here, both matrix C and matrix D are (H + 1)× (H + 1) order matrices, and

C = diag(A), D = diag(B), A = FT
x · PT ,B = FT

y · PT .

4. Error Estimates of Iterative Schemes for the Galerkin Spectral Method

Using Taylor’s series expansion, we get

ui+1
k = ui

k + ∆t
∂ui

k
∂t

+
∆t2

2!
∂2ui

k
∂t2 +

∆t3

3!
∂3ui

k
∂t3 + O

(
∆t4
)

(20)

ui−1
k = ui

k − ∆t
∂ui

k
∂t

+
∆t2

2!
∂2ui

k
∂t2 −

∆t3

3!
∂3ui

k
∂t3 + O

(
∆t4
)

(21)

From (19) and (20), we can get

ui+1
k − ui−1

k
2∆t

− ∂u(xn, ym, i∆t)
∂t

= O(∆t), k = n + 1 + m(H + 1) (22)

Theorem 1. The solution component u(xn, ym, i∆t)of the iterative scheme (19) of the central
difference Galerkin spectral method has the following error estimates:

‖ui
H(xn, ym)− u(x, y, i∆t)‖2 = O

(
∆t, H−h

)
, 2 ≤ h ≤ H + 1 (23)

where ‖·‖ is the usual norm of the vector. As for the proof of this theorem, which can be given
a detailed answer from Equation (22) and reference [25], and we can obtain that its stability
condition satisfies ∆t ≤ 4.8 H−3.

5. Galerkin Spectral Analysis of Two-Dimensional Transient Nonlinear Heat
Conduction Equation Based on POD Reduced-Order Extrapolation Structure of
POD Base

The selection of the POD basis is very important when the Galerkin spectral method
is used to solve transient nonlinear heat conduction problems based on the POD reduced-
order dimension extrapolation algorithm. Obtaining the best POD basis can not only
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ensure the accuracy of numerical calculation results, but also greatly improve the efficiency
of experimental simulation. Therefore, it can be seen that the core problem of the POD
reduced-order extrapolation method is to find a set of “optimal” orthogonal bases of{

ui ∈ L2(Ω)|i = 1, 2, · · · , H
}

on the known function space through an iterative calculation.
There is no doubt that the so-called “optimization” means that the error generated by
the projection of function space onto a finite number of orthogonal bases with relatively
low dimensions reaches the minimum. In this way, when using the reduced dimension
extrapolation Galerkin spectrum method of the POD method to solve the transient heat
conduction problem, it is usually realized through the following steps.

The first step: Construct sample matrix.
Assume ui

k = ui(xn, ym), ui
Hk

= ui
H(xn, ym),

Here, 1 ≤ k = n + 1 + m(H + 1) ≤ G, G = (H + 1)2, 0 ≤ n, m ≤ H, 0 ≤ i ≤ I, The

initial solution
{

ui
Hk

}L

i=1
(1 ≤ k ≤ G, L << G) of L (L<<I) is calculated and recorded as a

sample. Thus, the solution of the iterative scheme (19) of the classical central difference
Galerkin spectral method can be expressed in sets, and the initial solution A of L(L ≤ 1)
group can be calculated, which is recorded as the instantaneous image. Next, we will
construct a G × L-order instantaneous image matrix. That is, as sample matrix Z.

Z =


u1

H1
u2

H1
· · · uL

H1
u1

H2
u2

H2
· · · uL

H2
...

...
. . .

...
u1

HG
u2

HG
· · · uL

HG


G×L

(24)

The second step: SVD decomposition of sample matrix, through SVD decomposition
technology (see, e.g., [26–28]), the sample matrix can be expressed as:

Z = U
[

Rr×r 0r×(L−r)
0(G−r)×r 0(G−r)×(L−r)

]
KT (25)

where Rr×r = dig{σ1, σ2, · · · , σr}, and r = rank(Z), σk(k = 1, 2, · · · , r) is the positive sin-
gular value of matrix Z in descending order, which is arranged in descending order
(δr ≥ δr−1 ≥ · · · ≥ δ2 ≥ δ1 ≥ 0). U = (ψ1, ψ2, · · · , ψG) is an orthogonal matrix of
order G × G, ψk(k = 1, 2, · · · , G) is the standard orthogonal eigenvector of matrix ZZT ,
which is arranged in the order of σk, K = (ϕ1, ϕ2, · · · , ϕL) is an orthogonal matrix of order
L × L, ϕk(k = 1, 2, · · · , L) is the standard orthogonal eigenvector of matrix ZTZ, and its
arrangement order is the same as ψk.

Normally, the number of numerical solution components L of the selected Galerkin
spectral iteration scheme is smaller than the number of spatial grid nodes G. It can be seen
that the order of matrix ZTZ is smaller than that of ZZT , but ZTZ and ZZT have the same
non-negative eigenvalues. If necessary, λk = δ2

k can be renumbered in a descending order
to meet the following requirements: λr ≥ λr−1 ≥ · · · ≥ λ2 ≥ λ1 ≥ 0.

Here, we first calculate the non-zero eigenvalues and eigenvectors of matrix ZTZ,
secondly, we use the above relationship to establish Equation (26):

ψk =
1√
λk

Zϕk, k = 1, 2, · · · , r (26)

It can be found that the eigenvector of matrix ZTZ is ψk(1 ≤ k ≤ r ≤ L), and finally
we obtain matrix U and matrix K; here, we assume ψ = (ψ1, ψ2, · · · , ψe), and select
the first e positive singular values (σ1, σ2, · · · , σe), of matrix Rr×r to construct a diagonal
matrix, Re×e = dig{σ1, σ2, · · · , σe}(e ≤ r), and we can obtain (27):

Ze = U
[

Re×e 0e×(L−e)
0(G−e)×e 0(G−e)×(L−e)

]
KT (27)
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so as to obtain the relationship Ze = ψψTZ.
Third step: Generation of the POD base. We specify that the norm of matrix Z is

‖Z‖2,2 = supu∈RL‖Zu‖2/‖Z‖2, (here ‖u‖2 is the norm of vector u). According to the
relationship between matrix norm and spectral radius, we know that (28) from [29] is:

‖Z− Ze‖2,2 = ‖Z− ψψTZ‖2,2 =
√

λd+1 (28)

It can be seen that the Galerkin spectral method based on the POD reduced-order
extrapolation method should meet the following conditions (29):

L
∑

i=1

∥∥∥∥ui
H −

e
∑

k=1
(ui

H , ψk)ψk
∥∥∥∥2
→ min

ψψT = I

(29)

The minimum value of the optimization result of Equation (29) means that the basis of
the Galerkin spectral method based on the POD algorithm is the maximum projection of
the original system on the POD basis.

At this time,
L

∑
i=1

(ui
H , ψ)

2 → max

If mark ui
H = (ui

k1
, ui

k2
, · · · , ui

kG
)

T
(i = 1, 2, · · · , L) is the i-th column vector of matrix

Z, and ui
e(i = 1, 2, · · · , L) is the i-th column vector of matrix Ze, then, there is:

‖ui
H − ui

e‖2 = ‖(Z− Ze)εi‖2 = ‖
(
Z− ψψTZ

)
εi‖2

≤ ‖Z− ψψTZ‖2,2‖εi‖2 =
√

λe+1

(30)

where ui
e = ∑e

k=1
(
ψk, ui

H
)
ψk can be seen as the projection of ui

H on ψ = {ψk}e
k=1,

(
ψk, ψi

H
)

is the inner product of ψk and ψi
H(i = 1, 2, · · · , L). Moreover, inequality (30) shows a best

approximation of ui
e(i = 1, 2, · · · , L) to ui

H , and its error cannot exceed the supremum of√
λe+1. Thus, it can be obtained that a group of optimal orthonormal bases of matrix Z is ψ.

6. Galerkin Spectral Method for POD Reduced-Order Extrapolation

According to the essential theory of constructing the POD basis in Section 4 the
standard approximate solution of the L group before the iterative scheme of the central
difference Galerkin spectral method can be derived from ui

e = ψψTui
H :=

{
ψφi}L

i=1, and
φi = (φi

1, φi
2, · · · , φi

e) is the vector associated with i. Similarly, when L + 1 ≤ i ≤ I,
the numerical solution of the iterative scheme of the central difference Galerkin spectral
method is still approximated by the approximate solution of ui

e = ψφi. At this time, ui
N is

replaced by ui
d. Its essence is that the solution of the first L step of the reduced-order central

difference scheme is obtained by projecting the solution of the initial L step of the Galerkin
spectral method iterative scheme of the central difference of heat conduction onto the POD
basis. When the number of iterations is greater than step L, the solution is obtained through
finite recursion by completely relying on the POD basis generated in the initial step L of
the central difference Galerkin spectral method iteration scheme and the solution after the
reduced-order in step L, which reflects the basic principle of the so-called reduced order
extrapolation difference algorithm. The unknown vector φi = (φi

1, φi
2, · · · , φi

e) represents
that the degree of freedom of the iterative scheme of the central difference Galerkin spectral
method for the transient nonlinear heat conduction equation is reduced from H to e, and
greatly reduces the order. From this, it can be concluded that the iterative format of the
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reduced-order central difference Galerkin spectral method generated by the least squares
operation is (31) (see, e.g., [30]).

ui
e = ψψTui

H := ψφi(i = 1, 2, · · · , L)

ρcψφi+1 = ρcψφi−1 + 2∆tµCψφi
x + 2∆tµDψφi

y + 2∆tSi

(i = L, L + 1, · · · , I − 1)

(31)

According to the orthogonality idea of the matrix, multiply both sides of Formula (31)
by ψT , and then, obtain the following iterative format of the reduced dimension extrapolation
central difference Galerkin spectral method (32):

ψTui
H = φi(i = 1, 2, · · · , L)

ρcφi+1 = ρcφi−1 + 2∆tµψTCψφi
x + 2∆tµψTDψφi

y + 2∆tψTSi

(i = L, L + 1, · · · , I − 1)

(32)

ui
e = ψφi (33)

Before solving the analytic vector (33) of the iterative format of the reduced-order
extrapolation central difference Galerkin spectral method, the iterative format (32) must
be used to solve the value of φi(i = 1, 2, · · · , L, L + 1, · · · , I). Next, it is easy to obtain
the expression of the approximate solution of the iterative scheme of the reduced-order
extrapolation central difference Galerkin spectral method for the POD algorithm of the
transient nonlinear heat conduction equation at point (xn, ym, i∆t):

ui
ek
= ui

e(xn, ym), 0 ≤ n, m ≤ H (34)

Here, m and n still satisfy the inequality: 1 ≤ k = n + 1 + m(H + 1) ≤ G = (H + 1)2.
In addition, the numerical solutions of iterative schemes (32) and (33) can be expressed

as ui
d = (ui

d1
, ui

d2
, · · · , ui

dk
)

T .
Note 1: It is obvious that there are (G =

(
H + 1)2) unknown elements involved in

each step of the Galerkin spectral method iteration scheme. When the POD reduced-order
extrapolation method is used to iterate the format, the unknown elements are reduced from
G elements to e elements (e ≤ G). It can be seen that the iterative scheme of POD reduced-
order extrapolation spectrum method to solve the heat conduction partial differential
problem will bring us great advantages. This reflects the advantages of the POD model,
namely, fast, accurate and few.

7. Error Estimation of POD Reduced-Order Extrapolation Galerkin Spectral Method

It is necessary to introduce a very important lemma before implementing the iterative
format of the reduced-order extrapolation Galerkin method for error estimation.

Lemma 1. The known sequences {an}, {bn} and {cn} are all three non-negative sequences, if
there is a relationship between them: a0 + b0 < c0, an + bm ≤ cn + α ∑n−1

i=0 ai (α > 0), and the
sequence {cn} is a monotone sequence, then, there must be an + bn ≤ cn exp (nα), n ∈ N (positive
integer). Next, we will analyze the error of the iterative scheme solution of the POD reduced-order
extrapolation Galerkin spectral method.

Here, ue(x, y, t) fits formula Equation (35)

ρc
∂ue

∂t
= µ(

∂2ue

∂x2 +
∂2ue

∂y2 ) + S(x, y, t) + re(x, y, t) (35)

where, re(x, y, t) is the remainder of Formula (35), so there is (36)
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ρc
∂de

∂t
= µ(

∂2de

∂x2 +
∂2de

∂y2 )− re(x, y, t) (36)

Then the error function de is the solution of the above partial differential Equation (36)

di
e := ui

H − ui
e (37)

Combining (30) and (37), the following inequality is obtained.∥∥∥di
e

∥∥∥
2
=
∥∥∥ui

H − ui
e

∥∥∥
2
= ‖(Z− Ze)εi‖2 ≤

√
λe+1i = 1, 2, · · · , L (38)

In particular, if i = L, L + 1, · · · , I, we can replace ψφi with ui
e in the second equation

of equation set (31), then Equation (39) can be obtained:

ρcui+1
e = ρcui−1

e + 2∆tµCui
ex + 2∆tµDui

ey + 2∆tSi (39)

Then, we made a difference between (19) and (39), and simplified them into

ρc(ui+1
H − ui+1

e ) = ρc(ui−1
H − ui−1

e ) + 2∆tµC(ui
Hx
− ui

ex ) + 2∆tµD(ui
Hy
− ui

ey) (40)

ui+1
H − ui+1

e = ui−1
H − ui−1

e +
2∆tµC

ρc
(ui

Hx
− ui

ex ) +
2∆tµD

ρc
(ui

Hy
− ui

ey) (41)

Taking udx = udy = ud , uHx = uHy = uH without affecting the accuracy of the
numerical solution, we can obtain the following Equation (42):

ui+1
H − ui+1

e = ui−1
H − ui−1

e +
2∆tµC

ρc
(ui

H − ui
e) +

2∆tµD
ρc

(ui
H − ui

e) (42)

At this time, we substitute di
e = ui

H − ui
e into Formula (42), and get:

di+1
e = di−1

e +( 2∆tµC
ρc + 2∆tµD

ρc )(ui
H − ui

e)

= di−1
e + ( 2∆tµC

ρc + 2∆tµD
ρc )di

e

Assume β = 2∆tµC
ρc + 2∆tµD

ρc = 2∆tµC+2∆tµD
ρc .

At this time, di+1
e = di−1

e + βdi
e.

Next, we can list (i− L) equations:

dL+1
e = dL−1

e + βdL
e (1)

dL+2
e = dL

e + βdL+1
e (2)

...
...

...

di−1
e = di−3

e + βdi−2
e

...

di
e = di−2

e + βdi−1
e (i−L)

For the above (i − L) formulas, the following formula can be obtained by using the
method of accumulation and simplification.

di+1
e = dL

e + dL−1
e − di

e + β
i−1

∑
k=L

di
e (43)
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We will continue to get:

∥∥di+1
e
∥∥

2 ≤
∥∥dL

e
∥∥

2 +
∥∥dL−1

e
∥∥

2 +
∥∥di

e
∥∥

2 + β
i−1
∑

k=L

∥∥di
e
∥∥

2

≤ 3
√

λd+1 + β
i−1
∑

k=L

∥∥di
e
∥∥

2

(44)

Referring to the conclusion of Lemma 1, it can be known that:

∥∥∥di+1
e

∥∥∥
2
≤ 3

√
λd+1 exp[β(i− L)]

i−1

∑
k=L

∥∥∥di
e

∥∥∥
2

, i = L− 1, · · · , I − 1

According to the property that the norm is far greater than or equal to the absolute
value of the vector element, it is not difficult to know that the numerical solution of the
Galerkin spectral method iterative scheme has the following error estimation results.∣∣∣ui

Hk
− ui

ek

∣∣∣ ≤ E(i)
√

λe+1 (45)

where 1 ≤ k = n + 1 + m(H + 1) ≤ G = (H + 1)2,0 ≤ i ≤ I, we can get:

E(i) =

{
1 1 ≤ i ≤ L

3 exp[( 2∆tµ‖C‖2
ρc +

2∆tµ‖D‖2
ρc )(i− L + 1)] L + 1 ≤ i ≤ I

(46)

It can be seen that the precise solution of the transient nonlinear heat conduction
Equation (1) at point (xn, ym, i∆t) and the numerical solution of the POD reduced dimen-
sion extrapolation Galerkin spectral method iteration scheme (34) have the following
error estimates: ∣∣∣u(xn, ym, ∆t)− ui

ek

∣∣∣ = O(E(i)
√

λe+1, ∆t, H−T) (47)

where , 1 ≤ k = n + 1 + m(H + 1) ≤ G = (H + 1)2, 0 ≤ n, m ≤ H, 2 ≤ T ≤ H.
Note 2: Looking at the whole process of the iterative format of the POD reduced-

order extrapolation Galerkin spectral method, it can be found that the error factor
√

λe+1
comes from the optimization harvest of the Galerkin spectral method iterative format
after dimensionality reduction. In particular, when i = L, L + 1, · · · , I, the extrapolation
process produces 3 exp[

(
2∆tµ‖C‖2

ρc +
2∆tµ‖D‖2

ρc

)
(i− L + 1)] factor, it can be said that whether

it is necessary to reconstruct the temperature field and replace the POD base completely
depends on the variation range of the above two factors. Furthermore, whether the selection
of POD reduced-order extrapolation method basis is appropriate requires the following
two conditions.

(1) In order to ensure that the POD reduced-order extrapolation method has a small error
in the Galerkin spectral method iteration process, the “optimal” POD basis must be
selected, that is, meeting the conditions

√
λe+1 ≤ sup

{
H−T , ∆t

}
.

(2) If 3
√

λe+1 exp[
(

2∆tµ‖C‖2
ρc +

2∆tµ‖D‖2
ρc

)
(i− L + 1)] > sup

{
H−T , ∆t

}
, we need to obtain

a new POD base, if there is a factor
√

λe+1 that makes
√

λe+1 exp[
(

2∆tµ‖C‖2+2∆tµ‖D‖2
ρc

)
(i− L + 1)] = O

{
H−T , ∆t

}
(L + 1 ≤ i ≤ I) true, this shows that the POD reduced-

order iteration is convergent, and the original POD basis remains.

8. Algorithm Implementation of Iterative Scheme of Reduced-Order Extrapolation
Galerkin Spectral Method

The implementation of the algorithm of iterative formats (32) and (33) of the reduced-
order extrapolation Galerkin spectral method can be completed in the following five
steps [31–33].
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Step 1: We can select spatial nodes as Chebyshev–Gauss–Lobatto type configu-
ration points and construct a Galerkin spectral iteration format reasonably based on
the initial time step ∆t ≤ 4.8H−3, then, calculating the initial L-step solution vector
ui

H = (ui
H1

, ui
H2

, · · ·, ui
HG

)
T , (i = 1, 2, · · · , L), and definition: ui

Hk
= ui

H(xn, ym), (0 ≤ n,
m ≤ H, i = 1, 2, · · · , L, G =

(
H + 1)2).

Step 2: We can build the sample matrix Z = (ui
Hk
)

G×L
, and calculate the eigenvalues

λi(i = 1, 2, · · · , L) and eigenvectors ϕi(i = 1, 2, · · · , L) of matrix ZTZ. Among them, the
feature values are arranged in a descending order, thusly: (λ1 ≥ λ2 ≥ · · · ≥ λi ≥ λi+1 =
· · · = λL = 0).

Step 3: Define condition
√

λe+1 ≤ sup
{

H−T , ∆t
}

and determine POD basis
ψ = (ψ1, ψ2, · · · , ψe) by known precision sup

{
H−T , ∆t

}
, and ψk is solved by 1√

λk
Zϕk.

Step 4: We can solve the problem by using the iterative format of the reduced-order
Galerkin spectral method (31). We can solve (31) by the iterative format of the reduced-order
Galerkin spectral method to obtain ui

e = (ui
e1

, ui
e2

, · · · , ui
eG
)

T
(i = 1, 2, · · · , L, L + 1, · · · , I).

The reduced dimension approximate solution ui
e(xn, ym) = ui

ek
of the transient nonlinear

heat conduction Equation (1) based on the POD Galerkin spectral method can be obtained.
Step 5: If 3

√
λe+1 exp[

(
2∆tµ‖C‖2+2∆tµ‖D‖2

ρc

)
(i− L + 1)] ≤ sup

{
H−T , ∆t

}{
ui

e
}I

i=1 just
meets the numerical solution of the accuracy condition, otherwise, go back to step 2 and
iterate extrapolation again. In addition, the contribution rate and cumulative contribution
rate of the characteristic value shall exceed 99.99% and 97.5%, namely:

λi

∑L
k=1 λk

≥ 99.99% (i = 1, 2, · · · , L),
∑i

k=1 λk

∑L
k=1 λk

≥ 97.5% (i = 1, 2, · · · , L)

9. Numerical Simulation Example of POD Reduced-Order Extrapolation Galerkin
Spectrum Method

In Equation (1), we take S(x, y, t) = 0, the initial conditions

S1(x, y) = sin(πx)cos(πy), S2(x, y) = 0

Here, we choose H = 100 as the number of spectral approximation basis functions.
We agree that the stability conditions are ∆t ≤ 4.8 H−3s, ρ = 40 kg/m3, c = 80 J/(kg ·K),
µ = 20 W/(m ·K) and µ = 30 W/(m ·K).

First, according to the iterative scheme (19) of the central difference Galerkin spec-
tral method, the numerical solution of the classical collocation point spectral method is
calculated while t = 8 s, and the time steps ∆t are taken as 0.125× 10−3 s, 0.25× 10−3 s,
0.3× 10−3 s and 0.35× 10−3 s, respectively, then we make figures, which are shown in
Figures 2–5, respectively.

Secondly, the numerical solution of the first L = 5 steps at time position node { tk}5
k=1

is solved by using the spectral method iteration format (19). We can construct sample
matrix Z =

(
U1

H , U2
H , · · · , U5

H
)
. At this time, we can know that the eigenvector of matrix

ZZT is ψk(k = 1, 2, · · · , r) through expression ψk =
1√
λk

Zϕk, r stands for rank(Z).

After calculation, we know that
√

λ5 ≤ 9× 10−4, which is shown in Figure 1; only
the first five POD bases can meet the actual accuracy requirements. It is known that it is
not necessary to reselect the POD base, and at this time, we can calculate the numerical
approximate solution of the reduced dimension spectrum method in the time steps of
∆t = 0.125× 10−3 s, ∆t = 0.25× 10−3 s, ∆t = 0.3× 10−3 s and ∆t = 0.35× 10−3 s, then, we
can draw their figures, which are shown in Figures 2b, 3b, 4b and 5b, respectively. Finally,
we can use the MATLAB program language to compile the error analysis program of the
central difference Galerkin spectrum method and the reduced-order extrapolation central
difference Galerkin spectrum method and draw pictures to show.
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Figure 3. (a) Central difference spectral method; (b) POD reduced-order extrapolation method;
(c) Error graph at ∆t = 0.25× 10−3 s; (d) Energy contribution rate at ∆t = 0.25× 10−3 s.

Appl. Sci. 2023, 13, x FOR PEER REVIEW  16  of  21 
 

Figure 3. (a) Central difference spectral method; (b) POD reduced-order extrapolation method; (c) 

Error graph at 
3-1025.0 t ; (d) Energy contribution rate at 

3-1025.0 t . 

Figure 3 shows the comparison graph between the numerical solutions of POD and 

the central difference Galerkin spectral method with time step  3-1025.0 t at t = 8. We 

can see from Figure 3c that the temperature reconstruction effect is very good, and the 

maximum error is less than  1.15 10 . 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0010

0.0011

0.0012

0.0013

0.0014

0.0015

0.0016

0.0017

0.0018

u 
/K

t/s

 central difference 
 POD

x=0

 
(a) 

 
(b) 

Figure 4. The central differential temperature and POD temperature values of each node at y = 0.25 

m and  𝜇 20𝑊 𝑚 ⋅ 𝐾⁄ . From the figure, it can be seen that the consistency between POD and the 

central differential Galerkin spectral method is very good, with the maximum error not exceeding, 

thus demonstrating the feasibility of POD algorithm technology. The maximum error cannot exceed 

7 10 , thus demonstrating the feasibility of POD algorithm technology. (a) Temperature recon-

struction at  𝛥𝑡 0.3 10 ; (b) Error graph at  𝛥𝑡 0.3 10 . 

Figure 4. The central differential temperature and POD temperature values of each node at
y = 0.25 m and µ = 20 W/(m · K). From the figure, it can be seen that the consistency between
POD and the central differential Galerkin spectral method is very good, with the maximum error
not exceeding, thus demonstrating the feasibility of POD algorithm technology. The maximum
error cannot exceed 7 × 10−3, thus demonstrating the feasibility of POD algorithm technology.
(a) Temperature reconstruction at ∆t = 0.3× 10−3 s; (b) Error graph at ∆t = 0.3× 10−3 s.
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Figure 5. (a–c), respectively, show the effectiveness of the POD and central difference Galerkin
spectroscopy method under different thermal conductivity coefficients and non spatial directions.
It can be seen that only a few points have slight fluctuations, while the matching effect at other
points is quite ideal, and its error does not exceed 2.75 × 10−2. (a) Temperature reconstruction
(y = 0.5 m and µ = 20 W/(m ·K)) at ∆t = 0.35× 10−3 s; (b) Temperature reconstruction (x = 0.5 m
and µ = 30 W/(m ·K)) at ∆t = 0.35× 10−3 s; (c) Error graph at ∆t = 0.35× 10−3 s.
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Note 3: It can be observed from Table 1 that since the sixth mode, the contribution
of eigenvalues to the POD basis is very small, almost close to 0, and the total energy
has reached 100%. It can also be seen from Figure 1 that when the first five singular
values are obtained, there is almost no difference between the new matrix and the original
matrix, and the abandonment of other singular values after that hardly loses any existing
information. This means that only the first five singular values and their corresponding
orthogonal matrices U and K are retained, that is, the modal order whose cumulative
energy contribution rate reaches 100% is selected as the number of the basis functions.
According to the analysis of Figure 1, we reconstruct the temperature field at different time
steps, and the results are shown in figure (b) in Figures 2–5.

Table 1. Eigenvalues and energy percentage of each order of Eigenmodes (temperature field).

Modal Order
Number

Non-Negative
Eigenvalues

Energy Percentage
of Each Order (%)

Accumulated Energy
Percentage (%)

1 8.195303 × 108 98.7348322 98.50163
2 1.547286 × 104 2.2651678 99.10697
3 1.590391 × 102 1.92054 99.83765
4 5.102986 × 10−1 0.03461 99.94056
5 3.171102 × 10−6 0.001913 100
6 2.806418 × 10−9 0.000006 100
7 2.950381 × 10−13 0 100
8 4.539017 × 10−16 0 100

Figure 2 shows a comparison graph between the numerical solutions of POD and the
central difference Galerkin spectral method at time step of ∆t = 0.125× 10−3 s when t = 8 s.
We can see from Figure 2c that the temperature reconstruction error is relatively small, and
the maximum error cannot exceed 2.2× 10−4.

Figure 3 shows the comparison graph between the numerical solutions of POD and
the central difference Galerkin spectral method with time step ∆t = 0.25× 10−3 s at t = 8 s.
We can see from Figure 3c that the temperature reconstruction effect is very good, and the
maximum error is less than 1.15× 10−3.

Table 2 shows the numerical simulation time used for POD extrapolation technology
and the central differential Galerkin spectral method at different time steps. From this
table, we can see that the time step size in Figure 2 is the smallest, resulting in a longer
consumption time for the central differential Galerkin spectral method, but at this point,
the speed of POD extrapolation technology increases faster during the simulation process.
This reflects that the POD has a higher computational accuracy when the time step is small.

Table 2. Comparison of average calculation time between the two methods.

Figure
Calculation Time of Central

Difference Calerkin
Spectrum Method (s)

Calculation Time of POD
Reduced-Order Extrapolation

Model (s)

Time
Multiple

Figure 2 28564.41 62.44 458
Figure 3 199.66722 0.732 273
Figure 4 115.70 0.451 257
Figure 5 30.832 0.131 253

Table 2 and Figure 6 show the numerical simulation time of POD extrapolation tech-
nique and the central difference Galerkin spectrum method at different time steps. From
this table, we can find that the time step in Figure 2 is the smallest, so the central difference
Galerkin spectrum method will consume more time, but during this time, the speed of the
POD extrapolation technology is faster in the simulation process, which shows that the
calculation accuracy of POD is higher when the time step is relatively small.
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To sum up, we can see that under different time steps, the contribution of the principal
components energy is almost 100 or more, and the cumulative energy contribution is
above 97.5%. This shows that the numerical solution of the iterative scheme of the central
difference Galerkin spectral method is in good agreement with the approximate solution
of the reduced dimension extrapolation central difference Galerkin spectral method. At
the same time, the feasibility of using the central difference Galerkin spectral method
and the POD dimension reduction spectral method to solve the heat conduction partial
differential equation is objectively examined. In addition, the iterative algorithm in any step
of the central difference Galerkin spectral method includes H2 = 104 degrees of freedom.
However, in the process of solving (32) and (33) by the iterative format of the reduced-order
extrapolation Galerkin spectral method, it can be found that there are only e = 6 degrees
of freedom at each time level. It can be seen from the numerical simulation process that
the calculation speed of the POD low order model is at least 235 times faster than that of
the central difference Galerkin spectral method, and the maximum temperature error does
not exceed 0.03 ◦C. It can not only reduce the phase error of the iterative algorithm, but
also greatly improve computational efficiency. From the figure, we can see that the error
becomes smaller and smaller with the refinement of the time interval, thus realizing the fast
calculation of the numerical analysis of the transient nonlinear heat conduction equation.
This means that the POD reduced-order extrapolation algorithm is not only simpler in
calculation but can also produce better results.

10. Conclusions

This paper studies the transient nonlinear convection and heat transfer model based on
the spectral method and the POD reduced dimension extrapolation method. The purpose
is to analyze the feasibility of the Galerkin spectral method based on POD dimension
reduction technology for solving flow and heat transfer problems. We have carried out a
series of experimental verifications and analyses on the POD dimension reduction center
and the Galerkin spectral method in terms of their iterative format construction, error
estimation, calculation efficiency, principal component contribution rate, etc. The following
conclusions are drawn:

(1) The temperature field reconstructed by the POD dimension reduction is in good
agreement with the results calculated by the classical central difference Galerkin
spectral method, and the POD reduced-order extrapolation method is superior to the
classical central difference Galerkin spectral method, namely: it reflects the advantages
of the POD algorithm, such as a short running time, a high accuracy of calculation
results, and a relatively small load of the algorithm.
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(2) This article uses the POD basis to derive a simplified spectral method format for
transient two-dimensional nonlinear heat transfer problems. Moreover, the theoretical
analysis of the relationship between the number of instantaneous images and the
overall solution are an improvement and innovation of existing methods. We also
validated the correctness of our theoretical method with numerical examples. In the
effective computational space, the error will decrease with the decrease in the time
step. However, along with a decrease in the time step, in the POD reduced-order
and extrapolation environment, the computational load of the computer will also
increase slightly in a short period of time, resulting in a slight delay in the correspond-
ing calculation time. This means that selecting a reasonable time step in the POD
reduced-order and extrapolation environment will obtain a more ideal calculation
accuracy and energy contribution rate. This method can greatly save computation
and memory capacity and improve computational efficiency. Although only a linear
heat conduction problem is discussed in this article, our method can be extended to
the calculation of more complex nonlinear problems. Our research work is to apply
this reduced-order extrapolation technique to efficient numerical simulations of mid
to deep geothermal energy, as well as more complex engineering calculation problems
in the future. Furthermore, we will design more effective calculation methods that
can better serve the HVAC field.
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