
Citation: Lee, D.; Kim, J.; Shon, S.;

Lee, S. An Advanced Crow Search

Algorithm for Solving Global

Optimization Problem. Appl. Sci.

2023, 13, 6628. https://doi.org/

10.3390/app13116628

Academic Editor: Nor Azlina

Ab. Aziz

Received: 25 April 2023

Revised: 18 May 2023

Accepted: 25 May 2023

Published: 30 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Advanced Crow Search Algorithm for Solving Global
Optimization Problem
Donwoo Lee 1 , Jeonghyun Kim 2 , Sudeok Shon 1 and Seungjae Lee 1,*

1 School of Industrial Design & Architectural Engineering, Korea University of Technology & Education,
1600 Chungjeol-ro, Byeongcheon-myeon, Cheonan 31253, Republic of Korea;
lov1004ely@koreatech.ac.kr (D.L.); sdshon@koreatech.ac.kr (S.S.)

2 Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27,
50-370 Wrocław, Poland; jeonghyun.kim@pwr.edu.pl

* Correspondence: leeseung@koreatech.ac.kr

Abstract: The conventional crow search (CS) algorithm is a swarm-based metaheuristic algorithm
that has fewer parameters, is easy to apply to problems, and is utilized in various fields. However, it
has a disadvantage, as it is easy for it to fall into local minima by relying mainly on exploitation to
find approximations. Therefore, in this paper, we propose the advanced crow search (ACS) algorithm,
which improves the conventional CS algorithm and solves the global optimization problem. The
ACS algorithm has three differences from the conventional CS algorithm. First, we propose using
dynamic AP(awareness probability) to perform exploration of the global region for the selection of
the initial population. Second, we improved the exploitation performance by introducing a formula
that probabilistically selects the best crows instead of randomly selecting them. Third, we improved
the exploration phase by adding an equation for local search. The ACS algorithm proposed in this
paper has improved exploitation and exploration performance over other metaheuristic algorithms
in both unimodal and multimodal benchmark functions, and it found the most optimal solutions in
five engineering problems.

Keywords: advanced crow search algorithm; metaheuristic; convergence performance; engineering
problem; benchmark function

1. Introduction

The optimization of engineering problems is of great interest to many researchers,
and various strategies for incorporating optimization into the engineering field are being
studied [1]. As an example, metaheuristic algorithms that are easy to apply to engineering
problems are being developed for optimization. These algorithms are applied to various
fields in order to optimize engineering problems by minimizing costs, shortening paths,
and maximizing performance.

Metaheuristic algorithms originated in 1965 with the development of the evolution
strategy (ES) algorithm [2], and algorithms using various natural phenomena have been
proposed. Figure 1 classifies the metaheuristic algorithms based on the natural phenomena
that they emulate. Metaheuristic algorithms can be classified into four main categories:
evolutionary, swarm, physic, and human behavior [3–7]. Evolution-based algorithms are
based on the genetic characteristics and evolutionary methods of nature, and representative
algorithms include ES, evolutionary programming (EP), genetic algorithm (GA), genetic
programming (GP), and differential evolution (DE). Swarm-based algorithms are based on
the behavior of organisms such as birds or ants in clusters, and representative algorithms
include ant colony optimization (ACO), particle swarm optimization (PSO), artificial bee
colony (ABC), cuckoo search, and crow search (CS). Physical-based algorithms are based
on physical phenomena, and representative algorithms include simulated annealing (SA),
harmony search (HS), gravitational search (GS), black hole (BH), and sine cosine (SC).

Appl. Sci. 2023, 13, 6628. https://doi.org/10.3390/app13116628 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116628
https://doi.org/10.3390/app13116628
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9962-4539
https://orcid.org/0000-0003-2571-5152
https://orcid.org/0000-0003-4609-0702
https://orcid.org/0000-0002-2597-5168
https://doi.org/10.3390/app13116628
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116628?type=check_update&version=1

Appl. Sci. 2023, 13, 6628 2 of 24

Finally, the human behavior-based algorithms are based on human intelligent behavior,
and representative algorithms include human-inspired (HI), social emotional optimiza-
tion (SEO), brain storm optimization (BSO), teaching learning-based optimization (TLBO),
and social-based (SB) [8]. All metaheuristic algorithms perform optimization using exploita-
tion and exploration. If the metaheuristic algorithm mainly uses exploration, then it can
easily find the global minima but has a difficult time finding the exact solution. Conversely,
metaheuristic algorithms which mainly use exploitation can find accurate solutions but are
prone to falling into local minima [9–11]. Therefore, the convergence performance of the
algorithm varies greatly depending on the method of using exploitation and exploration,
and exploitation and exploration should be used in harmony [12].

Figure 1. Classification of metaheuristic algorithms.

Swarm-based algorithms are efficient in searching for global optima and are easy to
apply to a variety of optimization problems. They also lend themselves well to paralleliza-
tion, making them a popular choice for many researchers [13]. With these advantages,
swarm-based algorithms are applied to various engineering fields, and many researchers
are working to improve the convergence performance of algorithms. The conventional CS
algorithm, originally proposed by Askarzadeh in 2016 and ranked among the swarm-based
algorithms, performs optimization by mimicking the high intelligence of crows [14]. Crow
brains are intelligent enough to recognize food or humans because they are large compared
to their body size. As crows are intelligent, they can remember the location of food hidden
by other birds and steal this hidden food when the other birds are not around. The conven-
tional CS algorithm proposes to perform optimization using these characteristics of crows
and has the following four principles:

• Crows live in groups.
• Crows remember the location of their hidden prey.
• Crows steal food from other birds.
• Crows are protected by probability.

The conventional CS algorithm utilizes a small number of parameters and demon-
strates excellent convergence performance. Due to its easy application in problems and
excellent performance, it is widely applied in civil and architectural engineering, electrical
engineering, mechanical engineering, and image processing [15]. The conventional CS
algorithm is more likely to fall into local minima because it mainly performs optimization
using exploitation rather than exploration. However, given that real optimization problems
are often characterized by multimodal functions, optimization algorithms should mainly
use exploration rather than exploitation to find accurate solutions [16]. In order to address
this issue, Mohammadi et al. proposed a modified crow search (MCS) algorithm in 2018
that performs optimization through the adoption of a new method for selecting a target
crow as well as variation of f l (flight length) based on distance depending on the distance
of the crow [17]. In the same year, Díaz et al. proposed the improved crow search (ICS)

Appl. Sci. 2023, 13, 6628 3 of 24

algorithm, which is improved by random adoption methods using AP (awareness proba-
bility) and Lévy flight varying by fitness in the t generation [18]. AP is one of the important
parameters used in the conventional CS algorithms, and depending on the size of the AP,
the conventional CS algorithms perform exploitation or exploration. In 2019, Zamani et al.
proposed the conscious neighborhood-based crow search (CCS) algorithm, which utilizes
three strategies: neighborhood-based local search (NLS), non-neighborhood-based global
search (NGS), and wandering around-based search (WAS) [19]. In the same year, Javidi et al.
proposed the enhanced crow search (ECS) algorithm [20], which used three additional
mechanisms. In addition, the convergence performance of the ECS algorithm was evalu-
ated compared to the conventional CS algorithm to which three mechanisms were applied.
In 2020, Wu et al. proposed the Lévy flight crow search (LFCS) algorithm combining Lévy
flight and the conventional CS algorithm [21]. Recently, in 2022, Necira et al. proposed the
dynamic crow search (DCS) algorithm, and it utilizes AP, which linearly decreases with
the number of generations, and f l, which is randomly selected by the parity probability
density function [22].

In this paper, the advanced crow search (ACS) algorithm was proposed as a means
to solve the global optimization problem. The ACS algorithm uses dynamicAP—which
varies nonlinearly with changes in the number of generations—and suggests that we follow
the best results of previous generations with a probability-based approach, rather than
randomly chasing the prey selected by crows. In addition, instead of randomly selecting
from the entire problem range, the algorithm proposes reducing the randomly selected
space as the number of generations increases. Section 2 briefly reviews conventional CS
algorithms and papers that improve on these conventional CS algorithms, and Section 3
compares the explanation of the ACS algorithm with the convergence performance accord-
ing to parameter changes. In Section 4, we solve the numerical optimization problem and
compare the results with those of other algorithms. Section 5 presents the conclusions
drawn from this study.

2. Related Work

In this section, we explain the process of optimizing the conventional CS algorithm and
briefly outline research projects that have improved upon the conventional CS algorithm.

2.1. Conventional CS Algorithm

The conventional CS algorithm proposed by Askarzadeh describes the intelligent
behavior of crows and performs optimization by repeating the following five steps [14]:

Step 1. Define the problem and set the parameters
The problem undergoing optimization is defined, and the initial value of the parame-

ters used in the conventional CS algorithm are set. The parameters used in the conventional
CS algorithms are AP (awareness probability), f l (flight length), N (flock size), pd (dimen-
sion of problem), and tmax (maximum number of generations).

Step 2. Initialize the memory of crows and evaluate
The size of the crow group, determined by pd and the size of N, is expressed as

Equation (1), and the initial position of each crow is randomly assigned within the range
between lb (lower boundary) and ub (upper boundary). In this context, i is 1, 2, . . . , N, t are
1, 2, . . . , tmax, and d is pd. The initial position of the randomly placed crow is remembered
as Equation (2), and the initial position of the crow is evaluated by object function.

Crowsi,t =

 x1
i · · · xd

i
...

...
...

x1
N · · · xd

N

 (1)

Appl. Sci. 2023, 13, 6628 4 of 24

CrowsMemoryi,t =

m1
i · · · md

i
...

...
...

m1
N · · · md

N

 (2)

Step 3. Generate and evaluate the new positions for crows
Step 3 is the most important step that the conventional CS algorithm uses to perform

optimization. Crow i (xi,t) follows crow j (mj,t), and two cases are proposed depending on
whether crow j is aware of crow i’s following. The first case is that crow j (mj,t) does not
recognize crow i (xi,t)’s following. The position of crow i (xi,t) is adjusted by Equation (3),
where ri is a random number between 0 and 1. In addition, a local (f l < 1) or global
(f l > 1) area search is performed depending on the size of f l, and it is known to have the
best convergence performance when using f l = 2.0. Figure 2 is a diagram that expresses
this characteristic.

(a)
(b)

Figure 2. Comparison results of benchmark function: (a) f l < 1. (b) f l > 1.

xi,t+1 = xi,t + ri × f l × (mj,t − xi,t) (3)

xi,t+1 = a random position (4)

The second case is that crow j (mj,t) recognizes crow i (xi,t)’s following. In this instance,
the position of crow i is adjusted by Equation (4), moving to a random position in the
range between lb and ub. Two cases are selected from each generation by the AP, and the
AP mainly uses 0.1. Relative to the size of AP, the conventional CS algorithms perform
exploitation and exploration in order to find the optimal solutions. The positions of the
newly moved crows are again evaluated by the objective function.

Step 4. Update the memory
The results are compared by evaluating the crow position change using Equations (3)

and (4) with the evaluation of crows stored in memory. Comparing the evaluation results,
the better crow position is updated in the crow’s memory.

Step 5. Termination of repetition
The process of Steps 2–4 is repeated continuously, and when t reaches tmax, the per-

formance of the conventional CS algorithm is terminated in order to derive optimization
results. The pseudo code of the above-mentioned process is provided in Algorithm 1.

Appl. Sci. 2023, 13, 6628 5 of 24

Algorithm 1 Pseudo code of the conventional CS algorithm

Initialize the parameters(AP, f l, N, pd, tmax)
Initialize the position of crows in the search space and memorize
Evaluate the position of crows
while t < tmax do

Randomly choose the position of crows
for i = 1 : N do

if ri ≥ AP then
xi,t+1 = xi,t + ri × f l × (mj,t − xi,t)

else
xi,t+1 = a random position

end if
end for
Evaluate the new position of crows
Update the memory of crows

end while
Show the results

2.2. Modified CS Algorithm

The modified CS (MCS) algorithm was proposed by Mohammadi et al. in 2018 [17].
The MCS algorithm has a similar structure compared to the conventional CS algorithm,
but two new equations have been proposed.

First, MCS algorithm uses K parameters, which use random variables between ‘0’ and
‘1’ to select the target crow (Crow j), unlike the conventional CS algorithm. K is defined as
Equation (5) and consists of Kmax and Kmin. K has values that decrease with the number of
generations by Kmax and Kmin.

Kt = round
(

Kmax −
Kmax − Kmin

tmax
× t
)

(5)

If K has a large value, then the probability that a crow in a bad position will be
selected increases; if K has a small value, then the probability that the crow in the best
position will be selected increases. Therefore, exploration is primarily performed in the
initial generations, and exploitation is primarily performed in the latter generations.

Second, the MCS algorithm uses a value of f l differently depending on the distance
between crow i and crow j, where f l is defined as Equation (6). Here, f lthr and Dthr are
initially set parameters, and Di,j is the distance vector of crow i and crow j.

f li,t =
{

2 i f Di,j > Dthr
f lthr i f Di,j ≤ Dthr

(6)

Askarzadeh noted that when f l = 2, the conventional CS algorithm has the best
convergence performance [14]. However, the MCS algorithm uses f li,t with a value greater
than 2 when the crow’s distance (Di,j) is closer than Dthr.

2.3. Dynamic CS Algorithm

The dynamic CS (DCS) algorithm was proposed by Necira et al. in 2022 [22], and
it proposed dynamic AP and f l that change with the number of generations.

First, dynamic AP, which varies dynamically with the number of generations, is
defined as Equation (7). dynamic AP decreases linearly within the range of APmax and
APmin as the number of generations increases. This change causes the initial number of
generations to perform the exploration in the global search space.

AP = APmax +
APmax − APmin

tmax
× t (7)

Appl. Sci. 2023, 13, 6628 6 of 24

Second, f lc was used instead of f l used by the conventional CS algorithm, which is
defined as Equation (8). The conventional CS algorithm initially determines f l and performs
a local search or global search based on the determined value. However, DCS algorithm
mainly performs a global search when it is less than a certain number of generations, and a
local search when it exceeds a certain number of generations. These changes are determined
by τ and are mainly used at 0.9.

f lc =
{

f l ×
[
F
(ymax

10
)
− F(ymin)× r

]
i f t ≤ τ × tmax

f l × [F(ymax)− F(ymax)− F(0.6× ymax)] else
(8)

3. Proposed Method
3.1. Advanced CS Algorithm

The conventional CS algorithm, which repeats the above process to perform optimiza-
tion, performs exploration and exploitation according to the size of AP, mainly using 0.1
for AP. That is, the conventional CS algorithm mainly performs the exploitation rather than
the exploration. Figure 3 is a diagram showing the exploitation and exploration that occurs
in the process of optimizing the Sphere function for 1000 generations of the conventional CS
algorithms with a N of 50. It can be seen that exploitation mainly occurs in all generations.
Optimization algorithms that mainly use excitation in optimization performance are likely
to fall into local minima [10], and the performance of the conventional CS algorithms is
largely dependent on the initial population. In this paper, to address this problem, we im-
prove the performance of the initial population using dynamic AP that varies dynamically
with the number of generations, and the performance of exploitation and exploration using
two proposed equations.

Figure 3. Exploitation and exploration of the conventional CS algorithm.

Similar to the conventional CS algorithm, the ACS algorithm consists of a total of
five steps.

Step 1. Define the problem and set the parameters
Like the conventional CS algorithm, the problem for performing optimization is

defined in Step 1, and the parameters used in the ACS algorithm are set. The parameters
added in the ACS algorithm are APmax, APmin, and FAR (Flight Awareness Ratio). Here,
APmax and APmin are used for dynamic AP.

Step 2. Initialize the memory of crows and evaluate
The size of the crew group used in the ACS algorithm is expressed as Equation (1) as

in the conventional CS algorithm, and the initial position is remembered as Equation (2).
The initial position of the remembered crow is evaluated by the objective function.

Step 3. Generate and evaluate the new positions for crows

Appl. Sci. 2023, 13, 6628 7 of 24

The ACS algorithm displays the biggest difference from the conventional CS algorithm
in Step 3. First, The ACS algorithm uses dynamic AP, which changes dynamically with the
number of generations. dynamic AP uses Equation (9) for dynamic changes, and APmax
and APmin have a value between 0 and 1. Figure 4 shows an AP that changes dynamically
according to the number of generations when tmax is 2000. Using dynamic AP, as shown in
Figure 5, increases the probability of exploration at the beginning of the generation, which
can increase the performance of the initial population. Compared to Figure 3, the number of
explorations increases at lower numbers of generations. Thus, the larger the AP, the higher
the probability of the initial population performing exploration, and the smaller the AP,
the higher the probability of performing exploitation. In addition, a dynamic AP of an
appropriate size is required for harmony between exploitation and exploration.

APt = APmin +
APmax − APmin

ln(t) + 1
(9)

Figure 4. dynamic AP of ACS algorithm(APmax = 0.4, APmin = 0.01).

Figure 5. Exploitation and exploration of ACS algorithm(APmax = 1.0, APmin = 0.1).

Second, unlike the conventional Equation (3) in which crow i follows randomly
selected crow j (mj,t), in the ACS algorithm, it follows the best crow j (gbj,t) by FAR. This
can be expressed as Equation (10). Here, r2

i,t, r3
i,t is a random number between 0 and 1,

and FAR is an initial set value between 0 and 1. The change in this equation improves the
exploitation performance compared to the conventional CS algorithm. If FAR approaches 0,

Appl. Sci. 2023, 13, 6628 8 of 24

it follows the best solution stored in the crow’s memory. Conversely, when FAR approaches
1, it follows a randomly selected crow, just like the conventional CS algorithm. Therefore,
using the appropriate FAR, it is possible to improve the convergence performance of the
optimization algorithm by harmonizing the exploitation and exploration.

xi,t+1 =

{
xi,t + r2

i,t × f l × (mj,t − xj,t) r3
i,t ≤ FAR

xi,t + r2
i,t × f l × (gbj,t − xj,t) else

(10)

Third, using this algorithm, the exploration phase of the conventional CS algorithm
was improved. The conventional CS algorithms are randomly adopted in the lb and ub
ranges if the random number is less than the AP. That is, global search is mainly performed.
The global search can contribute to the convergence performance of the algorithm because
it searches a large area at the beginning of the generation. However, it does not contribute
significantly to the convergence performance of the algorithm as the generation progresses.
Therefore, the process of reducing the range that can be selected toward the end of the
generation was added as Equation (11), which allows the ACS algorithm to perform a
local search. Here, r4

i,t and r5
i,t are random numbers between 0 and 1. Figure 6 illustrates

this method.

xi,t+1 =

{
2xi,t + (lb + r5

i,t × (lb− ub))/t r4
i,t < 0.5

a random position else
(11)

Figure 6. Random position of ACS algorithm.

Step 4. Update the memory
The results are compared through evaluation of the crow position change by

Equation (3), Equation (4) with the evaluation of crows stored in memory. Comparing
the evaluation results, the better crow position is updated in the crow’s memory.

Step 5. Termination of repetition
The ACS algorithm performs optimization by repeating the process of Steps 2–4. When

the current number of generations (t) reaches the maximum number of generations (tmax),
the execution of the ACS algorithm ends, and the optimization result of the problem is
derived. Pseudo code of the above-mentioned process is provided in Algorithm 2.

Appl. Sci. 2023, 13, 6628 9 of 24

Algorithm 2 Pseudo code of the ACS algorithm

Initialize the parameters(APmax, APmin, FAR, f l, N, pd, tmax)
Initialize the position of crows in the search space and memorize
Evaluate the position of crows
while t < tmax do

Randomly choose the position of crows
for i = 1 : N do

if r1
i,t ≥ APt then
if r3

i,t ≤ FAR then
xi,t+1 = xi,t + r2

i,t × f l × (mj,t − xi,t)
else

xi,t+1 = xi,t + r2
i,t × f l × (gbj,t − xi,t)

end if
else

if r4
i,t ≤ 0.5 then
xi,t+1 = 2xi,t + (lb + r5

i,t × (lb− ub))/t
else

xi,t+1 = a random position
end if

end if
end for
Evaluate the new position of crows
Update the memory of crows

end while
Show the results

3.2. Characteristic of the ACS Algorithm

Unlike the conventional CS algorithm, the ACS algorithm adds the parameters of
dynamic AP and FAR. Therefore, this section compares the convergence performance
according to the change in the newly added parameters and seeks the value with the best
convergence performance. The benchmark function was used to compare convergence
performance, and it was summarized in Table 1. Here, d was set to 10 in order to identify
the characteristics of the ACS algorithm.

Table 1. Benchmark function for comparison.

Fun Equation B Min

f 1 f (x) = ∑n
i=1 x2

i [−100 100] d 0
f 2 f (x) = ∑n

i=1|xi |+ ∏n
i=1|xi | [−10 10] d 0

f 3 f (x) = ∑n
i=1(∑

i
j−1 xj)

2 [−100 100] d 0
f 4 f (x) = max{|xi |, 1 ≤ i ≤ n} [−100 100] d 0
f 5 f (x) = ∑n−1

i=1

[
100
(

xi=1 − x2
i
)2

+ (xi − 1)2
]

[−30 30] d 0

f 6 f (x) = ∑n
i=1([xi + 0.5])2 [−100 100] d 0

f 7 f (x) = ∑n
i=1 ix4

i + rand(0, 1) [−1.28 1.28] d 0
f 8 f (x) = ∑n

i=1−x sin
√
|xi | [−500 500] d −418.9829× d

f 9 f (x) = ∑n
i=1
[
x2

i − 10 cos(2πxi)
]
+ 10 [−5.12 5.12] d 0

f 10 f (x) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e [−32 32] d 0

f 11 f (x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
[−600 600] d 0

f 12 f (x) = π
n

{
10 sin2(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+ ∑n

i=1 u(xi , a, k, m) [−50 50] d 0

f 13
f (x) =

0.1
{

sin2(3πx1) + ∑n−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+ ∑n

i=1 u(xi , a, k, m)
[−50 50] d 0

Appl. Sci. 2023, 13, 6628 10 of 24

A total of 13 functions were used to compare the convergence performance according
to the value of the added parameter. In Table 1, f 1– f 7 is a unimodal benchmark function
that can test the exploitation performance of each algorithm. Additionally, f 8– f 13 is a mul-
timodal benchmark function that can test the exploration performance of each algorithm.
The multimodal benchmark function has many local minima, making it difficult to find an
exact solution.

3.2.1. Dynamic AP

The ACS algorithm uses dynamic AP, which varies with the number of generations,
to increase the performance of the exploration initially. dynamic AP is calculated by
Equation (9) and has a different value depending on the size of the APmax. Figure 7 is
a graph that changes according to the size of the APmax. The larger the APmax, the higher
the probability of randomly selecting the entire boundary initially and the better the initial
population selection. Therefore, this section compares results that change according to the
value of the APmax.

Figure 7. Dynamic AP according to APmax.

When AP becomes 0, only exploitation occurs in all generations. Therefore, the APmin
was set to a minimum value of (=0.01). APmax was changed to 0.01, 0.1, 0.2, 0.4, 0.6, 0.8,
and 1.0, and N, f l, and FAR were set to 20, 2.0, and 1.0. tmax was set to 2000, and each
analysis was repeated a total of 50 times.

Table 2 presents the analysis result of each benchmark function according to the
change of APmax, and the last row indicates the average ranking of the BF (best fitness)
or MF (mean fitness) according to the APmax. If two or more values were ranked the
same, then the average ranking was derived. The average ranking of BF was best at 1.88
when APmax = 0.4, and the average ranking of MF was best at 2.31 when APmax = 0.8.
Conversely, when APmax = 0.01, both BF and MF performance deteriorated. In other words,
using dynamic AP as an appropriate value yields better convergence performance than the
conventional CS algorithms, and the convergence performance of the ACS algorithm is the
best when the dynamic AP has a range of 0.4–0.6.

Appl. Sci. 2023, 13, 6628 11 of 24

Table 2. Benchmark function results according to APmax.

Fun Index
APmax

0.01 0.1 0.2 0.4 0.6 0.8 1.0

f 1
BF 1.539 × 10−16 2.262 × 10−25 2.565 × 10−26 2.593 × 10−24 1.061 × 10−21 1.529 × 10−18 2.833 × 10−17

MF 1.210 × 10−11 3.174 × 10−20 4.473 × 10−22 2.924 × 10−21 1.009 × 10−18 2.040 × 10−16 1.780 × 10−14

Std 3.856 × 10−11 1.148 × 10−19 2.366 × 10−21 6.870 × 10−21 2.496 × 10−18 3.732 × 10−16 3.336 × 10−14

f 2
BF 9.000 × 10−4 2.982 × 10−7 3.825 × 10−9 1.453 × 10−9 2.523 × 10−8 5.769 × 10−8 4.234 × 10−7

MF 4.804 × 10−1 3.235 × 10−1 5.726 × 10−2 5.967 × 10−3 3.480 × 10−3 1.651 × 10−3 1.669 × 10−2

Std 8.730 × 10−1 6.932 × 10−1 1.713 × 10−1 2.146 × 10−2 1.474 × 10−2 6.987 × 10−3 5.230 × 10−2

f 3
BF 8.264 × 10−7 3.387 × 10−12 3.318 × 10−15 1.478 × 10−15 6.072 × 10−14 3.762 × 10−13 9.214 × 10−11

MF 7.755 × 10−4 3.325 × 10−8 2.260 × 10−10 2.695 × 10−12 1.810 × 10−11 1.778 × 10−10 2.906 × 10−9

Std 1.426 × 10−3 8.402 × 10−8 1.294 × 10−9 4.797 × 10−12 3.574 × 10−11 3.233 × 10−10 7.114 × 10−9

f 4
BF 6.825 × 10−4 1.288 × 10−6 7.312 × 10−8 5.775 × 10−8 3.196 × 10−8 4.060 × 10−7 1.179 × 10−6

MF 2.281 × 10−1 1.375 × 10−3 4.209 × 10−5 3.244 × 10−6 3.038 × 10−6 1.968 × 10−5 3.329 × 10−5

Std 5.381 × 10−1 5.247 × 10−3 1.190 × 10−4 9.829 × 10−6 4.470 × 10−6 5.200 × 10−5 5.856 × 10−5

f 5
BF 1.713 × 100 4.013 × 10−1 5.917 × 10−1 3.408 × 10−1 8.382 × 10−2 1.636 × 10−1 2.719 × 10−1

MF 4.907 × 101 3.163 × 101 1.235 × 101 5.890 × 100 1.942 × 101 4.255 × 100 6.337 × 100

Std 1.146 × 102 7.602 × 101 3.155 × 101 1.722 × 101 6.666 × 101 1.329 × 101 1.842 × 101

f 6
BF 1.153 × 10−15 4.338 × 10−25 1.302 × 10−26 8.952 × 10−24 1.329 × 10−21 3.406 × 10−18 4.081 × 10−16

MF 1.516 × 10−11 1.065 × 10−20 5.884 × 10−23 3.664 × 10−21 5.147 × 10−19 1.780 × 10−16 2.082 × 10−14

Std 8.877 × 10−11 3.800 × 10−20 1.452 × 10−22 1.099 × 10−20 6.811 × 10−19 3.103 × 10−16 2.444 × 10−14

f 7
BF 3.638 × 10−3 1.402 × 10−3 2.790 × 10−4 2.662 × 10−4 4.150 × 10−4 5.504 × 10−4 5.838 × 10−4

MF 1.861 × 10−2 7.457 × 10−3 5.353 × 10−3 3.847 × 10−3 3.338 × 10−3 3.086 × 10−3 3.419 × 10−3

Std 1.243 × 10−2 4.381 × 10−3 3.128 × 10−3 2.699 × 10−3 2.168 × 10−3 1.838 × 10−3 2.241 × 10−3

f 8
BF −3.475 × 103 −3.517 × 103 −3.616 × 103 −3.835 × 103 −3.736 × 103 −3.617 × 103 −3.476 × 103

MF −2.618 × 103 −2.790 × 103 −2.784 × 103 −2.797 × 103 −2.799 × 103 −2.911 × 103 −2.816 × 103

Std 4.082 × 102 3.450 × 102 3.783 × 102 3.988 × 102 3.896 × 102 3.289 × 102 3.013 × 102

f 9
BF 5.970 × 100 4.975 × 100 5.970 × 100 4.975 × 100 3.980 × 100 5.970 × 100 5.970 × 100

MF 2.507 × 101 2.454 × 101 2.366 × 101 2.306 × 101 2.255 × 101 2.312 × 101 1.988 × 101

Std 1.058 × 101 1.282 × 101 1.374 × 101 1.166 × 101 1.164 × 101 1.061 × 101 1.095 × 101

f 10
BF 2.013 × 100 1.150 × 10−5 1.131 × 10−12 2.077 × 10−11 1.267 × 10−10 2.340 × 10−9 1.762 × 10−8

MF 3.965 × 100 2.984 × 100 2.625 × 100 2.436 × 100 2.361 × 100 2.100 × 100 2.096 × 100

Std 1.073 × 100 1.097 × 100 8.876 × 10−1 9.702 × 10−1 8.554 × 10−1 9.932 × 10−1 1.000 × 100

f 11
BF 7.874 × 10−2 7.378 × 10−2 5.899 × 10−2 6.637 × 10−2 9.106 × 10−2 8.115 × 10−2 7.132 × 10−2

MF 7.107 × 10−1 7.328 × 10−1 5.611 × 10−1 3.788 × 10−1 4.330 × 10−1 3.077 × 10−1 2.621 × 10−1

Std 4.147 × 10−1 3.670 × 10−1 3.402 × 10−1 2.323 × 10−1 2.936 × 10−1 1.644 × 10−1 1.784 × 10−1

f 12
BF 2.089 × 10−3 1.272 × 10−5 2.475 × 10−15 1.017 × 10−16 2.176 × 10−15 3.198 × 10−14 2.542 × 10−12

MF 1.001 × 101 6.269 × 100 6.160 × 100 2.527 × 100 1.988 × 100 1.685 × 100 2.078 × 100

Std 7.024 × 100 5.187 × 100 6.034 × 100 3.390 × 100 3.928 × 100 3.189 × 100 3.076 × 100

f 13
BF 1.144 × 10−8 3.114 × 10−14 2.572 × 10−18 4.356 × 10−19 9.371 × 10−16 7.594 × 10−15 5.353 × 10−13

MF 1.994 × 10−2 8.973 × 10−3 6.078 × 10−3 6.096 × 10−3 6.679 × 10−3 4.364 × 10−3 6.731 × 10−3

Std 3.138 × 10−2 1.057 × 10−2 8.789 × 10−3 6.584 × 10−3 7.714 × 10−3 6.168 × 10−3 7.094 × 10−3

Ranking BF 6.77 4.58 2.62 1.88 2.85 4.08 5.23
MF 6.92 5.54 4.08 2.85 2.92 2.31 3.38

3.2.2. FAR

The ACS algorithm follows a randomly selected crow (mj,t) by FAR or a crow (gbj,t)
with favorite prey. The closer FAR = 1.0 is, the more likely it is to follow a randomly
selected crow (mj,t) like the conventional CS algorithm, and the closer it is to FAR = 0.0 the
more likely is to follow a crow (gbj,t) with favorite prey. In this section, FAR was changed
to 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 in order to compare convergence performance with changes
in FAR, and N, f l, APmax, and APmin were set to 20, 2.0, 0.4, and 0.01, respectively. tmax
was set to 2000, and each analysis was repeated a total of 100 times.

Table 3 presents the analysis results according to a change in FAR. The mean ranking
of BF was the best at 2.04 when FAR = 0.2, and the mean ranking of MF was the best at 2.92
when FAR = 0.6. Conversely, the closer FAR = 0.0 or 1.0, the worse the average ranking.
Furthermore, the closer the local minima were to FAR = 0.0 in F1, F4, and F6, the better
the convergence performance. In other words, using the appropriate value of FAR yielded
better convergence performance than the conventional CS algorithm, and when FAR had a
range of 0.2–0.4, it had the best convergence performance.

Appl. Sci. 2023, 13, 6628 12 of 24

Table 3. Benchmark function results according to FAR.

Fun Index
FAR

0.0 0.2 0.4 0.6 0.8 1.0

f 1
BF 1.787 × 10−20 1.754 × 10−20 3.271 × 10−19 1.532 × 10−17 6.406 × 10−16 1.360 × 10−12

MF 3.076 × 10−18 2.509 × 10−18 3.189 × 10−17 1.136 × 10−15 4.515 × 10−14 2.813 × 10−11

Std 5.849 × 10−18 3.748 × 10−18 6.464 × 10−17 2.002 × 10−15 6.196 × 10−14 4.601 × 10−11

f 2
BF 7.143 × 10−4 6.113 × 10−8 5.538 × 10−8 8.745 × 10−8 1.645 × 10−7 2.121 × 10−6

MF 7.625 × 10−1 4.168 × 10−2 2.789 × 10−3 1.890 × 10−2 3.333 × 10−3 2.349 × 10−2

Std 9.166 × 10−1 2.084 × 10−1 1.214 × 10−2 1.300 × 10−1 1.657 × 10−2 8.600 × 10−2

f 3
BF 1.318 × 10−10 1.385 × 10−13 1.723 × 10−13 2.560 × 10−12 2.984 × 10−11 1.954 × 10−8

MF 9.056 × 10−9 2.084 × 10−11 8.017 × 10−11 9.212 × 10−10 1.486 × 10−8 5.695 × 10−6

Std 1.382 × 10−8 2.847 × 10−11 1.780 × 10−10 1.767 × 10−9 2.950 × 10−8 9.067 × 10−6

f 4
BF 1.954 × 10−8 6.332 × 10−8 1.195 × 10−7 2.276 × 10−7 1.533 × 10−6 8.818 × 10−6

MF 5.695 × 10−6 8.908 × 10−6 8.421 × 10−6 1.605 × 10−5 2.570 × 10−5 1.203 × 10−4

Std 9.067 × 10−6 1.448 × 10−5 1.102 × 10−5 2.305 × 10−5 3.901 × 10−5 1.628 × 10−4

f 5
BF 6.351 × 10−1 2.218 × 10−1 1.365 × 10−1 1.857 × 10−1 5.801 × 10−1 4.578 × 10−1

MF 3.904 × 101 1.206 × 101 5.356 × 100 8.779 × 100 1.262 × 101 1.656 × 101

Std 9.006 × 101 3.350 × 101 5.356 × 100 2.897 × 101 3.539 × 101 4.085 × 101

f 6
BF 2.275 × 10−20 1.137 × 10−20 9.394 × 10−20 9.199 × 10−19 2.792 × 10−16 1.856 × 10−12

MF 2.655 × 10−18 4.212 × 10−18 3.363 × 10−17 7.367 × 10−16 4.578 × 10−14 2.756 × 10−11

Std 4.478 × 10−18 7.407 × 10−18 7.556 × 10−17 1.182 × 10−15 8.264 × 10−14 3.879 × 10−11

f 7
BF 6.747 × 10−4 2.623 × 10−4 3.859 × 10−4 4.041 × 10−4 3.774 × 10−4 6.165 × 10−4

MF 4.244 × 10−3 3.991 × 10−3 4.146 × 10−3 3.277 × 10−3 3.619 × 10−3 4.088 × 10−3

Std 2.879 × 10−3 2.630 × 10−3 2.624 × 10−3 2.069 × 10−3 2.272 × 10−3 2.417 × 10−3

f 8
BF −3.953 × 103 −3.595 × 103 −3.953 × 103 −3.716 × 103 −3.953 × 103 −4.071 × 103

MF −2.808 × 103 −2.792 × 103 −2.804 × 103 −2.830 × 103 −2.887 × 103 -2.923 × 103

Std 4.065 × 102 3.371 × 102 3.740 × 102 3.620 × 102 3.549 × 102 3.878 × 102

f 9
BF 4.975 × 100 4.975 × 100 3.980 × 100 3.980 × 100 3.980 × 100 3.980 × 100

MF 2.983 × 101 2.320 × 101 1.996 × 101 2.016 × 101 1.617 × 101 1.135 × 101

Std 1.272 × 101 1.105 × 101 8.363 × 100 9.589 × 100 7.980 × 100 5.342 × 100

f 10
BF 1.033 × 10−9 6.115 × 10−10 2.005 × 10−9 2.950 × 10−9 3.231 × 10−8 5.811 × 10−7

MF 2.446 × 100 2.473 × 100 2.325 × 100 2.057 × 100 2.063 × 100 1.666 × 100

Std 8.111 × 10−1 7.402 × 10−1 7.449 × 10−1 8.948 × 10−1 9.754 × 10−1 9.920 × 10−1

f 11
BF 6.149 × 10−2 2.219 × 10−2 2.709 × 10−2 6.886 × 10−2 3.937 × 10−2 3.446 × 10−2

MF 4.724 × 10−1 4.276 × 10−1 4.516 × 10−1 3.836 × 10−1 2.900 × 10−1 1.898 × 10−1

Std 2.797 × 10−1 2.809 × 10−1 2.783 × 10−1 2.295 × 10−1 1.468 × 10−1 9.766 × 10−2

f 12
BF 1.667 × 10−13 3.925 × 10−16 1.685 × 10−14 9.559 × 10−14 2.608 × 10−11 7.787 × 10−11

MF 4.175 × 100 3.322 × 100 2.212 × 100 3.049 × 100 2.289 × 100 2.446 × 100

Std 3.913 × 100 5.352 × 100 3.187 × 100 3.988 × 100 3.595 × 100 3.381 × 100

f 13
BF 1.171 × 10−14 4.129 × 10−16 6.199 × 10−15 3.664 × 10−14 2.733 × 10−13 5.752 × 10−11

MF 6.429 × 10−3 6.192 × 10−3 6.377 × 10−3 4.708 × 10−3 5.325 × 10−3 5.285 × 10−3

Std 8.209 × 10−3 7.961 × 10−3 8.446 × 10−3 6.981 × 10−3 6.743 × 10−3 7.286 × 10−3

Ranking BF 3.85 2.04 2.31 3.73 4.27 4.81
MF 4.54 3.69 3.08 2.92 3.23 3.54

4. Numerical Examples

In this section, the ACS algorithm was applied to benchmark function and engineering
problems and compared with the results of other algorithms. The benchmark function used
23 functions shown in Tables 1 and 4 [23]. Five engineering problems were performed:
a pressure vessel design problem (PVD), a welded beam design problem, a weight of a
tension/compression string problem, a three-bar truss optimization problem, and a stepped
cantilever beam design problem.

Appl. Sci. 2023, 13, 6628 13 of 24

Table 4. Fixed-dimension multimodal benchmark function for comparison.

Fun Equation B Min

f 14 f (x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
[−65 65]2 1

f 15 f (x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5 5]4 0.0003

f 16 f (x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5 5]2 −1.0316
f 17 f (x) =

(
x2 − 5.1

4π2 x2
1 +

5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 [−5 5]2 0.398

f 18 f (x) =

[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2
)] [−2 2]2 3

f 19 f (x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij
(
xj − pij

)2
)

[1 3]3 −3.86

f 20 f (x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij
(
xj − pij

)2
)

[0 1]6 −3.32

f 21 f (x) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1 [0 10]4 −10.1532

f 22 f (x) = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1 [0 10]4 −10.4028

f 23 f (x) = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1 [0 10]4 −10.5363

4.1. Benchmark Function Problems

The algorithms used to compare the convergence performance of the ACS algorithm
were the conventional CS algorithm, HS, DE, the grasshopper optimization (GO) algorithm,
the salp swarm (SS) algorithm, and GA. Table 5 presents the parameters used in each
algorithm. tmax, N, and Dim used 2000, 30, and 30, respectively, and each analysis was
repeated a total of 30 times.

Table 5. Parameters for benchmark function problems.

Algorithm Parameters

ACS f l = 2.0, APmax = 0.4, APmin = 0.01, FAR = 0.4
Conventional CS f l = 2.0, AP = 0.1

HS HMCR = 0.9, PAR = 0.1, bw = 0.03
DE PCr = 0.5, F = 0.2
GO Cmax = 1.0, Cmin = 0.00001
SS Non− parameters
GA Pm = 0.005, Pc = 0.9

Figure 8 is a graph representing the convergence of each algorithm, and the red line
is the result of the ACS algorithm. In all of the benchmark functions except for five (f 14,
f 20, f 21, f 22, and f 23), it can be seen that the ACS algorithm finds the value closest to
the Min the fastest. Table 6 presents the analysis results of each algorithm, and the last
row shows the ranking using the BF of each algorithm. The ACS algorithm has the best
convergence performance on unimodal (f 1– f 7) and multimodal (f 8– f 13) functions. In the
fixed-dimension multimodal function (f 14– f 23), f 15– f 19 confirmed the best convergence
performance, but f 14 and f 20– f 23 did not. However, the ACS algorithm showed better
convergence performance than the conventional CS algorithm. As a result of using the
rankings of BF and MF, the ACS algorithm was derived as 1.65 and 1.78, confirming that it
was the best. Therefore, it can be seen that the ACS algorithm has improved exploitation
and exploration capabilities compared to the conventional CS algorithm.

Appl. Sci. 2023, 13, 6628 14 of 24

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 8. Cont.

Appl. Sci. 2023, 13, 6628 15 of 24

(p) (q) (r)

(s) (t) (u)

(v) (w)

Figure 8. Comparison results of the benchmark function: (a) f 1; (b) f 2; (c) f 3; (d) f 4; (e) f 5; (f) f 6;
(g) f 7; (h) f 8; (i) f 9; (j) f 10; (k) f 11; (l) f 12; (m) f 13; (n) f 14; (o) f 15; (p) f 16; (q) f 17; (r) f 18; (s) f 19;
(t) f 20; (u) f 21; (v) f 22; (w) f 23.

Table 6. Comparison results with other algorithms using the benchmark function.

Fun Index

Algorithm

ACS Conventional
CS HS DE GO SS GA

f 1
BF 1.648× 10−13 3.416 × 10−5 2.280 × 10−3 5.594 × 100 1.361 × 10−3 4.905 × 10−9 4.447 × 10−6

MF 9.166× 10−12 1.054 × 10−4 1.067 × 10−1 9.928 × 101 1.799 × 10−1 7.454 × 10−9 1.038 × 10−4

Std 1.281× 10−11 6.157 × 10−5 1.134 × 10−1 9.165 × 101 3.703 × 10−1 1.465 × 10−9 1.437 × 10−4

f 2
BF 6.511 × 10−7 5.118 × 10−1 1.274 × 10−2 3.360 × 10−5 3.545 × 10−1 2.477 × 10−3 2.827 × 10−5

MF 6.843 × 10−5 1.493 × 100 1.764 × 10−2 2.358 × 10−1 5.134 × 100 1.053 × 100 1.537 × 10−4

Std 7.103 × 10−5 6.184 × 10−1 2.859 × 10−3 2.938 × 10−1 7.628 × 100 1.256 × 100 1.744 × 10−4

f 3
BF 7.314 × 10−9 4.392 × 100 1.081 × 103 3.612 × 102 5.409 × 102 7.628 × 10−1 6.919 × 102

MF 2.980 × 10−6 9.869 × 100 3.426 × 103 1.376 × 103 1.340 × 103 4.734 × 100 2.276 × 103

Std 4.618 × 10−6 4.004 × 100 1.137 × 103 8.058 × 102 9.813 × 102 4.891 × 100 9.368 × 102

f 4
BF 3.277 × 10−7 7.622 × 10−1 2.729 × 100 1.391 × 101 3.172 × 100 1.229 × 100 1.608 × 101

MF 7.729 × 10−5 2.682 × 100 3.733 × 100 2.569 × 101 7.949 × 100 4.523 × 100 2.468 × 101

Std 1.092 × 10−4 1.112 × 100 6.870 × 10−1 6.344 × 100 3.152 × 100 2.623 × 100 5.934 × 100

f 5
BF 6.970 × 10−8 2.489 × 101 2.604 × 101 2.021 × 103 2.778 × 101 2.231 × 101 3.549 × 100

MF 8.623 × 100 6.917 × 101 1.254 × 102 5.880 × 104 2.734 × 102 1.700 × 102 3.619 × 102

Std 1.240 × 101 6.094 × 101 6.013 × 101 8.939 × 104 4.733 × 102 3.320 × 102 6.670 × 102

Appl. Sci. 2023, 13, 6628 16 of 24

Table 6. Cont.

Fun Index

Algorithm

ACS Conventional
CS HS DE GO SS GA

f 6
BF 1.945× 10−12 2.620 × 10−5 7.714 × 10−4 3.110 × 10−1 1.644 × 10−3 4.494 × 10−9 6.886 × 10−6

MF 5.110× 10−11 1.157 × 10−4 1.028 × 10−1 1.757 × 102 2.023 × 10−1 7.604 × 10−9 1.080 × 10−4

Std 4.041× 10−11 6.755 × 10−5 1.153 × 10−1 2.134 × 102 3.159 × 10−1 1.469 × 10−9 1.668 × 10−4

f 7
BF 2.558 × 10−5 6.412 × 10−3 1.142 × 10−2 7.737 × 10−3 4.156 × 10−3 1.382 × 10−2 2.693 × 10−2

MF 5.264 × 10−4 2.555 × 10−2 3.257 × 10−2 5.536 × 10−2 9.534 × 10−3 4.395 × 10−2 9.956 × 10−2

Std 3.602 × 10−4 1.058 × 10−2 1.276 × 10−2 7.461 × 10−2 4.320 × 10−3 1.765 × 10−2 4.806 × 10−2

f 8
BF −1.134 × 104 −1.012 × 104 −1.049 × 104 −1.005 × 104 −8.594× 103 −8.758× 103 −1.872× 103

MF −6.895× 103 −7.660× 103 −9.614× 103 −9.172× 103 −7.288× 103 −7.467× 103 −1.803× 103

Std 1.848 × 103 1.311 × 103 3.569 × 102 4.755 × 102 6.386 × 102 7.267 × 102 3.793 × 101

f 9
BF 6.928× 10−14 1.393 × 101 3.545 × 10−3 2.327 × 100 4.287 × 101 2.786 × 101 1.095 × 101

MF 8.291 × 10−1 2.852 × 101 5.622 × 10−2 9.072 × 100 8.816 × 101 6.106 × 101 1.862 × 101

Std 4.541 × 100 1.209 × 101 1.904 × 10−1 3.387 × 100 3.199 × 101 1.822 × 101 5.276 × 100

f 10
BF 8.848 × 10−8 2.661 × 100 8.655 × 10−3 6.096 × 10−1 1.905 × 100 2.066 × 10−5 4.441 × 100

MF 4.896 × 10−7 3.946 × 100 1.314 × 10−1 2.219 × 100 3.729 × 100 2.011 × 100 1.948 × 101

Std 3.530 × 10−7 7.918 × 10−1 1.848 × 10−1 1.328 × 100 1.031 × 100 9.248 × 10−1 2.841 × 100

f 11
BF 1.682× 10−11 1.314 × 10−3 9.000 × 10−1 1.131 × 10−1 1.943 × 10−1 1.349 × 10−8 1.147 × 10−7

MF 2.466 × 10−4 1.826 × 10−2 1.022 × 100 1.653 × 100 4.813 × 10−1 6.895 × 10−3 2.937 × 10−2

Std 1.350 × 10−3 1.558 × 10−2 3.036 × 10−2 1.292 × 100 1.694 × 10−1 8.483 × 10−3 2.875 × 10−2

f 12
BF 1.718 × 10−8 5.955 × 100 2.056 × 10−4 5.004 × 10−1 1.786 × 100 5.058 × 10−1 9.760 × 10−7

MF 8.806 × 10−1 1.012 × 101 5.314 × 10−3 1.895 × 104 5.242 × 100 3.970 × 100 3.877 × 10−2

Std 1.538 × 100 3.799 × 100 1.873 × 10−2 4.376 × 104 2.275 × 100 3.220 × 100 7.596 × 10−2

f 13
BF 1.050× 10−10 5.023 × 10−4 9.494 × 10−3 4.811 × 100 8.914 × 10−1 3.471× 10−10 1.272 × 10−5

MF 1.099 × 10−3 1.440 × 100 7.514 × 10−2 5.142 × 104 1.427 × 101 5.096 × 10−3 8.399 × 10−3

Std 3.353 × 10−3 7.727 × 100 4.988 × 10−2 8.230 × 104 1.421 × 101 9.396 × 10−3 1.271 × 10−2

f 14
BF 9.980 × 10−1 9.980 × 10−1 9.980 × 10−1 9.980 × 10−1 9.980 × 10−1 9.980 × 10−1 9.980 × 10−1

MF 1.593 × 100 1.741 × 100 1.525 × 100 3.259 × 100 9.980 × 10−1 9.980 × 10−1 9.980 × 10−1

Std 8.869 × 10−1 6.328 × 10−1 1.504 × 100 3.227 × 100 3.337× 10−16 1.912× 10−16 8.485× 10−16

f 15
BF 3.075 × 10−4 3.075 × 10−4 7.054 × 10−4 4.929 × 10−4 4.461 × 10−4 3.430 × 10−4 3.437 × 10−4

MF 2.712 × 10−3 6.976 × 10−4 1.042 × 10−2 1.461 × 10−2 2.342 × 10−2 1.487 × 10−3 4.471 × 10−3

Std 6.258 × 10−3 4.163 × 10−4 9.187 × 10−3 2.585 × 10−2 3.703 × 10−2 3.573 × 10−3 7.153 × 10−3

f 16
BF −1.032 × 100 −1.032 × 100 −1.032 × 100 −1.032 × 100 −1.032 × 100 −1.032 × 100 −1.032 × 100

MF −1.032 × 100 −1.032 × 100 −1.032 × 100 −1.032 × 100 −1.032 × 100 −1.032 × 100 −1.032 × 100

Std 6.649× 10−16 6.775× 10−16 5.616 × 10−6 6.674× 10−16 1.422× 10−15 3.227× 10−15 1.763× 10−11

f 17
BF 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1

MF 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1

Std 0.000 × 100 0.000 × 100 5.302 × 10−6 2.739× 10−10 2.699× 10−15 1.174× 10−15 2.203× 10−10

f 18
BF 3.000 × 100 3.000 × 100 3.000 × 100 3.000 × 100 3.000 × 100 3.000 × 100 3.000 × 100

MF 3.000 × 100 3.000 × 100 8.194 × 100 3.030 × 100 1.110 × 101 3.000 × 100 3.900 × 100

Std 6.171× 10−16 1.588× 10−15 1.021 × 101 1.654 × 10−1 2.472 × 101 2.944× 10−14 4.930 × 100

f 19
BF −3.863 × 100 −3.863 × 100 −3.863 × 100 −3.854 × 100 −3.846 × 100 −3.863 × 100 −3.863 × 100

MF −3.862 × 100 −3.863 × 100 −3.811 × 100 −3.172 × 100 −2.962 × 100 −3.863 × 100 −3.418 × 100

Std 4.462 × 10−3 1.766 × 10−6 1.961 × 10−1 7.050 × 10−1 7.169 × 10−1 1.685 × 10−9 7.426 × 10−1

f 20
BF −3.322 × 100 −3.322 × 100 −3.322 × 100 −3.142 × 100 −3.094 × 100 −3.322 × 100 −3.317 × 100

MF −3.273 × 100 −3.275 × 100 −3.286 × 100 −2.146 × 100 −1.844 × 100 −3.200 × 100 −2.774 × 100

Std 8.411 × 10−2 6.329 × 10−2 5.541 × 10−2 7.468 × 10−1 8.682 × 10−1 2.442 × 10−2 6.166 × 10−1

f 21
BF −9.999 × 100 −9.938 × 100 −1.015 × 101 −9.006 × 100 −1.015 × 101 −1.015 × 101 −1.015 × 101

MF −9.528 × 100 −8.965 × 100 −5.059 × 100 −2.017 × 100 −4.425 × 100 −6.713 × 100 −4.262 × 100

Std 7.279 × 10−1 9.988 × 10−1 3.442 × 100 1.845 × 100 3.578 × 100 3.194 × 100 2.889 × 100

f 22
BF −1.000 × 101 −9.671 × 100 −1.040 × 101 −8.953 × 100 −1.040 × 101 −1.040 × 101 −1.015 × 101

MF −9.108 × 100 −8.100 × 100 −5.100 × 100 −2.922 × 100 −4.303 × 100 −8.646 × 100 −4.803 × 100

Std 1.946 × 100 1.258 × 100 3.054 × 100 1.835 × 100 2.878 × 100 3.042 × 100 3.071 × 100

f 23
BF −9.999 × 100 −9.236 × 100 −1.054 × 101 −1.053 × 101 −1.054 × 101 −1.054 × 101 −1.015 × 101

MF −9.850 × 100 −6.796 × 100 −6.058 × 100 −5.512 × 100 −4.306 × 100 −8.093 × 100 −5.809 × 100

Std 2.426 × 10−1 1.460 × 100 3.753 × 100 3.357 × 100 2.964 × 100 3.121 × 100 3.636 × 100

Ranking BF 1.65 3.70 3.83 4.74 4.43 2.70 3.30
MF 1.78 3.39 3.52 5.57 5.22 2.96 3.96

4.2. Engineering Problems

Table 7 is a parameter of the ACS algorithm used to solve the numerical problem.
The engineering problem was repeatedly interpreted 20 times. The fitness of the engineering
problem was calculated as shown in Equation (12). Here, f (x), P(x), and x indicate a result

Appl. Sci. 2023, 13, 6628 17 of 24

value, a penalty value, and a design variable defined in each problem, respectively. P(x)
can be defined as in Equation (13). Here, np, pi represent the number of constraints and a
value assigned by the constraint, respectively. If the constraint is met, then pi is 0, and if
the constraint is not met, then a penalty of 104 is imposed.

Table 7. Parameters for engineering problems.

Algorithm Parameters

ACS tmax = 200, N = 50, APmax = 0.4, APmin = 0.01, f l = 2.0, FAR = 0.4
Conventional CS tmax = 200, N = 50, AP = 0.1, f l = 2.0

F(x) = f (x)× P(x) (12)

P(x) = (1 + 10×
np

∑
1

pi)
2 (13)

4.2.1. Pressure Vessel Design (PVD) Problem

This problem posed here is to design a cylindrical container with both ends blocked by
a hemispherical head as shown in Figure 9 in such a way as to minimize material, forming,
and welding costs. The design variables are Ts (shell thickness; x1), Th (head thickness; x2),
R (inner radius; x3), and L (container length; x4), and the range that the design variables can
have is given by Equation (14). The cost minimization problem for cylindrical containers
is expressed as an equation in Equation (15). In addition, each design variable has the
constraint presented by Equation (16).

Figure 9. PVD problem.

0.0 ≤ x1 or x2 ≤ 99.0

10.0 ≤ x3 or x4 ≤ 200.0
(14)

min f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (15)

Subject to : g1(x) = −x1 + 0.0193x3 ≤ 0

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −πx2
3x4 −

4
3

πx3
3 + 1, 296, 000 ≤ 0

g4(x) = −x4 + 240 ≤ 0

(16)

Table 8 compares the results of the ACS algorithm with those of previous stud-
ies [24–27]. The ACS algorithm derived the smallest cost of 5885.333 (design variables were
0.7782, 0.3846, 40.3196, 200.0), and all of the constraints were satisfied. The ACS algorithm
reduced the cost by about 0.08% compared to the conventional CS algorithm and by 6.85%
compared to Coello’s results.

Appl. Sci. 2023, 13, 6628 18 of 24

Table 8. Results of PVD problem.

Design
Coello [24] Deb [25]

Kannan & Sandgren This Paper

Variables Kramer [26] [27] Conventional CS ACS

x1 0.8125 0.9375 1.125 1.125 0.7783 0.7782
x2 0.4375 0.5000 0.625 0.625 0.3860 0.3846
x3 40.3239 48.3290 58.291 47.700 40.3211 40.3196
x4 2000.0000 112.6790 43.690 117.701 200.0000 200.0000

g1(x) −0.0343 −0.0048 0.0000 −0.2044 −7.2388 × 10−5 −3.8296 × 10−9

g2(x) −0.0528 −0.0389 −0.0689 −0.1699 −0.014 −6.4738 × 10−9

g3(x) −27.1058 −3652.8768 −21.2201 54.2260 −1.0402 × 102 −3.4597 × 10−4

g4(x) −40.0000 −127.3210 −196.3100 −122.2990 −40.0000 −40.0000

F(x) 6288.7445 6410.3811 7198.0428 8,129.1036 5890.288 5885.333

4.2.2. Welded Beam Design Problem

This problem posed here is to minimize the costs of welding and materials for the
welding of two beams, as shown in Figure 10. h (welding height; x1), l (welding length; x2),
t (thickness of beam 2; x3), and b (width of beam 2; x4) are design variables, and the range
that the design variables can have is given by Equation (17). The welding cost minimization
problem is expressed as an equation in Equation (18). Here, the load (P) applied to Beam 2
is 6000 lb, the length (L) of Beam 2 is 14.0 inches, the modulus of elasticity (E) is 30× 106 psi,
the modulus of shear elasticity (G) is 12× 106 psi, the maximum shear stress (τmax) is 13, 600
psi, maximum stress (σmax) is 30, 000 psi, and the maximum displacement (δmax) is 0.25
inches. In addition, each design variable has the constraints provided by Equation (19).

Figure 10. Welded beam design problem.

0.1 ≤ x1 or x4 ≤ 2.0

0.1 ≤ x2 or x3 ≤ 10.0
(17)

min f (x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) (18)

Subject to : g1(x) = τ(x)− τmax ≤ 0

g2(x) = σ(x)− σmax ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

g5(x) = 0.125− x1 ≤ 0

g6(x) = δ(x)− δmax ≤ 0

g7(x) = P− Pc(x) ≤ 0

(19)

Table 9 compares the results of the ACS algorithm with those of previous stud-
ies [24,28–30]. The ACS algorithm derived the smallest cost of 1.7254 (design variables
were 0.2057, 3.4747, 9.0365, and 0.2057), and all of the constraints were satisfied. The ACS
algorithm reduced the cost by about 0.23% compared to the conventional CS algorithm
and by 1.33% compared to a study by Coello [24].

Appl. Sci. 2023, 13, 6628 19 of 24

Table 9. Results of Welded beam design problem.

Design
Coello [24] Deb [28] Siddall [29]

Ragsdell & This Paper

Variables Phillips [30] Conventional CS ACS

x1 0.2088 0.2489 0.2444 0.2455 0.2060 0.2057
x2 3.4205 6.1730 6.2189 6.1960 3.4724 3.4747
x3 8.9975 8.1789 8.2915 8.2730 9.0174 9.0365
x4 0.2100 −0.2533 0.2444 0.2455 0.2067 0.2057

g1(x) −0.3378 −5758.6038 −5743.5020 −5743.8265 −1.2036 × 101 −3.871 × 10−1

g2(x) −353.9026 −255.5769 −4.0152 −4.7151 −1.05166 × 101 −6.9459 × 10−9

g3(x) −0.0012 −0.0044 0.0000 0.0000 −6.8759 × 10−4 −2.1207 × 10−5

g4(x) −3.4119 −2.9829 −3.0226 −3.0203 −3.4289 −3.4326
g5(x) −0.0838 −0.1239 −0.1194 −0.1205 −0.0810 −0.0807
g6(x) −0.2356 −0.2342 −0.2342 −0.2342 −0.2355 −0.2355
g7(x) −363.2324 −4465.2709 −3490.4694 −3604.2750 −75.0733 −0.4201

F(x) 1.7483 2.4331 2.3815 2.3859 1.7294 1.7254

4.2.3. Weight of a Tension/Compression Spring Problem

This problem presented here is to minimize the weight of a spring that satisfies the
constraints when a load is applied to said spring, as shown in Figure 11. The design
variables are d (spring thickness; x1), D (spring diameter; x2), and N (spring coil count;
x3), and the range that the design variables can have is given by Equation (20). The spring
weight minimization problem is expressed as an equation by Equation (21). In addition,
each design variable has the constraints provided by Equation (22).

Figure 11. Weight of a tension/compression spring problem.

0.05 ≤ x1 ≤ 2.00

0.25 ≤ x2 ≤ 1.30

2.00 ≤ x3 ≤ 15.0

(20)

min f (x) = (N + 2)Dd2 (21)

Subject to : g1(x) = 1− D3N
71, 785d4 ≤ 0

g2(x) =
4D2 − dD

12, 566(Dd3 − d4)
+

1
5108d2 − 1 ≤ 0

g3(x) = 1− 140.45d
D2N

≤ 0

g4(x) =
D + d

1.5
− 1 ≤ 0

(22)

Table 10 shows the results of the ACS algorithm and those of other researchers.
The ACS algorithm derived the smallest spring weight of 1.2665 × 10−2 (the design vari-
ables were 0.0517, 0.3578, and 11.2240), and all of the constraints were satisfied. The ACS
algorithm reduced the weight by about 0.03% compared to the conventional CS algorithm
and by 0.31% compared toa study by Coello [24].

Appl. Sci. 2023, 13, 6628 20 of 24

Table 10. Results of weight of a spring problem.

Design
Coello [24] Arora [31] Belegundu [32]

This Paper

Variables Conventional CS ACS

x1 0.0515 0.0534 0.0500 0.0520 0.0517
x2 0.3517 0.3992 0.3159 0.3642 0.3578
x3 11.6322 9.1854 14.2500 10.8626 11.2240

g1(x) −0.00218 0.00002 −0.00001 −4.5997 × 10−5 −20183 × 10−11

g2(x) −0.00011 −0.00002 −0.00378 −7.9229 × 10−5 −2.6946 × 10−10

g3(x) −4.02632 −4.12383 −3.93830 −4.0677 −4.0560
g4(x) −4.02632 −0.69828 −0.75607 −0.7225 −0.7270

F(x) 1.2704 × 10−2 1.2730 × 10−2 1.2833 × 10−2 1.2669 × 10−2 1.2665 × 10−2

4.2.4. Weight of a Three-Bar Truss Problem

This problem aims to find the minimum truss weight that satisfies the constraints
when a load (P) is applied to a truss structure of three members, such as in Figure 12.
The design variables are A1 (cross-sectional area of Member 1; x1 = x3) and A2 (cross-
sectional area of Member 2; x2), and the range that the design variables can have is given
by Equation (23). The three-bar truss weight minimization problem is expressed as an
equation by Equation (24). Here, the distance (L) of the node is 100 cm, the load (P) is
2 kN/cm2, and the maximum stress (σmax) is 2 kN/cm2. In addition, each design variable
has the constraints provided in Equation (25). The maximum number of generations (tmax)
was set at 20 in this problem.

Figure 12. Weight of a three-bar truss problem.

0.0 ≤ x1 or x2 ≤ 1.0 (23)

min f (x) = (2
√

2x1 + x2)l (24)

Subject to : g1(x) =
√

2x1 + x2√
2x2

1 + 2x1x2
P− σ ≤ 0

g2(x) =
x2√

2x2
1 + 2x1x2

P− σ ≤ 0

g3(x) =
1√

2x2 + x1
P− σ ≤ 0

(25)

Table 11 shows the results of the ACS algorithm and those of a previous study [14].
Here, SoC, MB, and DSS-MDE refer to the society and civilization (SoC) algorithm, the mine
blast (MB) algorithm, and the dynamic stochastic selection with multimember differential
evolution (DSS-MDE) algorithm. The ACS algorithm determined the weight of the three-
bar truss structure to be 263.895843 (the design variables were 0.7887 and 0.4081), and all of

Appl. Sci. 2023, 13, 6628 21 of 24

the constraints were satisfied. The result of the ACS algorithm was lighter than the results
of the conventional CS algorithm and Askarzadeh.

Table 11. Results of weight of a three-bar truss problem.

Design Askarzadeh [14] This Paper

Variables SoC MB DSS-MDE Conventional CS ACS

x1 - - - 0.7887 0.7887
x2 - - - 0.4081 0.4081

g1(x) - - - −1.7977 × 10−9 −3.9746 × 10−14

g2(x) - - - −1.4642 −1.4643
g3(x) - - - −0.5358 −0.5357

F(x) 263.895846 263.895852 263.895849 263.895844 263.895843

4.2.5. Stepped Cantilever Beam Design Problem

The problem posed here is to calculate the width of a stepped cantilever beam as
shown in Figure 13 and minimize its weight. The λ1−5 (width) of the five-cantilever beam
is a design variable (x1−5), and the range that the design variable can have is provided
by Equation (26). Equation (27) is an expression of the stepped cantilever beam design
problem, and Equation (28) is a constraint of the stepped cantilever beam design problem.

Figure 13. Weight of a three-bar truss problem.

0.01 ≤ x1 or x2 or x3 or x4 or x5 ≤ 100.0 (26)

min f (x) = 0.0624
5

∑
i=1

xi (27)

Subject to : g1(x) =
61
x3

1
+

37
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≤ 0 (28)

Table 12 shows the results of the ACS algorithm and those of Hijjawi et al. [33]. Here,
AOACS and HHO stand for the hybrid algorithm of the arithmetical optimization algorithm
and cuckoo search and for Harris hawks optimization, respectively. The ACS algorithm
determined a minimum weight of the step cantilever beam of 1.3418 and satisfied the
constraints. The ACS algorithm showed better results than the conventional CS algorithm.

Appl. Sci. 2023, 13, 6628 22 of 24

Table 12. Results of the stepped cantilever beam design problem.

Design Hijjawi et al. [33] This Paper

Variables AOACS HHO PSO Conventional CS ACS

x1 6.01 5.13 6.05 7.1816 6.0064
x2 5.31 5.62 5.26 4.5530 5.3169
x3 4.49 5.10 4.51 4.5403 4.3240
x4 3.50 3.93 3.46 3.3118 3.6624
x5 2.15 2.32 2.19 2.7603 2.1929

g1(x) 0.0019 −0.0011 0.0010 0.0000 0.0000

F(x) 1.34 1.38 1.34 1.3944 1.3418

5. Conclusions

This paper proposed the ACS algorithm, which improves Step 3 of the conventional
CS algorithm. The ACS algorithm added three methods to the conventional CS algorithm.
First, unlike conventional CS algorithms that use fixed-value AP, we proposed the use of
dynamic AP, which decreases nonlinearly with the number of generations. This change
improved the algorithm’s exploration performance. Second, we proposed an expression
that follows the crow in the best position rather than following a randomly adopted crow,
and this improved the algorithm’s exploitation performance. Third, we proposed a local
search based on the adopted value rather than a global search of the entire area at later
generations. The convergence performance according to the value change of APmax and
FAR—parameters added to the ACS algorithm—was compared, and it was verified that
the convergence performance was the best when the APmax was in the range of 0.4–0.6 and
the FAR was in the range of 0.2–0.4. Finally, the ACS algorithm was applied to benchmark
functions and four engineering problems in order to confirm that the convergence speed
was the fastest and the best convergence performance compared to the results of other
metaheuristic algorithms.

In future work, if the ACS algorithm is applied to various large-scale or real-scale
engineering problems, it is believed that the optimal solutions for a variety of engineering
problems would be obtained.

Author Contributions: Conceptualization, D.L. and J.K.; methodology, D.L.; programming, D.L. and
S.S.; validation, D.L. and S.S.; formal analysis, D.L. and J.K.; investigation, D.L. and J.K.; data curation,
D.L. and S.S.; writing—original draft preparation, D.L., S.S. and S.L.; visualization, D.L. and J.K.;
supervision, D.L.; project administration, S.L.; funding acquisition, S.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019R1A2C2010693).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, K.S.; Geem, Z.W.; Lee, S.h.; Bae, K.W. The harmony search heuristic algorithm for discrete structural optimization. Eng.

Optim. 2005, 37, 663–684. [CrossRef]
2. Beheshti, Z.; Shamsuddin, S.M.H. A review of population-based meta-heuristic algorithms. Int. J. Adv. Soft Comput. Appl 2013,

5, 1–35.
3. Kumar, A.; Bawa, S. A comparative review of meta-heuristic approaches to optimize the SLA violation costs for dynamic

execution of cloud services. Soft Comput. 2020, 24, 3909–3922. [CrossRef]

http://doi.org/10.1080/03052150500211895
http://dx.doi.org/10.1007/s00500-019-04155-4

Appl. Sci. 2023, 13, 6628 23 of 24

4. Agrawal, P.; Abutarboush, H.F.; Ganesh, T.; Mohamed, A.W. Metaheuristic algorithms on feature selection: A survey of one
decade of research (2009–2019). IEEE Access 2021, 9, 26766–26791. [CrossRef]

5. Meraihi, Y.; Gabis, A.B.; Ramdane-Cherif, A.; Acheli, D. A comprehensive survey of Crow Search Algorithm and its applications.
Artif. Intell. Rev. 2021, 54, 2669–2716. [CrossRef]

6. Kumeshan, R.; Saha, A.K. A review of swarm-based metaheuristic optimization techniques and their application to doubly fed
induction generator. Heliyon 2022, 8, e10956.

7. Sharma, V.; Tripathi, A.K. A systematic review of meta-heuristic algorithms in IoT based application. Array 2022, 14, 100164.
[CrossRef]

8. Tang, J.; Liu, G.; Pan, Q. A review on representative swarm intelligence algorithms for solving optimization problems: Applica-
tions and trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [CrossRef]

9. Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv.
(CSUR) 2013, 45, 1–33. [CrossRef]

10. Makas, H.; YUMUŞAK, N. Balancing exploration and exploitation by using sequential execution cooperation between artificial
bee colony and migrating birds optimization algorithms. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 4935–4956. [CrossRef]

11. Morales-Castañeda, B.; Zaldivar, D.; Cuevas, E.; Fausto, F.; Rodríguez, A. A better balance in metaheuristic algorithms: Does it
exist? Swarm Evol. Comput. 2020, 54, 100671. [CrossRef]

12. Tilahun, S.L. Balancing the degree of exploration and exploitation of swarm intelligence using parallel computing. Int. J. Artif.
Intell. Tools 2019, 28, 1950014. [CrossRef]

13. Yang, X.S.; Deb, S.; Fong, S.; He, X.; Zhao, Y.X. From swarm intelligence to metaheuristics: Nature-inspired optimization
algorithms. Computer 2016, 49, 52–59. [CrossRef]

14. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm.
Comput. Struct. 2016, 169, 1–12. [CrossRef]

15. Hussien, A.G.; Amin, M.; Wang, M.; Liang, G.; Alsanad, A.; Gumaei, A.; Chen, H. Crow search algorithm: Theory, recent
advances, and applications. IEEE Access 2020, 8, 173548–173565. [CrossRef]

16. Islam, J.; Vasant, P.M.; Negash, B.M.; Watada, J. A modified crow search algorithm with niching technique for numerical
optimization. In Proceedings of the 2019 IEEE Student Conference on Research and Development (SCOReD), Bandar Seri
Iskandar, Malaysia, 15–17 October 2019; pp. 170–175.

17. Mohammadi, F.; Abdi, H. A modified crow search algorithm (MCSA) for solving economic load dispatch problem. Appl. Soft
Comput. 2018, 71, 51–65. [CrossRef]

18. Díaz, P.; Pérez-Cisneros, M.; Cuevas, E.; Avalos, O.; Gálvez, J.; Hinojosa, S.; Zaldivar, D. An improved crow search algorithm
applied to energy problems. Energies 2018, 11, 571. [CrossRef]

19. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. CCSA: Conscious neighborhood-based crow search algorithm for solving
global optimization problems. Appl. Soft Comput. 2019, 85, 105583. [CrossRef]

20. Javidi, A.; Salajegheh, E.; Salajegheh, J. Enhanced crow search algorithm for optimum design of structures. Appl. Soft Comput.
2019, 77, 274–289. [CrossRef]

21. Wu, H.; Wu, P.; Xu, K.; Li, F. Finite element model updating using crow search algorithm with Levy flight. Int. J. Numer. Methods
Eng. 2020, 121, 2916–2928. [CrossRef]

22. Necira, A.; Naimi, D.; Salhi, A.; Salhi, S.; Menani, S. Dynamic crow search algorithm based on adaptive parameters for large-scale
global optimization. Evol. Intell. 2022, 15, 2153–2169. [CrossRef]

23. Huang, Y.; Zhang, J.; Wei, W.; Qin, T.; Fan, Y.; Luo, X.; Yang, J. Research on coverage optimization in a WSN based on an improved
COOT bird algorithm. Sensors 2022, 22, 3383. [CrossRef] [PubMed]

24. Coello, C.A.C. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41, 113–127.
[CrossRef]

25. Deb, K. GeneAS: A Robust Optimal Design Technique for Mechanical Component Design. In Evolutionary Algorithms in
Engineering Applications; Springer: Cham, Switzerland, 1997; pp. 497–514.

26. Kannan, B.; Kramer, S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization
and its applications to mechanical design. In Proceedings of the International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference. American Society of Mechanical Engineers, Albuquerque, NM, USA,
19–22 September 1993; Volume 97690, pp. 103–112.

27. Sandgren, E. Nonlinear integer and discrete programming in mechanical design. In Proceedings of the International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference, Southampton, UK, 3–15 April
1988; Volume 26584, pp. 95–105.

28. Deb, K. Optimal design of a welded beam via genetic algorithms. AIAA J. 1991, 29, 2013–2015. [CrossRef]
29. Siddall, J.N. Analytical Decision-Making in Engineering Design; Prentice Hall: Hoboken, NJ, USA, 1972.
30. Ragsdell, K.; Phillips, D. Optimal design of a class of welded structures using geometric programming. ASME J. Eng. Ind. 1976,

98, 1021–1025. [CrossRef]
31. Arora, J. Introduction to Optimum Design; McGraw-Hili: New York, NY, USA, 1989.

http://dx.doi.org/10.1109/ACCESS.2021.3056407
http://dx.doi.org/10.1007/s10462-020-09911-9
http://dx.doi.org/10.1016/j.array.2022.100164
http://dx.doi.org/10.1109/JAS.2021.1004129
http://dx.doi.org/10.1145/2480741.2480752
http://dx.doi.org/10.3906/elk-1404-45
http://dx.doi.org/10.1016/j.swevo.2020.100671
http://dx.doi.org/10.1142/S0218213019500143
http://dx.doi.org/10.1109/MC.2016.292
http://dx.doi.org/10.1016/j.compstruc.2016.03.001
http://dx.doi.org/10.1109/ACCESS.2020.3024108
http://dx.doi.org/10.1016/j.asoc.2018.06.040
http://dx.doi.org/10.3390/en11030571
http://dx.doi.org/10.1016/j.asoc.2019.105583
http://dx.doi.org/10.1016/j.asoc.2019.01.026
http://dx.doi.org/10.1002/nme.6338
http://dx.doi.org/10.1007/s12065-021-00628-4
http://dx.doi.org/10.3390/s22093383
http://www.ncbi.nlm.nih.gov/pubmed/35591071
http://dx.doi.org/10.1016/S0166-3615(99)00046-9
http://dx.doi.org/10.2514/3.10834
http://dx.doi.org/10.1115/1.3438995

Appl. Sci. 2023, 13, 6628 24 of 24

32. Belegundu, A.D. A Study of Matematical Programming Methods for Methods for Structural Optimization. Ph.D. Thesis, The
University of Iowa, Iowa City, IA, USA, 1982.

33. Hijjawi, M.; Alshinwan, M.; Khashan, O.A.; Alshdaifat, M.; Almanaseer, W.; Alomoush, W.; Garg, H.; Abualigah, L. Accelerated
Arithmetic Optimization Algorithm by Cuckoo Search for Solving Engineering Design Problems. Processes 2023, 11, 1380.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/pr11051380

	Introduction
	Related Work
	Conventional CS Algorithm
	Modified CS Algorithm
	Dynamic CS Algorithm

	Proposed Method
	Advanced CS Algorithm
	Characteristic of the ACS Algorithm
	DynamicAP
	FAR

	Numerical Examples
	Benchmark Function Problems
	Engineering Problems
	Pressure Vessel Design (PVD) Problem
	Welded Beam Design Problem
	Weight of a Tension/Compression Spring Problem
	Weight of a Three-Bar Truss Problem
	Stepped Cantilever Beam Design Problem

	Conclusions
	References

