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Abstract: Blasthole detection is crucial but challenging in tedious underground mining processes,
given the diversity of surrounding rock backgrounds and uneven light intensity. However, existing
algorithms have limitations in extracting image features and identifying differently sized objects.
This study proposes a cascade-network-based blasthole detection method. The proposed method
includes a blasthole feature extract transformation (BFET) module and a blasthole detection (BD)
module. Firstly, we constructed the BFET module on the improved Cycle Generative Adversarial
Network (CycleGAN) by multi-scale feature fusion. Then, we fused the convolution features of
the generators in CycleGAN to obtain the enhanced feature map of the blasthole images. Secondly,
the BD module was cascaded with the BFET module to accomplish the task of detecting blastholes.
Results indicated that the detection accuracy of the blasthole image was significantly improved by
strengthening the contrast of the image and suppressing over-exposure. The experimental results
also showed that the proposed method enhanced the contrast of the image and could improve the
accuracy of blasthole detection in real time. Compared with the YOLOv7 and CycleGAN+YOLOv7
methods, the detection accuracy of our method was improved by 5.34% and 2.38%, respectively.

Keywords: blasthole detection; object detection; feature extraction; Generative Adversarial Network

1. Introduction

The precise detection of blastholes in the roadway working face has become an in-
evitable trend in the sustainable development of future mining construction [1]. Currently,
blasting operations still rely on manual charging or the assistance of mechanical arms
operated by experienced operators. Over-reliance on manual operation makes it difficult to
ensure the effectiveness of blasting and also poses a threat to the safety of workers. Image
processing technology can help the mechanical arm to accurately detect, locate, and pad
the blastholes on roadway working faces, which ensures the safety of blasting. Therefore,
designing and developing an intelligent detection and recognition charging arm is crucial
to achieve the intelligent padding of roadway working faces [2].

Charging explosives is an important part of engineering mining [3], and accurately
conveying explosives to the required blasthole location is a critical link in the development
of an intelligent charging system. The main objectives of this work were focused on
assisting blasthole detection for charge blasting systems. Unlike other object detection
tasks, the detection of blastholes on roadway working faces is influenced by many factors,
especially the illumination intensity and geological conditions. Although some progress
has been made in the blasthole image detection algorithm of roadway working faces, it is
prone to problems such as the insufficient detection of low-illumination blasthole images.
Enhancing the features of blastholes images in complex environments can effectively
improve the performance of object detection networks applied to blasthole detection in
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roadway working faces. Therefore, this paper proposes a method to enhance the contrast
of images by enhancing the image’s blasthole features, according to the characteristics of
the blasthole images.

Traditional detection algorithms struggle to accurately detect blastholes in roadway
working faces due to interference from surrounding rock, low illumination and coal dust.
To improve the accuracy of blasthole detection, this paper proposes a cascade detection
network called the feature extract transformation network for blasthole detection (BFET-
BD). The contributions of this paper mainly include the following.

(1) To reduce the impact of the surrounding rock on blasthole images and generate
high-contrast blasthole feature maps, the blasthole feature extract transformation (BFET)
module and the blastholes detection (BD) module are proposed. The BFET module utilizes
features from different convolutional layers in CycleGAN for multi-scale feature fusion to
generate enhanced feature maps. The BD module is built on existing single-scale object
detection networks. The output feature map of the BFET module is used as input to the BD
module to form an end-to-end cascaded blasthole detection network.

(2) To address the interference issue arising from low-illumination conditions, this
paper suggests utilizing multi-scale channels rather than three-channel images. This
approach enhances the features of blastholes in low-illumination environments, thereby
improving the detection accuracy and reducing false detection rates.

(3) To address the lack of available blasthole datasets, this study collects a large number
of blasthole images from various roadway working faces and establishes the CUMTB-BI
dataset. Model training and testing are conducted on this dataset, providing a foundation
for the verification of the proposed blasthole detection network.

The remainder of this paper is organized as follows: the recent literature is reviewed in
Section 2; Section 3 describes the proposed method in detail; Section 4 provides a detailed
account of the dataset collection and training process; Section 5 reports the experiments
and results; and Section 6 concludes the work.

2. Related Work

Numerous researchers are focused on the preprocessing stage of image detection. The
research is briefly reviewed in the following section.

With the emergence of generative networks such as the Pixel Convolutional Neural
Network (PixelCNN) [4], Variational Autoencoder (VAE) [5] and Generative Adversarial
Network (GAN) [6], data generative networks based on deep learning are gradually being
widely used in image generation. Among them, the GAN network can achieve equivalent
detection performance with larger objects by mapping low-resolution small object features
into high-resolution equivalent features. Many research directions and applications have
been generated through the fusion of deep learning methods with GAN. Chen et al. [7]
proposed a GAN framework based on the fully connected (FC) layer. However, the
framework shows high performance only on a few types of data distributions. In view of
the instability of the GAN network, which cannot be well adapted to the convolutional
neural network, the DCGAN network [8] was proposed. The DCGAN is suitable for
processing image data and does not easily overfit, but it is difficult to extract and generate
data. To address the issue that DCGAN is unable to extract data, Odena et al. [9] proposed
the Semi-Supervised Generative Adversarial Network (SGAN). The network fuses multiple
types of global context information of different sizes by pyramid pooling. The method
uses an alternating strategy of maximum pooling and average pooling to enhance the
detection of small objects. The PGAN network was proposed by Li et al. [10], and it
uses a continuously updated generator network and discriminator network to generate
ultra-high-resolution images of small objects to improve the detection performance. The
generator learns the residual representation from the shallow detail features and attempts
to deceive two well-trained discriminators. It enhances the representation of small objects
to approximate large objects, thereby improving the detection performance of small objects.
A small object detection algorithm, SOD-MTGAN, based on GAN multi-task combination,
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was proposed by Bai et al. [11]. The generator network upsamples the input low-resolution
images to restore as much detail as possible. Then, high-resolution images are reconstructed
for more accurate detection.

In actual projects, the problem of insufficient sample sizes still exists. In response to
this problem, Sixt et al. [12] proposed RenderGAN. The network uses adversarial learning
to generate more images for the purpose of data augmentation. To enhance the robustness
of the detection model, Wang et al. [13] used the method of automatically generating sam-
ples containing occlusion and deformation features to improve the detection performance
of non-obvious objects. Deng et al. [14] proposed an extended feature pyramid network.
The network generates ultra-high-resolution pyramidal layers through the feature texture
module, thus enriching the feature information of small objects. Seonjae Kim et al. [15]
proposed two lightweight neural networks with a hybrid residual and dense connection
structure. These methods can significantly reduce the inference speed and improve the
super-resolution performance. Li et al. [16] proposed a lightweight convolutional neural
network called WearNet. This network greatly reduces the number of layers and param-
eters, resulting in a smaller model with a faster detection speed. On the basis of these
algorithms, some progress has been made in the detection of blasthole images on roadway
working faces [17]. W Zhang [18] proposed an algorithm based on ResNet-51 to obtain
blasthole parameters and the detection of blastholes. The method integrates two-stage and
three-stage training but has a longer training time, and the information from blasthole im-
ages with low-light conditions and low contrast is insufficient. The improved Faster-RCNN
algorithm was proposed by Y Zhang [19]. The algorithm improves the detection speed of
blastholes, but it is prone to missed detection and false detection.

3. The Research Method

In this section, a cascade network structure, BFET-BD, is proposed to enhance the
blasthole features and improve the detection accuracy of blastholes. BFET-BD consists of
two modules: a blasthole feature extract transformation module (BFET) and a blasthole
detection module (BD). The feature extract transformation module uses the improved
CycleGAN [20] as the basic network to learn from the input of unpaired blasthole images.
The BFET module realizes image feature extraction under high-light conditions. The BD
module is mainly constructed based on the existing single-scale object detection network.
The output feature maps of the BFET module are used as the input of the BD module to
form an end-to-end cascaded blasthole detection network.

3.1. Proposed BFET-BD Network

CycleGAN network can be trained using unpaired images as input. The model
includes generators and discriminators. The training process draws on the ideas of game
theory to maximize the self-interest and advantage of the generator and discriminator as
much as possible. Through continuous training of the adversarial network, the generator
outputs as many “real” image data as possible. The discriminator distinguishes as much
as possible between the real image and the generated image. Models are continuously
improved in terms of their respective capabilities through adversarial learning. Eventually,
the model reaches a Nash equilibrium state and the training is terminated. At this point,
the generator outputs the optimal result. The discriminator tends to judge the generated
data correctly at 0.5. However, a disadvantage of the CycleGAN network is that it maps
images under low-light conditions to images under high-light conditions and cannot learn
the precise locations of blastholes. Therefore, we conduct an in-depth exploration and
research to achieve global feature extract transformation from low to strong illumination.
We propose a BFET-BD cascade network, in which the BFET module is constructed on the
improved CycleGAN network, and the BD module is composed of a detection network.
It overcomes the shortcomings of CycleGAN and improves the detection accuracy in
blasthole detection. Different from other training methods, we train the BFET module
and BD module together, which can guide the network optimization and highlight the
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blasthole features. The following Figure 1 shows the cascade structure of the proposed
BFET-BD network, which is composed of two parts (A) and (B). (A) is the BFET module,
which translates the image from low-light to high-light and fuses these into multi-scale
feature maps to enhance the features of the blastholes. The enhanced feature maps are used
as input to the BD module for the detection of the blasthole images.

Figure 1. Network structure model architecture. (A) is the BFET module to translate the image from
low-light to hight-light and enhance the features of the blastholes. Features f1– f3 are the encoded
feature maps to extracted low-light image features from x; f5– f7 are the decoded feature maps that
tranlate the low-light features into hight-light features. (B) is the BD module, which is used to detect
the feature maps generated by (A).

3.2. Blasthole Feature Extract-Transformation (BFET) Module

The proposed BFET module is based on the improved CycleGAN network. Suppose
that we have the feature map fi at layer i with dimension hi × ωi × ci, i ∈ N. Let Ei be
a generic function that acts as the basic generator block. It consists of convolution layers
followed by instance normalization layers and activation functions. Ei

encode is the operation
of encoding the input image as a multi-scale feature map. Among them,

Ei
encode = fi−1 7→ fi,

where fi = Rhi×ωi×2b+1+i
, and hi = ωi = N/2i−1; i = 1, 2, 3.

In the formula, f0 is the input of a low-light image with a size of 640 × 640. The
feature map Rhi×ωi×ci is the number of channels in the intermediate activation of the
generator, c = 2b+1+i, b=4. Eb+i

decode is the operation block decoding the translated strong-
light image features into the output restored image. The output image features for the final
strong-illumination conditions are img_ f ake.

Eb+i
decode = fb+i−1 7→ fb+i,

where fi = Rhi×ωi×22b+1+i
, and hi = ωi = N/2b+i−1; i = 1, 2, 3.
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The multi-scale feature fusion of the feature map f1– f8 and the original input image
may produce redundancy and confounding effects of high-dimensional feature dimen-
sions [21]. To solve this problem, before we fuse the feature maps of different sizes, each
feature map is first passed through a convolution kernel to reduce the blending effect. In
this way, we reduce the feature dimensions, and the features of different sizes are adjusted
to the same size. The image size of 320 × 320 is chosen for the input image to reduce the
network complexity.

3.3. Blasthole Detection (BD) Module

The proposed BD module extracts the enhanced fused image features. The main
feature of this module is that after fusing the image features under low- and high-light
conditions, a single-cycle network is formed by cascading the input feature images. The
fused feature image extracted by the BFET module is directly used as the input to the BD
module, instead of the RGB image. The entire network realizes end-to-end training and
detection, reducing the number of network layers and the computing time. As can be
seen from Figure 1, part (B) is the BD module, which can be based on the YOLOv3 [22],
SSD [23], RetinaNet [24], YOLOv5 [25], YOLOv7 [26], or YOLOv7-tiny networks. As shown
in Figure 2, we take the YOLOv7-related framework into this module for detection, with
640 × 640 RGB images as the input. This method adopts Resnet-9 as the backbone for
feature extraction, and three layers of feature maps with different sizes are output after the
head. The minimum feature scale is 20 × 20, which is 1/32 of the input size. CBS is mainly
composed of Conv+BN+SiLU, n = 3 and stride = 2. ELAN in YOLOv7 consists of multiple
CBSs so that its input and output feature sizes remain constant. After the last CBS output
for the desired channel, the reduced RGB image is replaced with the fused feature image.

Figure 2. BD module structure diagram.

3.4. Loss Function

The improved CycleGAN network is a ring structure, which mainly consists of two
generators (Glight and Gdark) and two discriminators (Dlight and Ddark). X and Y denote
the image of the X domain and the image of the Y domain, respectively. The image of the
X domain is generated into the image of the Y domain by the generator Glight, and then
reconstructed back to the original image of the X domain input by the generator Gdark.
The image of the Y domain is generated into the image of the X domain by the generator
Gdark, and then reconstructed to the original image of the Y domain input by the generator
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Glight. The discriminators Dlight and Ddark are used to discriminate the “true” and “false”
images under low-light and high-light conditions, respectively. The network structure loss
is shown in Figure 3.

Figure 3. Network structure loss chart.

The BFET module loss consists of the adversarial loss (LGAN) and the cyclic consistency
loss (Lcyc_light), expressed by the following equation:

LGAN(Glight, Dlight, X, Y) = Ey∼Pdata(y)[log Dlight(y)] +Ex∼Pdata(x)[log(1− Dlight(Glight(x)))], (1)

Lcyc_light = Ex∼Pdata(x)[‖ Gdark(Glight(x))− x‖1], (2)

L(Glight, Gdark, Dlight, Ddark) = LGAN(Glight, Ddark, X, Y) + λLcyc_light. (3)

The BD module losses include the bounding box loss (Lloc) and the object detection
loss (Lrec). The loss function is added to the BD module, which is an important part of
optimization, allowing it to focus on enhancing the fused features of the blasthole region.
Different weights are applied to the bounding box loss (Lloc) and the object detection loss
(Lrec). The network losses are as follows:

Lnet = LGAN + Lcyc_light + λ1Lloc + λ2Lrec. (4)

where λ1 and λ2 are determined by experience, 1.2 and 0.5 respectively.

4. CUMTB-BI Dataset Detection

The image acquisition of roadway working faces is primarily performed using an
intrinsically safe explosion-proof camera model ZHS2420 and an intrinsically safe KTW280
explosion-proof cellphone. The camera has a maximum resolution of 6000× 4000, while the
cellphone has a maximum resolution of 2340× 1080. To ensure the reliability of the blasthole
image detection algorithm in roadway working faces, we collected an image dataset from
the No. 15121 air inlet and bottom extraction roadway of the Sijiazhuang Company of the
Shanxi Yangmei Group. This dataset, named CUMTB-BI, was acquired with an intrinsically
safe explosion-proof camera equipped with a new landmark intrinsically safe LED flash. It
contains 3620 blasthole images with an original resolution of 1080 × 720. In the experiment,
we adjusted the images to 640 × 640 after down-sampling. Figure 4 shows some samples
collected in complex background conditions.
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Figure 4. Training sample chart.

Training Process

The proposed BFET-BD fusion algorithm has the following implementation process.
First, the original images are down-sampled to a 640 × 640 resolution. Next, these images
are input into the BFET module, which is based on the CycleGAN network structure, to
obtain the feature maps. Then, the feature maps and the down-sampled original images
are used as inputs for the BD module. Finally, the detection results of the blasthole image
dataset are output through the detection network.

5. Experimental Results and Analysis

The server configuration used for the experiment is CPU i9-10900K with 64 GB RAM
and a GPU with 24 GB, using Python 3.8, a deep learning framework based on PyTorch.

5.1. Experimental Results

During the experiment, we selected 2500 randomly as the training set and 500 as
the test set. The relevant parameters were set as follows: epoch = 100, bach_size = 16,
input image size 640 × 640, learning rate = 0.0002, and the optimizer was Adam. Figure ??
compares the training results of different methods. The method of YOLOv7+BFET-BD can
better detect blastholes in the dataset. The bounding box loss and object detection loss are
also reduced accordingly.

Figure 5. Loss function chart.

Figure 6 shows the precision–recall (PR) curves for several different methods on the
blasthole dataset. It can be seen that the detection effect of the method proposed in this
paper is better than the effect of using YOLOv7 detection after enhancing the dataset image
and directly inputting YOLOv7 by comparing the area under the curve. The mAP@0.5 in
this study reached 0.731.
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Figure 6. PR curve comparison chart.

5.2. Performance Estimation

To evaluate the experimental results, we used evaluation metrics. These metrics
were used to measure the strengths and weaknesses of the algorithms. The metrics were
evaluated in terms of both real time and accuracy, as described below.

a. Precision–Recall (PR) Curve
The curve is formed with precision and recall as variables, where recall is the horizontal

coordinate and precision is the vertical coordinate. The recall rate, also known as the
completion rate, represents the proportion of the number of correctly detected blasthole
samples to the number of positive blasthole samples.

The accuracy of the blasthole inspection model is also called the accuracy rate. It
denotes the percentage of all samples detected as blastholes that are correctly detected as
real blastholes.

b. Mean Average Precision (mAP)
This experiment has only one category, so it does not have a classification problem;

thus, the classification and AP are equivalent to mAP. The established mAP is widely used
to evaluate the performance of blasthole detection algorithms. The mAP is proportional
to the area under the PR curve. The mAP size range is [0,1], and a larger size represents
better performance.

mAP =
∫ 1

0
P(R)dr (5)

c. Detection Speed
In this paper, the detection speed of different networks is evaluated in terms of the

time required to complete training. The following figure represents the visualization results
of different models after training.

Table 1 shows the performance comparison of the original dataset detection, CycleGAN-
enhanced dataset detection and detection using the algorithm of this work. Figure 7 shows
the comparison of the mAP for each method.
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Table 1. Comparison of different models.

Network Time (s) Precision mAP_0.5 mAP_0.5:0.95 Recall

YOLOv7 0.282 0.6581 0.701 0.2785 0.467
CycleGAN YOLOv7 0.279 0.6877 0.723 0.3020 0.451

Ours 0.283 0.7115 0.731 0.3219 0.423

The following outcomes can be seen from the data in Table 1. (1) In terms of detection
accuracy, the method proposed in this paper is slightly improved, increasing by 5.34%
compared to YOLOv7, and it is 2.38% higher than when inputting the enhanced dataset into
YOLOv7. (2) In terms of detection speed, that of YOLOv7 is slightly higher. This is because
the network structure of the method proposed in this paper is more complicated compared
to the YOLOv7 structure. (3) In general, the detection of this experimental scenario and the
use of the dataset are specific. According to Figure 7, it can be seen that compared with
other methods, the method in this paper improves the detection accuracy and better meets
the application requirements in actual scenarios.

Figure 7. Epoch mAP comparison chart on CUMTB-BI dataset.

5.3. Comprehensive Performance Analysis

We randomly selected images from the dataset to directly detect blastholes, to detect
blastholes after CycleGAN enhancement and to use this method to detect blastholes. The
results are shown in Figure 8. The three typical images selected from all the detection images
as object detection results are very representative and effective. The results show that the
method proposed in this paper greatly improves the processing of blasthole detection in
low-light conditions and under low contrast.

Compared with the algorithm in this paper, the two algorithms in the comparison
experiment lost some details of the texture and blurred the contour information of the
blasthole, reducing the accuracy and quality of blasthole detection. The increased detail
provided by our algorithm helps to reduce interference in situations with uneven lighting
and dust, bringing higher accuracy. From the above results, it can be seen that the proposed
method has better comprehensive performance and is more suitable for the detection of
blasthole images in low-light conditions and under low contrast.
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Figure 8. Blasthole image detection chart.

6. Conclusions

To address the issue of low accuracy in blasthole detection by traditional algorithms
due to the complex background of surrounding rock, uneven illumination and coal dust
interference in roadway working faces, this paper proposes a blasthole detection method
called BFET-BD that cascades the BFET module and BD module. The BFET module mainly
extracts the features of different convolution layers in CycleGAN for multi-scale feature
fusion to generate the enhanced feature maps. It is worth noting that the enhanced feature
maps are multi-channel features instead of three-channel images. The BD module is
mainly constructed based on the YOLOv7 correlation network for better detection. Our
experimental results show that the proposed method effectively fuses multi-scale features
and suppresses the interference of uneven illumination. It is able to improve the detection
accuracy and reduce the false/missed detection rate. Compared with the methods of
feeding blasthole images directly into object detection networks and feeding the enhanced
blasthole image into YOLOv7, our method improves the detection accuracy by 5.34% and
2.38%, respectively. The proposed BFET-BD framework can promote intelligent blasting on
the roadway working face.

The widespread application of artificial intelligence in engineering can gradually
improve project operations, increase production efficiency, reduce labor costs and eliminate
the need for on-site manual operation, thereby preventing workers from encountering dan-
gerous situations. The limited number of experimental samples constrained the detection
accuracy in our results. However, as we expand our sample size, we anticipate further
improvements in the accuracy of our proposed detection network. Future research will
focus on improving the power consumption of the model, extracting blasthole position in-
formation and compressing the network model to achieve precise positioning and construct
lightweight network models.
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