
Citation: Saeed, A.; Bhatti, A.I.;

Malik, F.M. LMIs-Based LPV Control

of Quadrotor with Time-Varying

Payload. Appl. Sci. 2023, 13, 6553.

https://doi.org/10.3390/

app13116553

Academic Editors: Yutaka Ishibashi,

Cezary Kownacki and Leszek

Ambroziak

Received: 7 March 2023

Revised: 20 May 2023

Accepted: 22 May 2023

Published: 28 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

LMIs-Based LPV Control of Quadrotor with
Time-Varying Payload
Azmat Saeed 1,* , Aamer I. Bhatti 1 and Fahad M. Malik 2

1 Department of Electrical Engineering, Capital University of Science and Technology,
Islamabad 45750, Pakistan

2 Department of Electrical Engineering, College of Electrical and Mechanical Engineering, National University
of Sciences and Technology, Islamabad 44000, Pakistan

* Correspondence: azmt.sk@gmail.com; Tel.: +92-333-971-2492

Abstract: Applications of a quadrotor with payload, particularly for chemical spraying, have in-
creased in recent times. The variation in payload mass over time causes a change in the moments
of inertia (MOI). Moreover, large tilt angles are required for fast reference tracking and external
disturbance rejection. These variations in plant parameters (i.e., mass and inertia) and large tilt angles
can degrade the control scheme’s performance and stability. This article proposes a linear matrix
inequalities (LMIs)-based linear parameter varying (LPV) control scheme for a quadrotor subject to
time-varying mass, time-varying inertia, mass flow rate, and large tilt angles. The control strategy
is designed by solving LMIs derived from quadratic H∞ performance and D-stability. The robust
stability and quadraticH∞ performance are assessed by LMIs. The efficacy of the proposed method-
ology is established using numerical simulations, and its performance is compared to the linear
time-invariant (LTI)H∞ design with pole placement constraints. The results obtained show that the
LPV control scheme gives better tracking performance in the presence of time-varying parameters,
noise, and external disturbances without actuator saturation. In comparison to the LTI design tech-
nique, the proposed LPV scheme improves the rise time (tr), settling time (ts), and mean squared
error (MSE) by up to 14%, 15%, and 30%, respectively. Moreover, smooth transitions are observed in
the tilt angles and control signals with the LPV scheme, contrary to the LTI controller, which exhibits
significant oscillations.

Keywords: time-varying mass; quadrotor position control; LPV control;H∞ control; LMIs

1. Introduction

Quadrotors are used nowadays for a wide range of applications [1,2]. Among these,
crop spraying is a significant one that has resulted in enhanced productivity [3,4]. In such
applications, the quadrotor mass and MOI change over time. Such large parameter vari-
ations, in addition to the standard features of system dynamics, such as nonlinearities,
under-actuation, noise, external disturbances, actuator constraint, etc., make the control
system design a challenging problem. The quadrotor with payload (liquid tank) is depicted
in Figure 1.

Various control strategies have been developed for standard quadrotors to achieve
stability and effective tracking. To tackle the quadrotor’s tracking control issue, linear
control approaches such as proportional–integral–derivative, linear-quadratic-regulator,
and H∞ have been proposed [5–9]. The above-mentioned control algorithms are based
on local linearization, and the performance of an LTI control scheme deteriorates with
deviation from the operating point and can even lead to instability. To overcome the
impediments caused by local linearization, LPV approaches have been proposed for the
quadrotor. In [10], LPV control scheme was suggested for a quadrotor to handle the large
perturbation from the nominal condition. Tilt angles were limited to ±π/8 rad. In [11],
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the LPV controller was proposed for high-speed maneuvering of a quadrotor that requires
large tilt angles. Tilt angles were accounted up to ±π/3 rad. In [12], a switched LPV
control approach was recommended in order to handle huge attitude angles and external
disturbances. The region for roll angle φ was considered to ±π/3 rad and for pitch angle θ,
the region was limited to ±π/8 rad. Time-varying mass and time-varying inertia were not
taken into consideration in the control strategies outlined above.

Figure 1. The 3D CAD model of quadrotor with Payload.

The design of the control system for a quadrotor with variable payload has also been
investigated in the literature. In [13], LMI-based static output feedback LPV controller
was suggested for Attitude/Altitude control of a quadrotor to handle the rotors’ velocity
variation and step change in mass. The rotors’ velocity and mass were assumed to be
measurable. Longitudinal and latitudinal translational motions were ignored, and the
small angle assumption (i.e., cosφcosθ ≈ 1) was employed to design the control scheme.
Moreover, the mass flow rate was ignored, and the control scheme was conservative
due to coupling in the scheduling parameters. In [14], Hybrid LPV control scheme was
suggested for the reference tracking of a quadrotor with variable mass and variable inertia.
A combination of integral backstepping control and proportional-derivative controls were
designed to control the quadrotor’s position and altitude. PD controllers were designed
using the small angle assumption (i.e., sinφ ≈ φ, sinθ ≈ θ, and cosφ ≈ cosθ ≈ 1). Variation
in mass was not considered during the control algorithm design. LPVH∞ controller was
recommended to control the quadrotor rotational dynamics subject to time-varying inertia
and variation in the rotors’ speed. Mass and rotor speed were considered measurable.
The variations in MOI were recalculated in real-time from the changes in the mass. The mass
flow rate was not taken into account and the scheduling parameters selected in the proposed
scheme did not vary independently, which led to conservative control. A robust LPVH∞
controller was proposed for Altitude/Attitude stabilization of a quadrotor to handle mass,
inertia, and rotors velocity variations [15]. The proposed controller was designed using the
LMI framework. The small angle approximation was considered to design the LPV scheme
for the 4 DOF model of the quadrotor. Moreover, position control and the mass flow rate
were not taken into consideration, and the coupling in the scheduling parameters led to
conservative control. A switched LPV control technique was suggested for the 3 DOF model
of a quadrotor subject to large attitude angles, variable inertia, and outside disturbances [16].
Position control dynamics are not considered. In [17], the author recommended a self-
tuning PID control scheme for the reference tracking of a quadrotor. Mass and wind
disturbance estimators based on a neural network with online learning were suggested
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to cope with the system’s mass variation and wind disturbances. Variations in MOI due
to variable mass and mass flow rate were not taken into consideration. Adaptive sliding
mode control (SMC) based on backstepping was advised to reduce the effect of variable
load and wind disturbances [18]. Only the changing mass is estimated using the adaptive
estimation controller. A fractional SMC was designed to cope with external disturbances
and variations in inertia. Actuator limitations and mass flow rate were not considered,
and chattering issues existed due to the use of the signum function in the control law.
Adaptive non-singular fast terminal SMC was proposed in [19]. External disturbances
and mass are estimated online. To address the chattering issue, the saturation function
was used in place of the signum function in the control law. Changes in MOI, mass flow
rate, and actuator limitation were not taken into consideration. In [20], an adaptive SMC
control algorithm was suggested for the quadcopter’s altitude tracking in the presence of
time-varying payload and ground effect. Position control, MOI variations with mass, and
mass flow rate were ignored.

In the LPV control algorithms described in the literature, time-varying mass and large
tilt angles have not been considered simultaneously, whereas, in the nonlinear adaptive
control schemes suggested for a quadrotor to handle time-varying mass, the controller
gains will take time to adapt to the new values. In addition, the computation and execution
of gains are online, which will increase the computational burden compared to the LPV
approaches, where the gains are computed offline but executed online. The motivation of
this paper is to suggest an LMIs-based LPV control scheme for the quadrotor’s position
control in the presence of time-varying mass, time-varying inertia, mass flow rate, large tilt
angles, noise, and external disturbances without actuator saturation.

Contributions

Compared to the prior work, the key contributions of this paper are as follows.

(i) A novel 6 DOF LPV model considering variable mass, variable inertia, mass flow rate,
large tilt angles, and wind disturbance is established for the quadrotor.

(ii) The model equations for the variable mass and variable MOI are developed using a
curve fitting tool, and a triangle polytope is chosen rather than a rectangular polytope
to reduce the number of vertices in the LPV control system. This will reduce the
computational load and conservatism of the LPV control strategy.

(iii) LPV control scheme based on LMIs is designed for the LPV model. The robust stability
and quadraticH∞ performance are assessed by LMIs. The efficacy of the suggested
scheme is validated through numerical simulations, and the results are compared
with the LTI control scheme.

The rest of the paper is organized as follows. The system dynamic model is presented
in Section 2. The steps in the LPV control algorithms are described in Section 3. Section 4
presents the simulation results and their brief descriptions. The paper is concluded in
Section 5, followed by the references.

2. System Dynamic Model

A quadrotor is a four-rotor, under-actuated system as depicted in Figure 2. The quadro-
tor’s linear and angular positions are represented by

[
x y z

]T and
[
φ θ ψ

]T , re-
spectively. The thrust forces produced by the rotors are represented by Ti(i = 1, 2, 3, 4).
The adjacent rotors spin in opposite directions. Two rotors (1 & 3) rotate clockwise, whereas
rotors (3 & 4) spin anticlockwise.

A quadrotor with variable payload can be mathematically modeled using the Newton
and Euler equations. The quadrotor’s translational dynamics with time-varying mass is
given by [21,22]

∑ F =
d
dt
(P) = m

d
dt
(v) + v

d
dt
(m) (1)
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where ∑ F stands for the resultant force, P represents the linear momentum, m denotes the
quadrotor’s mass with variable payload, and v indicates the quadrotor’s translational velocity.

ROTOR 2

x

y

z

INERTIAL 

FRAME

ROTOR 3

ROTOR 1

ROTOR 4

North

East

Down

BODY

FRAME

Figure 2. The X-configuration of quadrotor.

Equation (1) can be written as
mẍ = −(sinθcosφcosψ + sinψsinφ)T − ṁẋ−W f x

mÿ = −(cosφsinψsinθ − cosψsinφ)T − ṁẏ−W f y

mz̈ = −cosθcosφT + mg− ṁż−W f z

(2)

where

T =
4

∑
i=1

Ti = T1 + T2 + T3 + T4 (3)

T represents the thrust force exerted by the rotors, whereas W f x, W f y, and W f z represent
the wind forces in x, y, and z directions, respectively.

The wind force can be expressed as [23]W f x
W f y
W f z

 =

[
ks|ẋ− ẋw|(ẋ− ˙xw)
ks|ẏ− ẏw|(ẏ− ˙yw)
ku|ż− żw|(ż− ˙zw)

]
(4)

[
ẋ ẏ ż

]T and
[
ẋw ẏw żw

]T show the translational and wind velocity, and the pa-
rameters ks and ku indicate the drag factors on the lower-upper faces and sides of the
quadrotor, respectively.

Furthermore, referring to [21,22], the quadrotor’s rotational dynamics with time-
varying inertia is given by

∑ M = J
d
dt
(W) +W d

dt
(J) +W × JW (5)

where ∑ M indicates the net moment, J denotes the inertia tensor, and W shows the
angular speed.

Equation (5) can be written asIxφ̈ = (Iy − Iz)θ̇ψ̇− İxφ̇ + JrΩr θ̇ + τφ

Iy θ̈ = (Iz − Ix)ψ̇φ̇− İy θ̇ − JrΩrφ̇ + τθ

Izψ̈ = (Ix − Iy)φ̇θ̇ − İzψ̇ + τψ

(6)
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where τφ, τθ , and τψ represent the rolling, pitching, and yawning moments, respectively.
Jr represents the rotor inertia, Ωr = Ω1 + Ω3 −Ω2 −Ω4, while Ωi(i = 1, 2, 3, 4) indicates
the speed of rotors.

Control signals are defined for moments and thrust force, which are as follows:
τφ

τθ

τψ

T

 =


U1
U2
U3
U4

 (7)

The relationship between control signals and motor commands is as follows [24,25]:


∩1
∩2
∩3
∩4

 =



1
2
√

2lK f

1
2
√

2lK f
− 1

4Km
1

4K f

− 1
2
√

2lK f

1
2
√

2lK f

1
4Km

1
4K f

− 1
2
√

2lK f
− 1

2
√

2lK f
− 1

4Km
1

4K f
1

2
√

2lK f
− 1

2
√

2lK f

1
4Km

1
4K f




U1
U2
U3
U4

 (8)

where ∩i(i = 1, 2, 3, 4) represent the squared speed references of the motor (i.e., ∩i = Ω2
i ).

By combining (2) and (6), the nonlinear 6 DOF model of quadrotor can be written as

Ixφ̈ = U1 + (Iy − Iz)θ̇ψ̇− İxφ̇ + JrΩr θ̇

Iy θ̈ = U2 + (Iz − Ix)ψ̇φ̇− İy θ̇ − JrΩrφ̇

Izψ̈ = U3 + (Ix − Iy)φ̇θ̇ − İzψ̇

mẍ = −(sinθcosφcosψ + sinψsinφ)U4 − ṁẋ−W f x

mÿ = −(cosφsinψsinθ − cosψsinφ)U4 − ṁẏ−W f y

mz̈ = −cosθcosφU4 − ṁż + mg−W f z

(9)

Table 1 shows the quadrotor’s parameters with full payload.

Table 1. Quadrotor parameters with full payload.

Quantity Symbol Value Unit

Mass of quadrotor m 1.0497× 10−1 kg
Inertia about the x-axis Ix 1.1568× 10−4 kg m2

Inertia about the y-axis Iy 1.1378× 10−4 kg m2

Inertia about the z-axis Iz 1.2595× 10−4 kg m2

Length of an arm l 6.24× 10−2 m
Rotor inertia Jr 1.4338× 10−4 kg m2

Drag factor ks 2.8× 10−2 kg/m
Drag factor ku 5.4× 10−2 kg/m

Thrust coefficient K f 6.5330× 10−4 N/(rad2/s2)
Thrust coefficient Km 1.5769× 10−6 Nm/(rad2/s2)

Acceleration of gravity g 9.81 m/s2

Variation in the System’s Mass and Moments of Inertia Parameters

To develop the model equations for time-varying mass and time-varying inertia, we
have used SOLIDWORKS. The 3D CAD (three-dimensional computer-aided design) model
of the quadrotor with payload developed in SOLIDWORKS is shown in Figure 1. The mass
and MOI values are noted at different levels of the water in the liquid tank. The values
recorded are listed in Table 2. The curve fitting toolbox available in MATLAB was used
to find the model equations for mass and MOI. The root mean squared error (RMSE) was
used to assess the goodness of fit. The variation in the values of the system’s mass and
MOI are shown in Figures 3 and 4.
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Table 2. Mass and inertia values at different water levels.

S.No Water Level (m) Mass (kg) Ix (kg m2) Iy (kg m2) Iz (kg m2)

1 1.71× 10−2 1.0497× 10−1 1.1568× 10−4 1.1378× 10−4 1.2595× 10−4

2 1.52× 10−2 1.0141× 10−1 1.1311× 10−4 1.1254× 10−4 1.2396× 10−4

3 1.33× 10−2 9.7844× 10−2 1.1022× 10−4 1.1099× 10−4 1.2196× 10−4

4 1.14× 10−2 9.4281× 10−2 1.0697× 10−4 1.0906× 10−4 1.1994× 10−4

5 9.47× 10−3 9.0756× 10−2 1.0331× 10−4 1.067× 10−4 1.1794× 10−4

6 7.57× 10−3 8.7194× 10−2 9.910× 10−5 1.0380× 10−4 1.1590× 10−4

7 5.68× 10−3 8.3650× 10−2 9.431× 10−5 1.0028× 10−4 1.1386× 10−4

8 3.78× 10−3 8.0088× 10−2 8.876× 10−5 9.601× 10−5 1.1179× 10−4

9 1.86× 10−3 7.6488× 10−2 8.230× 10−5 9.080× 10−5 1.0967× 10−4

10 0 7.3002× 10−2 7.506× 10−5 8.477× 10−5 1.0760× 10−4

Data

Fitted curve

Figure 3. Variation in mass with parameter `.

Data

Fitted curve

Figure 4. Variation in MOI with mass.
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A parameter ` has been introduced which is given as:

` =
h− h

h
(10)

where h represents the level of the water in the tank and h indicates the water level when
the payload is filled to capacity.

The equations of the mass and MOI obtained using curve fitting are:
m = a1`+ a2

Ix = b1m2 + b2m + b3

Iy = c1m2 + c2m + c3

Iz = d1m + d2

(11)

The derivatives are: 
ṁ = a1 ˙̀

İx = 2b1mṁ + b2ṁ
İy = 2c1mṁ + c2ṁ
İz = d1ṁ

(12)

Table 3 shows the parameter values in Equation (11).

Table 3. Parameter values.

Parameter Value Unit

a1 −3.1967× 10−2 kg
a2 1.0501× 10−1 kg
b1 −2.3181× 10−2 m2/kg
b2 5.3709× 10−3 m2

b3 −1.9308× 10−4 kg m2

c1 −2.3731× 10−2 m2/kg
c2 5.1061× 10−3 m2

c3 −1.6102× 10−4 kg m2

d1 5.7349× 10−4 m2

d2 6.5828× 10−5 kg m2

The LPV model for a dynamic system is not unique. Multiple LPV models can exist for
a dynamic system. The time-varying parameters chosen in the LPV model determine the
complexity and effectiveness of the control system. The following assumptions are taken
into account in order to establish an affine LPV model of quadrotor with time-varying
payload [11,16].

• The sine and cosine of tilt angles are approximated by the second-order Taylor’s
expansion.

• The input U4 ≈ mg, sinψ ≈ 0, and cosψ ≈ 1 are considered to make the dependency

between system states
(

i.e.,
[
x y

]T on
[
φ θ

]T
)

explicitly.
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Using the above assumptions, and considering the small gyro effect, the simplified nonlin-
ear model is obtained, which is as follows:

Ixφ̈ = U1 − İxφ̇

Iy θ̈ = U2 − İy θ̇

Izψ̈ = U3 − İzψ̇

ẍ = −
(

θ − θ3

6

)(
1− φ2

2

)
g− ṁ

m
ẋ−

W f x

m

ÿ =

(
φ− φ3

6

)
g− ṁ

m
ẏ−

W f y

m

mz̈ = −
(

1− θ2

2

)(
1− φ2

2

)
(mg + u4) + mg− ṁż−W f z

(13)

By using Equations (11)–(13), the LPV model of the quadrotor is obtained, which is
given as 

(b1ρ1 + b2 + b3ρ2)φ̈ = ρ2U1 − (2b1φ̇ + b2ρ2φ̇)dr

(c1ρ1 + c2 + c3ρ2)θ̈ = ρ2U2 −
(
2c1θ̇ + c2ρ2θ̇

)
dr

(d1ρ1 + d2)ψ̈ = U3 − d1drψ̇

ẍ = −gθ +
g
2

ρ3θ +
g
6

ρ4θ − drρ2 ẋ− ρ2dx

ÿ = gφ− g
6

ρ3φ− drρ2ẏ− ρ2dy

ρ1z̈ =
1
2

ρ3u4 +
1
2

ρ4u4 − u4 − dr ż− dz

(14)

where ρ = [ρ1 ρ2 ρ3 ρ4]
T is a time-varying parameters vector. The terms

φ2θ2

4
and

φ2θ3

12
are

neglected because of their high power and relatively modest contribution.
[
dx dy dz dr

]T

denote the bounded disturbances and are given as
dx = W f x

dy = W f y

dz = W f z −
mgφ2

2
− mgθ2

2
dr = ṁ

(15)

The scheduling parameters of the LPV model are

ρ1 = m ε
[
1.05× 10−1 7.3× 10−2] = [ρ1 ρ1

]
ρ2 =

1
m

ε
[
1.371× 101 9.51× 100] = [ρ2 ρ2

]
ρ3 = φ2 ε

[
(π

3 )
2 0

]
=
[
ρ3 ρ3

]
ρ4 = θ2 ε

[
(π

3 )
2 0

]
=
[
ρ4 ρ4

]
where the units of mass and angles are kg and rad, respectively.

3. LPV Control Design

In this section, we present an LMIs-based LPV control design for position tracking of
the quadrotor. The goal is that the state variables [x, y, z] follow the desired reference
trajectories [xre f , yre f , zre f ], while the yaw angle ψ is required to remain at ∠00. All the
state variables [x, y, z, φ, θ, ψ, φ̇, θ̇, ψ̇, ẋ, ẏ, ż] and the water level in the liquid
tank are considered as measurable. Based on the system dynamics, the control system is
split into subsystems.

(1) The fully actuated subsystem dynamics that consist of z̈ and ψ̈.
(2) The under-actuated subsystem dynamics made up of φ̈, θ̈, ẍ, and ÿ.
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The LPV control system configuration is depicted in Figure 5. P(ρ) shows the general-
ized LPV plant and K(ρ) depicts the LPV controller gains.

          P(ρ)

K(ρ)

   w (system exogenous inputs)    z (system exogenous outputs)

  v (system outputs)     u (system control inputs)

ρ (Time-varying parameters)

Figure 5. The structure of closed-loop LPV system.

The generalized LPV plant’s state-space realization is as follows [26,27]:χ̇ = A(ρ)χ + B1(ρ)w + B2(ρ)u
z = Cz(ρ)χ +D11(ρ)w +D12(ρ)u
v = Cv(ρ)χ +D21(ρ)w +D22(ρ)u

(16)

where

(1) χ ε Rn, w ε Rnw , u ε Rnu , z ε Rnz and v ε Rnv are the system states, exogenous
inputs (i.e., reference signals and disturbances), control signals, exogenous outputs,
and sensed outputs, respectively.

(2) A(ρ), B1(ρ), B2(ρ), Cz(ρ), D11(ρ),D12(ρ), Cv(ρ), D21(ρ) and D22(ρ) are parameter
dependent state-space matrices of appropriate dimensions.

(3) ρ is a time-varying parameters vector that varies in a convex polytope of vertices
ρvi(i = 1, 2, . . . , N). N represents the number of vertices.

The LPV control law is given as:

u(t) = K(ρ)v(t) (17)

In the LPV polytopic form, the matrices of P(ρ) can be written asA(ρ) B1(ρ) B2(ρ)
Cz(ρ) D11(ρ) D12(ρ)
Cv(ρ) D21(ρ) D22(ρ)

 =
N

∑
i=1

αi

Ai B1i B2i
Czi D11i D12i
Cvi D21i D22i

 (18)

In the polytopic form, LPV controller gains K(ρ) can be expressed as

K(ρ) =
N

∑
i=1

αiKi (19)

αi(i = 1, 2, . . . , N) represent the barycentric weights (for details, see [28,29]). The time-
varying parameter vector ρ can be expressed as

ρ =
{

αiρvi, αi ≥ 0, ∑N
i=1 αi = 1

}
To design an LPV controller, a mixed sensitivity control approach is adopted [30,31].

The weighted closed-loop system for mixed sensitivity control design is shown in Figure 6.
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Gp(ρ)

Wu.Vu
-1

K(ρ) 

We

SUM

Vd

z1 z2 w2

ρ

      xp

                         
yp

u            e
w1

+

 -

Figure 6. The mixed sensitivity control problem.

GP(ρ) shows the LPV model of the dynamic system to the control signal u and the
disturbance signal w2, We is the weighting filter that is chosen to impose meaningful re-
quirements on the closed-loop system, such as trajectory tracking and disturbance rejection,
Vu and Vd are the static weights that represent the maximum values of control signal and
disturbance signal, respectively.

The state-space realization of GP(ρ) and We is given by

[
ẋp
yp

]
=

[
Ap(ρ) Bw(ρ)Vd Bp(ρ)
Cp(ρ) 0 0

] xp
w2
u

 (20)

[
ẋWe
z1

]
=

[
AWe BWe
CWe DWe

][
xWe

e

]
(21)

The state-space realization for LPV controller synthesis is given as:


ẋp

ẋWe
z1
z2

 =


Ap(ρ) 0 0 Bw(ρ)Vd Bp(ρ)Vu

−BWeCp(ρ) AWe BWe 0 0
−DWeCp(ρ) CWe DWe 0 0

0 0 0 0 1




xp
xWe
w1
w2
û

 (22)

The scaled control input û is given by

û = V−1
u u (23)

The LPV controller is designed using the following well-known lemmas, which de-
scribe theH∞-norm and regional pole placement in the LMI region [32,33].

Lemma 1. H∞-norm
The H∞-norm of closed-loop LPV system from exogenous inputs w to exogenous outputs z

will be lower than a positive scalar γ, if and only if there exists a positive-definite symmetric matrix
X(ρ), and a matrix Y(ρ) for all the admissible values of time-varying parameter vector ρ satisfying
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

min γ

s.t. X(ρ) > 0A(ρ)X(ρ) + X(ρ)A(ρ)T + B2(ρ)Y(ρ) + Y(ρ)TB2(ρ)
T B1(ρ) X(ρ)Cz(ρ)

T + Y(ρ)TD12(ρ)
T

B1(ρ)
T −γI D11(ρ)

T

Cz(ρ)X(ρ) +D12(ρ)Y(ρ) D11(ρ) −γI

 < 0
(24)

Lemma 2. Regional pole constraints
The closed-loop LPV system’s eigenvalues will be located in the desirable LMI region D(α,β,ϕ),

if and only if there exist X(ρ), and Y(ρ), such that
X(ρ) > 0
2αX(ρ) +A(ρ)X(ρ) + B2(ρ)Y(ρ) + X(ρ)A(ρ)T + Y(ρ)TB2(ρ)

T < 0
2βX(ρ) +A(ρ)X(ρ) + B2(ρ)Y(ρ) + X(ρ)A(ρ)T + Y(ρ)TB2(ρ)

T > 0

(25)

and(X(ρ)A(ρ)T+A(ρ)X(ρ)+Y(ρ)TB2(ρ)
T+B2(ρ)Y(ρ)

)
sinϕ

(
X(ρ)A(ρ)T−A(ρ)X(ρ)−B2(ρ)Y(ρ)+Y(ρ)TB2(ρ)

T
)

cosϕ(
A(ρ)X(ρ)−X(ρ)A(ρ)T+B2(ρ)Y(ρ)−Y(ρ)TB2(ρ)

T
)

cosϕ
(
A(ρ)X(ρ)+X(ρ)A(ρ)T+B2(ρ)Y(ρ)+Y(ρ)TB2(ρ)

T
)

sinϕ

 < 0 (26)

where the LMI region D(α,β,ϕ) = D(α,β) ∩ D(ϕ). The system will be D-stable if both conditions
(25) and (26) are satisfied. The sub-LMI regions D(α,β) and D(ϕ) are shown in Figures 7 and 8.

  Im

  0      Re

      LMI region

       -α              -β

Figure 7. Strip region D(α,β).

  Im

  0      Re

      LMI region

                 φ

Figure 8. Conic sector D(ϕ).



Appl. Sci. 2023, 13, 6553 12 of 29

The LPV controller gains K(ρ) can be determined as follows:

K(ρ) = Y(ρ)X(ρ)−1 (27)

Equations (24)–(26) impose an unlimited number of LMIs that are difficult to solve.
The total number of LMIs can be squeezed to a finite set using a polytopic LPV system.
Using convexity, (24)–(26) will hold if it holds at the vertices of the polytope.

3.1. LPV Control for Fully Actuated Subsystem

LPV controller is devised for the fully actuated subsystem dynamics by solving the
LMIs given in (24)–(26) at each vertex of the rectangular polytope using the LMI control
toolbox [34].

The descriptor LPV form of altitude dynamics is

Ez(ρz)

[
ż
z̈

]
=

[
0 1
0 −ṁ

][
z
ż

]
+ Bz(ρz)u4

yz =
[
1 0

][z
ż

] (28)

where

Ez(ρz) =

[
1 0
0 0

]
+ ρ1

[
0 0
0 1

]
+ ρ3

[
0 0
0 0

]
+ ρ4

[
0 0
0 0

]

Bz(ρz) =

[
0
−1

]
+ ρ3

[
0
1
2

]
+ ρ4

[
0
1
2

]

The descriptor LPV form of yaw dynamics is

Eψ

(
ρψ

)[ψ̇

ψ̈

]
=

[
0 1
0 −g1ṁ

][
ψ

ψ̇

]
+

[
0
1

]
U3

yψ =
[
1 0

][ψ

ψ̇

] (29)

where

Eψ

(
ρψ

)
=

[
1 0
0 g2

]
+ ρ1

[
0 0
0 g1

]

The weighting filters Wez and Weψ are selected as follows,[
ẋWez
z1z

]
=

[
−5.6× 10−6 0.56

1 0.5

][
xWez

ez

]
(30)

[
ẋWeψ

z1ψ

]
=

[
−4.5× 10−4 0.45

1 1

][
xWeψ

eψ

]
(31)

The static weights Vuz and Vuψ are expected to be 0.5 and 1, respectively. The static
weight dz = 0.5 is taken into consideration. The bounded disturbance dr is assumed as
3.2× 10−3 kg/s. The parameters associated with the desired LMI regions are:
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αz = −0.5, βz = −30, ∠ϕz = 50° (32)

αψ = −0.5, βψ = −5, ∠ϕψ = 50° (33)

The LPV controller gains are:

Kz(ρz) =
8

∑
i=1

αzi Kzi (34)

Kψ

(
ρψ

)
=

2

∑
i=1

αψi Kψi (35)

where Kzi (i = 1, 2, . . . , 8) and Kψi (i = 1, 2) represent the state feedback gains, αzi (i = 1, 2,
. . . , 8) and αψi (i = 1, 2) represent the barycentric weights, and ρz = [ρ1, ρ3, ρ4] and ρψ = ρ1
are the time-varying parameters.

The robust closed-loop system stability and quadraticH∞ performance γ of the LPV
system are tested by using the functions pdlstab and quadper f from the MATLAB LMI
Toolbox’s. The LPV system will be stable, if the quantity tmin returned by the pdlstab
function is negative (i.e., tmin < 0). The values achieved using the functions are given
in Table 4.

Table 4. tmin and γ values of fully actuated subsytem.

Name z-Position Yaw Angle

tmin −0.0512 −0.0158
γ 1.95 0.02

The quantity tmin < 0, which ensures the closed-loop system’s robust stability.

3.2. LPV Control for under-Actuated Subsystem

To address the under-actuation, a multi-loop control strategy is adopted. An inner-loop
LPV scheme is suggested for roll and pitch dynamics, while an outer-loop LPV strategy
is proposed for the y-position and x-position dynamics to generate the roll and pitch
commands. The inner-loop receives the roll and pitch commands [φre f , θre f ] from the
outer-loop to track the desired reference positions [yre f , xre f ]. The scheduling parameters
ρ1 and ρ2 are not independent, which leads to conservatism. To reduce conservatism,
we use a triangle polytope, BED, rather than a rectangular polytope, ABCD, as shown in
Figure 9 (for details, see [35,36]).

Figure 9. The structure of the Polytopes.
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The roll dynamics in descriptor LPV form is

Eφ

(
ρφ

)[φ̇

φ̈

]
= Aφ

(
ρφ

)[φ

φ̇

]
+ Bφ

(
ρφ

)
U1

yφ =
[
1 0

][φ

φ̇

] (36)

where

Eφ

(
ρφ

)
=

[
1 0
0 e2

]
+ ρ1

[
0 0
0 e1

]
+ ρ2

[
0 0
0 e3

]

Aφ

(
ρφ

)
=

[
0 1
0 −2e1ṁ

]
+ ρ1

[
0 0
0 0

]
+ ρ2

[
0 0
0 −e2ṁ

]

Bφ

(
ρφ

)
=

[
0
0

]
+ ρ1

[
0
0

]
+ ρ2

[
0
1

]

The descriptor LPV form of pitch dynamics is

Eθ(ρθ)

[
θ̇

θ̈

]
= Aθ(ρθ)

[
θ

θ̇

]
+ Bθ(ρθ)U2

yθ =
[
1 0

][θ

θ̇

] (37)

where

Eθ(ρθ) =

[
1 0
0 f2

]
+ ρ1

[
0 0
0 f1

]
+ ρ2

[
0 0
0 f3

]

Aθ(ρθ) =

[
0 1
0 −2 f1ṁ

]
+ ρ1

[
0 0
0 0

]
+ ρ2

[
0 0
0 − f2ṁ

]

Bθ(ρθ) =

[
0
0

]
+ ρ1

[
0
0

]
+ ρ2

[
0
1

]

The LPV form of x-position dynamics is

[
ẋ
ẍ

]
= Ax(ρx)

[
x
ẋ

]
+ Bx(ρx)ux

yx =
[
1 0

][x
ẋ

] (38)
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where

Ax(ρx) =

[
0 1
0 0

]
+ ρ2

[
0 0
0 −ṁ

]
+ ρ3

[
0 0
0 0

]
+ ρ4

[
0 0
0 0

]

Bx(ρx) =

[
0
−g

]
+ ρ2

[
0
0

]
+ ρ3

[
0
g
2

]
+ ρ4

[
0
g
6

]

The descriptor LPV form of y-position dynamics is

[
ẏ
ÿ

]
= Ay

(
ρy
)[y

ẏ

]
+ By

(
ρy
)
uy

yy =
[
1 0

][y
ẏ

] (39)

where

Ay
(
ρy
)
=

[
0 1
0 0

]
+ ρ2

[
0 0
0 −ṁ

]
+ ρ3

[
0 0
0 0

]

By
(
ρy
)
=

[
0
g

]
+ ρ2

[
0
0

]
+ ρ3

[
0
− g

6

]

The weight functions are chosen as:[
ẋWeφ

z1

]
=

[
−7.5× 10−4 1.936

3.873 0.5

][
xWeφ

eφ

]
(40)

[
ẋWey

z1

]
=

[
−9.1× 10−5 1.045

0.871 0.833

][
xWey

ey

]
(41)

Weighting filters Weψ, Weθ , Wex, and Wey are chosen as follows:[
ẋWeφ

z1ψ

]
=

[
−7.5× 10−4 7.45

1 0.5

][
xWeφ

eφ

]
(42)

[
ẋWeθ

z1θ

]
=

[
−7.5× 10−4 7.45

1 0.5

][
xWeθ

eθ

]
(43)

[
ẋWex
z1x

]
=

[
−9.5× 10−5 0.95

1 0.83

][
xWex

ex

]
(44)

[
ẋWey
z1y

]
=

[
−9.1× 10−5 0.90

1 0.83

][
xWey

ey

]
(45)

The values of weights Vuψ = 1, Vuθ = 1, Vux =
π

3
, and Vuy =

π

3
are considered.

The values of static weights Vdx = 0.5 and Vdy = 0.5 are assumed. The values of the
parameters associated with the LMI regions are:

αφ = −5, βφ = −30, ∠ϕφ = 50° (46)

αθ = −5, βθ = −30, ∠ϕθ = 50° (47)

αx = −0.5, βx = −4.5, ∠ϕx = 50° (48)

αy = −0.5, βy = −4.5, ∠ϕy = 50° (49)
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The following are the gains of the LPV controllers designed using conditions (24)–(26):

Kφ

(
ρφ

)
=

3

∑
i=1

αφiKφi (50)

Kθ(ρθ) =
3

∑
i=1

αθi Kθi (51)

Kx(ρx) =
8

∑
i=1

αxi Kxi (52)

Ky
(
ρy
)
=

4

∑
i=1

αyiKyi (53)

where Kφi (i = 1, 2, 3), Kθi (i = 1, 2, 3), Kxi (i = 1, 2, . . . , 8), and Kyi (i = 1, 2, . . . , 4) represent
the state feedback gains, αφi (i = 1, 2, 3), αθi (i = 1, 2, 3), αxi (i = 1, 2, . . . , 8), and
αyi (i = 1, 2, . . . , 4) represent the barycentric weights, and ρφ = [ρ1, ρ2], ρθ = [ρ1, ρ2],
ρx = [ρ2, ρ3, ρ4], and ρy = [ρ2, ρ3] are the scheduling parameters.

The values of tmin and γ achieved using the MATLAB functions for the under-actuated
subsytem are given in Table 5.

Table 5. tmin and γ values of under-actuated subsytem.

Name Roll Angle Pitch Angle x-Position y-Position

tmin −0.04 −0.032 −0.1042 −0.0433
γ 1.0 1.0 1.718 1.292

The quantity tmin < 0, which ensures the closed-loop system’s robust stability.

4. Simulation Results and Discussion

This section presents the simulations to validate the proposed approach. The nu-
merical simulations were carried out using the quadrotor nonlinear model represented
in the Equation (9). Multiple scenarios were considered during simulations. In the first
scenario, the proposed LPV algorithm was tested for reference tracking in the presence
of full payload, time-varying payload, and an empty payload. Wind disturbance was
applied in the second scenario, while noise was introduced to the system states in the third.
Moreover,H∞ controller with regional pole constraints was designed for the quadrotor’s
linear model that was obtained using small angle assumption and the average values of
the mass and inertia parameters [7]. The results of the LPV scheme were compared with
those attained with the LTI control design.

Case 1: The quadrotor’s position is required to track a unit step signal, while the
yaw angle needs to be maintained at ∠00. The reference signals and the quadrotor’s
position for full payload, time-varying payload, and an empty payload are depicted in
Figure 10. Figure 11 depicts the corresponding attitude angles. The control inputs and motor
commands are shown in Figures 12 and 13, respectively. The tracking performance was
examined in terms of system rise time (tr), system settling time (ts), system overshoot (OS),
and system MSE. The values of the performance parameters and percentage improvements
are listed in Table 6, Table 7 and Table 8, respectively. The actuator will become saturated if
the motor command value is higher than 500 rad/s. Control inputs were used to calculate
motor commands using (8). Effective position tracking and yaw angle stabilization were
accomplished in the presence of variable mass and variable MOI using the LPV scheme as
compared to the LTI controller.
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Figure 10. (a) The positions [x, y, z] with full payload; (b) The positions [x, y, z] with time-varying
payload; (c) The positions [x, y, z] with empty payload.
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Figure 11. (a) The attitude angles [φ, θ, ψ] with full payload; (b) The attitude angles [φ, θ, ψ] with
time-varying payload; (c) The attitude angles [φ, θ, ψ] with empty payload.
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Figure 12. (a) The control inputs [U1, U2, U3, U4] with full payload; (b) The control inputs [U1, U2, U3, U4]
with time-varying payload; (c) The control inputs [U1, U2, U3, U4] with empty payload.
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Figure 13. (a) The motor commands [∩1,∩2,∩3,∩4] with full payload; (b) The motor commands
[∩1,∩2,∩3,∩4] with time-varying payload; (c) The motor commands [∩1,∩2,∩3,∩4] with empty pay-
load.
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Table 6. The closed-loop performance parameters with full payload.

Performance Parameters LPV H∞ % Improvement

x-
po

si
ti

on tr 2.1954 s 2.3597 s 6.96275
ts 4.034 s 4.2896 s 5.9586

OS 0% 0% 0
MSE 0.25915 m 0.29989 m 13.585

y-
po

si
ti

on tr 2.0833 s 2.4246 s 14.0765
ts 4.0347 s 4.379 s 7.86253

OS 0% 0% 0
MSE 0.2507 m 0.30547 m 17.9297

z-
po

si
ti

on tr 2.2715 s 2.6434 s 14.069
ts 3.9643 s 4.61 s 14.0065

OS 0% 0% 0
MSE 0.238 m 0.34064 m 30.1315

Table 7. The closed-loop performance parameters with time-varying payload.

Performance Parameters LPV H∞ % Improvement

x-
po

si
ti

on tr 2.197 s 2.3653 s 7.11538
ts 4.0371 s 4.3168 s 6.47934

OS 0% 0% 0
MSE 0.24302 m 0.27943 m 13.0301

y-
po

si
ti

on tr 2.085 s 2.4314 s 14.2469
ts 4.0387 s 4.4105 s 8.42988

OS 0% 0% 0
MSE 0.23492 m 0.28439 m 17.3951

z-
po

si
ti

on tr 2.2737 s 2.6542 s 14.3358
ts 3.967 s 4.6502 s 14.6918

OS 0% 0% 0
MSE 0.22321 m 0.31365 m 28.8347

Table 8. The closed-loop performance parameters with empty payload.

Performance Parameters LPV H∞ % Improvement

x-
po

si
ti

on tr 2.1891 s 2.3288 s 5.9988
ts 4.021 s 4.1506 s 3.12244

OS 0% 0% 0
MSE 0.25374 m 0.28212 m 10.0595

y-
po

si
ti

on tr 2.0759 s 2.3842 s 12.931
ts 4.0187 s 4.2216 s 4.80623

OS 0% 0% 0
MSE 0.24446 m 0.2877 m 15.0295

z-
po

si
ti

on tr 2.2764 s 2.6105 s 12.7983
ts 3.9568 s 4.3802 s 9.66623

OS 0% 0% 0
MSE 0.23152 m 0.30689 m 24.5593

Case 2: The inertia parameters may vary due to the tilting of the quadrotor. To check
the performance of the proposed control scheme in the presence of inertia parameter
variation, we have considered a 20% variation in the inertia. Figure 14 depicts the variation
in the water level considered over time. Figure 15 depicts the variation in the inertia with the
mass. The reference signals and the quadrotor’s position are depicted in Figure 16. Figure 17
depicts the corresponding attitude angles. The control inputs and motor commands are
shown, respectively, in Figures 18 and 19. The simulation results indicate that the LPV
scheme gives good position tracking and yaw angle stabilization in the presence of variation
in the inertia parameters as compared to the LTI controller.

Case 3: To test the position tracking performance of the LPV scheme subject to dynamic
payload and wind disturbance at the same time that required large tilting angle, variation
in the payload was introduced at t = 7.5 s, and wind disturbance was applied at t = 10 s.
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A horizontal wind model in SIMULINK was used for wind generation. A constant north-
east wind speed of 5.3 m/s was assumed. The water level variation over time is shown
in Figure 20. Figure 21 presents the reference signals and the position of the quadrotor.
The corresponding attitude angles are shown in Figure 22. Figures 23 and 24 depict the
control signals and motor commands. As can be seen, the quadrotor tracks the reference
signal more effectively in the presence of time-varying payload and wind disturbance as
compared to the LTI controller, which introduces significant oscillations and also results in
actuator saturation as the demand for tilt angles gets higher.

Figure 14. Variation in the water level with time.

Figure 15. Variation in the inertia parameters with mass.
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Figure 16. The positions [x, y, z] with 20% variation in the inertia.

Figure 17. The attitude angles [φ, θ, ψ] with 20% variation in the inertia.
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Figure 18. The control inputs [U1, U2, U3, U4] with 20% variation in the inertia.

Figure 19. The motor commands [∩1,∩2,∩3,∩4] with 20% variation in the inertia.
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Figure 20. Variation in the water level with time.
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Figure 21. The positions [x, y, z] with payload variation and wind disturbance.
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Figure 22. The attitude angles [φ, θ, ψ] with payload variation and wind disturbance.

Figure 23. The control inputs [U1, U2, U3, U4] with payload variation and wind disturbance.

Case 3: Gaussian noise N(µ, σ2) was introduced into the quadrotor outputs in this
case [37]. Noise N(0, (1 cm)2) was added to the x, y, and z positions, and Noise N(0, (0.51°)2)
was introduced to the yaw, pitch, and roll angles. The water level variation over time is
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shown in Figure 14. Figure 25 shows the reference signals, the position of the quadrotor,
and the error plots. The attitude signals are depicted in Figure 26. Figures 27 and 28
illustrate the control signals and motor commands. The simulation results indicate that,
in contrast to the LTI control scheme, the LPV design has improved tracking performance
subject to dynamic mass, changing MOI, and gaussian noise.

Figure 24. The motor commands [∩1,∩2,∩3,∩4] with payload variation and wind disturbance.
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Figure 25. The positions [x, y, z] with payload variation and noise.
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Figure 26. The attitude angles [φ, θ, ψ] with payload variation and noise.

Figure 27. The control inputs [U1, U2, U3, U4] with payload variation and noise.
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Figure 28. The motor commands [∩1,∩2,∩3,∩4] with payload variation and noise.

5. Conclusions

This paper proposes an LMIs-based LPV algorithm for full motion control of a 6 DOF
quadrotor model. First, an LPV model was developed for the nonlinear quadrotor model
with variable payload, and then LMIs of quadraticH∞ performance and D-stability were
used to design the LPV control strategy. The proposed scheme was successfully evaluated
in a nonlinear simulation environment. Several scenarios were simulated and studied.
The outcomes of the LPV algorithm were compared with the H∞ control design with
pole placement constraints. The results indicate that the recommended LPV approach can
achieve better position tracking in the presence of variable mass, variable inertia, mass flow
rate, wind disturbance, and noise in contrast to the LTI controller. In the future, we intend
to broaden our research to the hardware implementation of the suggested control scheme
in order to assess its stability, robustness, and effectiveness.
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