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Abstract: Soil liquefaction is a phenomenon that can occur when soil loses strength and behaves like
a liquid during an earthquake. A site investigation is essential for determining a site’s susceptibility
to liquefaction, and these investigations frequently generate project-specific geotechnical reports.
However, many of these reports are frequently stored unused after construction projects are com-
pleted. This study suggests that when these unused reports are consolidated and integrated, they
can provide valuable information for identifying potential challenges, such as liquefaction. The
study evaluates the susceptibility of liquefaction by considering several geotechnical factors modeled
by machine learning algorithms. The study estimated site-specific characteristics, such as ground
elevation, groundwater table elevation, SPT N-value, soil type, and fines content. Using a calibrated
model represented by an equation, the investigation determined several soil properties, including the
unit weight and peak ground acceleration (PGA). The study estimated PGA using a linear model,
which revealed a significant positive correlation (R2 = 0.89) between PGA, earthquake magnitude,
and distance from the seismic source. On the Marikina West Valley Fault, the study also assessed the
liquefaction hazard for an anticipated 7.5 M and delineated a map that was validated by prior studies.

Keywords: unit weight; machine learning; SPT; liquefaction; Philippines

1. Introduction

In geotechnical engineering, soil liquefaction is a critical phenomenon that occurs
when saturated or partially saturated soil loses its strength and stiffness, causing it to behave
like a liquid during an earthquake or other rapid loading conditions. Therefore, evaluating
the resistance of soil to liquefaction is essential for ensuring the safety of infrastructures. [1].
Significant research and studies on liquefaction have been conducted over the past decade,
highlighting the significance of understanding this phenomenon [2–6].

When the pore-water pressure in a granular material increases and the effective stress
decreases, the material changes from a solid to a liquid state [7]. Typically, this occurs
in loose to moderately dense granular soils with inadequate drainage such as sands and
gravels. During seismic shaking, the ground undergoes significant movements that cause
the rearrangement of soil particles and the collapse of pore spaces, leading to an increase in
pore water pressure. This decreases the effective tension between soil particles, weakens
the soil’s overall structure, and causes the soil to liquefy and flow. During seismic events,
the increase in pore water pressure decreases the effective stress, making the soil even more
susceptible to liquefaction [1].

In recent years, there have been numerous instances in which liquefaction events have
caused significant structural damage. For instance, the 2011 Christchurch, New Zealand,
earthquake was a catastrophic event that caused widespread liquefaction-induced damage
to numerous buildings [8]. This included residential, commercial, and public buildings,
which suffered varying degrees of structural damage due to liquefaction. Similarly, the
Loma Prieta earthquake in 1989 [9], the Tohoku earthquake and tsunami in 2011 [10], and
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the Niigata-Chuetsu earthquake in 2004 [11] were other notable events where liquefaction
caused damage to structures.

In addition, understanding liquefaction enables geotechnical engineers to develop
innovative mitigation procedures that reduce the risk of liquefaction-induced damage [12],
such as techniques for ground improvement such as soil stabilization [13–15]. When
sufficient data are available, geotechnical engineers can create susceptibility maps and
conduct hazard assessments [16,17] to identify areas with a higher liquefaction risk.

Geotechnical engineering is a complex field that requires a thorough understanding of
the soil and geological conditions at a given site. To determine the susceptibility of a site to
liquefaction, a comprehensive site investigation is a crucial first step. This investigation
requires the drilling of boreholes, such as the Standard Penetration Test (SPT) [18], and the
collection of soil samples for laboratory analysis to determine the physical and engineering
properties of the soil. These properties include grain size distribution, moisture content,
density, shear strength, and consolidation characteristics, among others, which are critical
in assessing the site’s liquefaction susceptibility.

Typically, the results of the site investigation are documented in geotechnical reports
that are unique to each project and contain vital information on the soil and other relevant
factors. However, it has been observed that after the completion of a construction project,
many of these reports are frequently stored unused. These unused reports have the potential
to provide valuable information when collected, consolidated, and integrated to identify
potential challenges, such as liquefaction, which may not be evident in a single report [19].

The development of fundamental soil testing techniques, such as visual inspection and
manual testing, in the eighteenth century paved the way for significant advancements in
geotechnical engineering. The construction of foundations in challenging soils, such as soft
clay, sand, and rock, was one such area of advancement [20]. In addition, correlations be-
tween soil grain size distribution and engineering behavior have been established, marking
an important development in the field of geotechnical engineering. In situ and laboratory
testing continue to be the preferred methods for determining construction project design
parameters. In the early stages of a project, when site investigation data may not yet be
available, correlations based on historical laboratory or field data are useful [21,22] for
estimating the subsurface condition of a site.

When determining liquefaction susceptibility, the cyclic resistance ratio (CRR) and
cyclic stress ratio (CSR) are vital parameters. The CRR reflects the soil’s resistance to
liquefaction, as determined by laboratory analysis of soil samples. CSR is dependent on
seismic loading conditions and soil characteristics at a particular site [20,23–27]. However,
developing correlations has been difficult due to the scarcity of dependable and exhaustive
data sets. To address this challenge, researchers have integrated empirical data and devel-
oped calibrated models to improve the accuracy of predictions and increase knowledge
of soil behavior. These advancements in soil testing and correlations have substantially
advanced the field of geotechnical engineering.

Geotechnical engineering has seen significant advancements in modeling techniques—
from simple analytical methods to complex numerical modeling techniques. Initially,
mathematical equations were used to predict soil behavior, but recent research has shown
that machine learning is a reliable method for predicting geotechnical parameters, [28–30],
particularly liquefaction [31–33].

Numerous investigations have employed machine learning algorithms to forecast
geotechnical characteristics, such as the potency of stabilized soils [28]. Some of these
investigations have employed several models concurrently to assess their efficacy [34].

Empirical evidence suggests that the precision of these models is significantly influ-
enced by the volume of data utilized, as a larger dataset leads to more precise predic-
tions [35].

Geostatistics, a field of study that encompasses techniques such as kriging and in-
verse weighted triangle, has conventionally been employed to interpolate geotechnical
characteristics and generate digital maps [36]. However, geostatistics has limitations when
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it comes to estimating the distribution of numerical data, which has led to alternative
techniques such as machine learning being explored. The integration of machine learning
and geostatistics has the potential to facilitate the estimation of geotechnical properties in
regions with limited data availability. Moreover, this approach can be effectively employed
to estimate geotechnical properties that exhibit high anisotropy [36,37].

The emergence of digital technology has significantly transformed data collection
in the field of geotechnical engineering. Geotechnical engineers are now able to employ
geospatial intelligence as a promising tool to analyze and visualize geographic information
of sites that are susceptible to liquefaction, thanks to the advent of various tools. This
technology allows the processing of geotechnical data and reports without physically
visiting the location, making it more efficient and effective in planning projects [38].

In geospatial intelligence, surficial studies were commonly conducted since data
were easily obtainable, examples are deformations of cultural heritage structures [39],
maritime safety [40], flood risk [41], urban land use [42], land subsidence [43], rainfall-
runoff relationship [44], and forest fire spread [45]. The utilization of geospatial intelligence
in the analysis of liquefaction phenomena has received comparatively little attention, with
only a limited number of investigations having been conducted to date.

The present study endeavors to fill the gap by utilizing machine learning algorithms
to estimate the vulnerability of liquefaction in a case study conducted in Metro Manila,
Philippines. The study will examine multiple geotechnical factors that have been modeled
by algorithms to evaluate the probability of liquefaction taking place in the designated
research region. This research aims to utilize geospatial intelligence and machine learning
algorithms to offer significant insights into the incidence of liquefaction.

2. Methodology

This research outlines a thorough approach to evaluating the vulnerability of soil
liquefaction in a seismic zone with a high level of risk. The methodology comprises a
series of sequential steps encompassing data collection, data processing, microzonation,
borehole density determination, machine learning training and modeling, and validation.
The research centers on the metropolitan region of Manila, which is characterized by
a high population density and urbanization, rendering it an especially susceptible site
for liquefaction.

2.1. Data

In order to facilitate the programming code and machine learning modeling, important
geotechnical investigation data were extracted from the borehole log and systematically
arranged in a spreadsheet format. The parameters that have been extracted comprise of
the project information, geographical location, coordinates, ground altitude, subterranean
water level, Standard Penetration Test (SPT) N-values, Unified Soil Classification System
(USCS) soil type, proportion of fines, grain size distribution data, as well as Atterberg limits,
namely, liquid limit (LL) and plastic limit (PL). Furthermore, empirical data obtained from
previously published research studies were methodically digitized and collected via a com-
prehensive literature search process. The methodology employed entailed the systematic
exploration and synthesis of information from established literature sources, with the aim
of attaining a thorough comprehension of pre-existing data and enhancing the ability to
establish meaningful associations, ultimately leading to improved information accessibility.

The process of calibrating data from various sources is an essential component in
attaining a comprehensive understanding of the available data. This process enables
better correlations and enhances accessibility to information. In order to support the
research, seismic data were incorporated, encompassing significant earthquake occurrences
(including magnitude and epicenter location), the latitude and longitude of PGA stations
where these events were recorded, and the latitude and longitude of active faults in the
surrounding area, including the head and tail of said faults. These data hold significant
importance in assessing the vulnerability of a region to the phenomenon of soil liquefaction.
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2.2. Density of Boreholes

In terms of the density of boreholes per city, 1 borehole/km2 was followed to ensure
that a borehole can represent a square kilometer of a city. The density of boreholes per city
was checked using Equation (1):

D =
B
A

(1)

where D is the density of boreholes (boreholes/km2), B is the number of usable boreholes,
and A is the area covered (km2).

2.3. Microzonation

In this study, microzonation, which involves reducing a large area into smaller areas,
was accomplished using Geographic Information System (GIS) software. The area of each
zone was calculated, and any large zones with an area greater than 1 km2 were further
subdivided into smaller zones. Once the areas of the zones met the requirements of this
study, their centroids were located using a latitude and longitude format.

2.4. Training and Modelling
2.4.1. Modelling Process

Machine learning is a powerful tool that automates the creation of models and is
categorized under artificial intelligence. Using the concept that algorithms can learn from
data, recognize patterns, and make decisions with minimal human intervention, machine
learning has become necessary for analyzing larger and more complex datasets, producing
accurate results at a faster rate, even when dealing with massive amounts of data [46].

There are two primary types of models in supervised learning, a subcategory of
machine learning: regression and classification. Classification models accurately assign
test data to specific categories or classifications and are suited for non-numerical data
types such as texts, boolean values, and dates. Regression models identify the relationship
between dependent and independent variables in numerical data.

Machine learning algorithms make predictions based on data by constructing mathe-
matical models from multiple datasets, including training, validation, and test sets. The
three-step process of utilizing training, validation, and test data sets is essential for devel-
oping accurate and reliable machine learning models. The training data set is used during
the learning process and for fitting the model parameters. The validation data set is used to
evaluate the model and provide an unbiased assessment of its fit to the training data, while
also tuning the hyperparameters of the model [47].

Commonly used parameters for evaluating the performance of trained models include
accuracy rates, coefficient of determination (R2), and root mean square error (RMSE).
Depending on the type of model, these evaluation parameters or correlation structures
are utilized differently. For classification models, accuracy rates are commonly used as a
performance metric, whereas for regression models, the coefficient of determination and
root mean square error are frequently used.

In the process of training and modeling, collected data are used to train multiple
regression and classification machine learning models. After that, their performance
parameters are compared to determine which model is superior. To further optimize the
performance of the winning model, hyperparameters are modified through an iterative
process of tuning hyperparameters to achieve the best results possible. Overall, machine
learning is an indispensable instrument for automating data processing and developing
reliable and precise models.

2.4.2. Modelling of Site-Specific Properties

Using site-specific properties such as ground elevation and groundwater elevation,
the process of estimating initial parameters for locations without data consisted of using
site-specific properties such as ground elevation and groundwater elevation. As depicted
in Figure 1, the latitude and longitude of each location were used as input variables to train
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models using the geotechnical investigation report’s source data. Then, hyperparameter
tuning was performed to enhance the winning model. Once the ground elevation was
determined, it was extended to a depth of 20 m below mean sea level, allowing for accurate
estimation of ground properties in regions where data was initially lacking. Using a
combination of data-driven modeling and geospatial analysis, this method produced
accurate estimates for these crucial site-specific properties.
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Figure 1. Modeling of site-specific properties.

As depicted in Figure 2, the procedure for estimating soil type for each layer in an area
with no available data was similar to that used for determining ground and groundwater
elevation. In this instance, however, classification models were employed rather than
regression models, as non-numerical variables are typically assigned to soil types. Figure 3
depicts the estimation of additional site-specific geotechnical properties, such as SPT N-
values, fines content, liquid limit, and plastic limit, using regression models. Notably, when
an SPT N-value of 50 was encountered during the estimation process, the corresponding
layer was classified as rock. The only distinction between this procedure and the modeling
of ground and groundwater elevation is the inclusion of layer elevation in the input and
training data.
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2.4.3. Modelling of Geotechnical Strength Parameters

Terzaghi’s revolutionary contribution to geotechnical engineering was the develop-
ment of a theory that could be used to determine the ultimate bearing capacity of shallow
foundations. This theory takes into account important factors such as the weight of the
soil and the cohesive forces acting on the foundation, making it an indispensable tool for
engineers and scientists.

The estimation of the soil’s unit weight, which is based on various geotechnical
parameters such as angle of internal friction and cohesion, is a crucial factor in determining
the soil’s strength. Collecting data from previous studies that describe the soil’s properties,
location, and SPT N-value is necessary for estimating the unit weight of soil. It is important
to note that unit weight values can vary depending on soil particle composition, saturation
level, and other environmental variables.

Table 1 was used by researchers to classify soil into the appropriate groups. This table
helped them classify the soil according to its properties, allowing for more accurate and
reliable data collection. In addition, Figure 4 illustrates the method for determining the
unit weight of a soil layer. This procedure utilizes four different unit weight values based
on the layer’s location (above or below the groundwater table) and its soil type.

Table 1. Determination of soil group for unit weight.

Soil Group Soil Type

Coarse-Grained Soils GW, GP, GM, GC, SW, SP, SM, SC

Fine-Grained Soils ML, CL, OL, MH, CH, OH

These parameters include moist unit weight of coarse-grained soil (kN/m3), saturated
unit weight of coarse-grained soil (kN/m3), moist unit weight of fine-grained soil (kN/m3),
and saturated unit weight of fine-grained soil (kN/m3).
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2.4.4. Modelling Liquefaction Susceptibility

In geotechnical engineering, particularly in earthquake-prone regions, the liquefaction
susceptibility of soil is a crucial factor to consider. Idriss et al. (2004) [1] developed a
multi-step method for determining the susceptibility of soil to liquefaction.

First, the method classifies the soil as either clayey or sandy based on its Atterberg
limits. Atterberg limits are the moisture contents at which a soil changes state from solid to
liquid (liquid limit) and from liquid to semisolid (plastic limit). As shown in Figure 5, sandy
soil is initially classified as liquefiable while clayey soil is classified as non-liquefiable.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 24 
 

Input

Latitude
Longitude
Elevation

Competing Regression Models

Tree Regression Model
Linear Model

Quadratic Model
Ensemble Model

Neural Network Model

Training Data

Latitude
Longitude
Elevation

N-Value from BH Data
Fines Content from BH Data

Liquid Limit from BH Data
Plastic Limit from BH Data M

od
el

 C
om

pe
tit

io
n 

an
d 

H
yp

er
pa

ra
m

et
er

 T
un

in
g

Sandy

Clayey

Output

Liquefiable layer

Output

Non-liquefiable layer

Determine 
PI=LL-PL

a

 
Figure 5. Initial considerations in determining liquefiable and non-liquefiable soil layers. 

Once classified as liquefiable, the initial input was the number of blows or penetra-
tion resistance (SPT N-value) registered for each penetration interval at a given depth. 
Due to the variety of hammer designs used in field research, corrections were made using 
hammers with an efficiency of approximately 60%, and an equation for the correction of 
SPT N-values was used. Once the corrected SPT N-value was determined, the equivalent 
clean sand value ((𝑁 ) ) and cyclic resistance ratio (𝐶𝑅𝑅 . ) were computed. However, 
the 𝐶𝑅𝑅 .  equation is only valid for (𝑁 ) < 30. Since there are clean granular soils 
that are too dense to liquefy, (𝑁 ) ≥ 30, it is further classed as non-liquefiable. 

After determining CRR, the seismic demand on a soil layer is further computed in 
terms of the cyclic stress ratio (CSR). The initial process is to analyze the Stress Reduction 
Coefficient (𝑟 ) based on the depth of each soil layer, z, initially estimated. At a depth of 
more than 23 m below ground elevation, Youd et al. noted that no occurrences of soil 
liquefaction were observed, thus, these depths were considered non-liquefiable. 

Aside from rd, the peak ground acceleration (PGA) is also an essential parameter for 
CSR. PGA is the maximum surface ground acceleration that occurred during an earth-
quake shaking at a particular location, a deterministic seismic hazard assessment (DSHA) 
approach was used to estimate PGA, wherein it is based on the expected earthquake mag-
nitude for a specific seismic source and the minimum distance from the site to the fault 
source. Another essential parameter in determining CSR is the total and effective overbur-
den stresses, the computation is based on the unit weight of the soil being analyzed and 
groundwater table elevation. Lastly, the factor of safety (FS) against soil liquefaction is 
computed in terms of CRR, CSR, and magnitude scaling factor (MSF). 

Once the factor of safety for each layer is determined, the calculated probability of 
liquefaction (PL) is shown in Equation (2). Consequently, the formula depicted in Equa-
tion (3) was used to determine the liquefaction severity index (LSI), which is used to eval-
uate the liquefaction hazard until 20 m below ground elevation. Thereafter, classifications 
of LSI from very low risk to very high risk were employed, as shown in Figure 6. 

Figure 5. Initial considerations in determining liquefiable and non-liquefiable soil layers.



Appl. Sci. 2023, 13, 6549 8 of 22

Once classified as liquefiable, the initial input was the number of blows or penetration
resistance (SPT N-value) registered for each penetration interval at a given depth. Due
to the variety of hammer designs used in field research, corrections were made using
hammers with an efficiency of approximately 60%, and an equation for the correction of
SPT N-values was used. Once the corrected SPT N-value was determined, the equivalent
clean sand value ((N1)60cs) and cyclic resistance ratio (CRR7.5) were computed. However,
the CRR7.5 equation is only valid for (N1)60cs < 30. Since there are clean granular soils that
are too dense to liquefy, (N1)60cs ≥ 30, it is further classed as non-liquefiable.

After determining CRR, the seismic demand on a soil layer is further computed in
terms of the cyclic stress ratio (CSR). The initial process is to analyze the Stress Reduction
Coefficient (rd) based on the depth of each soil layer, z, initially estimated. At a depth
of more than 23 m below ground elevation, Youd et al. noted that no occurrences of soil
liquefaction were observed, thus, these depths were considered non-liquefiable.

Aside from rd, the peak ground acceleration (PGA) is also an essential parameter for
CSR. PGA is the maximum surface ground acceleration that occurred during an earth-
quake shaking at a particular location, a deterministic seismic hazard assessment (DSHA)
approach was used to estimate PGA, wherein it is based on the expected earthquake
magnitude for a specific seismic source and the minimum distance from the site to the
fault source. Another essential parameter in determining CSR is the total and effective
overburden stresses, the computation is based on the unit weight of the soil being analyzed
and groundwater table elevation. Lastly, the factor of safety (FS) against soil liquefaction is
computed in terms of CRR, CSR, and magnitude scaling factor (MSF).

Once the factor of safety for each layer is determined, the calculated probability of
liquefaction (PL) is shown in Equation (2). Consequently, the formula depicted in Equation
(3) was used to determine the liquefaction severity index (LSI), which is used to evaluate
the liquefaction hazard until 20 m below ground elevation. Thereafter, classifications of LSI
from very low risk to very high risk were employed, as shown in Figure 6.

PL =
1

1 +
(

FS
0.96

)4.5 (2)

where the probability of liquefaction (PL) is computed using the calculated factor of
safety (FS).

LSI =
∫ 20

0
PL(z)(10 − 0.5)dz (3)

where the liquefaction severity index (LSI) is computed using the probability of liquefaction
(PL) and the depth of the soil layer (z, in m).
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2.5. Case Study

Metro Manila, also known as the National Capital Region (NCR), was the location of
the study. This region encompasses 619.57 square kilometers and consists of the sixteen
cities and one municipality depicted in Figure 7. In the region, there are a total of 1690
Barangays. To collect the necessary data, two primary sources were consulted. First,
reports on geotechnical investigations were gathered from both private companies and
local government agencies. Second, seismic data were obtained from PHIVOLCS, which
provided information on significant earthquake events, including their magnitude and
epicenter location. In addition, the location of PGA stations where these events were
recorded and the location of active faults in the region, including their head and tail latitude
and longitude, were also recorded.
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2.6. Validation

Importantly, assessing the ability of a model requires evaluating its level of accuracy.
To accomplish this, the model must be evaluated using data that was not utilized during
training. We can determine the model’s performance by testing its ability to generalize
and make accurate predictions on new data. The accuracy rate is a commonly employed
metric for evaluating the performance of a model. It quantifies the proportion of accurate
predictions made by the model using the test data. A higher accuracy rate indicates that
the model can predict future outcomes with greater precision, making it more reliable and
applicable to real-world situations. In conclusion, evaluating a model’s accuracy using
previously unused data is essential for determining its ability to make accurate predictions,
and the accuracy rate is a crucial performance metric.



Appl. Sci. 2023, 13, 6549 10 of 22

3. Results and Discussions
3.1. Models
3.1.1. Site-Specific Models

In this study, site-specific characteristics were utilized as model inputs. For example,
the SPT N-values and groundwater elevation were used to calculate the unit weights of a
soil layer. In cases where data were unavailable for specific locations, the study collected
site-specific geotechnical data, including fines content, soil type, and ground elevation, to
train and develop machine learning models.

Regression models are utilized for numerical data, whereas classification models are
utilized for non-numerical data. Various performance parameters are compared during
model training to determine the optimal deployment model. In this study, it was deter-
mined that the Tree regression model provided the best fit for the available data, shown on
Tables 2 and 3. The algorithm employed by the tree model repeatedly divides the data into
partitions based on latitude, longitude, and elevation, as well as the output variable.

Table 2. Coefficient of determination (R2) of the site-specific models.

Parameter Tree Linear Quadratic Ensemble Neural Network

Ground Elevation 0.99 0.44 0.71 0.98 0.93

Groundwater Table Elevation 0.99 0.44 0.70 0.97 0.92

SPT N-value 0.88 0.09 0.25 0.50 0.46

Fines Content 0.76 0.05 0.16 0.48 0.30

Table 3. Root mean square error (RMSE) of the site-specific regression models.

Parameter Tree Linear Quadratic Ensemble Neural Network

Ground Elevation 0.00 2.81 2.50 1.24 1.80

Groundwater Table Elevation 0.00 2.95 2.62 1.30 1.89

SPT N-value 7.33 20.24 18.41 15.09 15.73

Fines Content 13.78 27.60 25.97 20.38 23.75

With R2 values ranging from 0.76 to 0.99, the trained models for ground elevation,
groundwater table elevation, SPT N-value, and fines content demonstrated a very strong
positive relationship. The lowest RMSE values were also observed for the tree model,
indicating a good fit with the data. In addition, with an RMSE of 0.00 m for both the ground
elevation and the groundwater table elevation, the tree model provided a perfect fit.

Utilizing the tree model in geotechnical site-specific models has numerous benefits. It
requires less work during data preparation and preprocessing, and data normalization and
scaling are unnecessary. In addition, missing values in the data do not have a significant
impact on the process of constructing a tree, which is especially advantageous in instances
where geotechnical investigation reports may contain insufficient data.

In previous sections, the number of usable borehole data was determined by examining
the R2 and RMSE values. A comparison was conducted to determine how the number of
collected data impacts the performance of machine learning models that have been trained.
As anticipated, the results demonstrated that as the density of the boreholes increased, the
RMSE decreased and the R2 increased, resulting in improved model performance. It is
commonly understood that insufficient training data can result in less accurate estimates.
Similarly, insufficient testing data can lead to overly optimistic results and a high degree
of variation.

The winning model’s performance parameters, R2 and RMSE, were enhanced through
hyperparameter tuning. Since the winning model is the tree model, the number of leaves
was the hyperparameter being tuned. The performance of the tree regression model
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declined as the number of leaves increased, thus, “2” leaves were utilized. This is because a
small change in the model can result in a substantial change in the tree’s structure, leading
to greater variability.

For non-numerical data such as soil type, classification machine learning models
were used to determine the soil types of locations for which no data were available. For
classification machine learning models, accuracy rates were used as performance indicators
as compared to regression models.

The nearest neighbor model had the highest rate of accuracy among competing models
for predicting soil types based on proximity to an unknown layer, shown in Table 4.
Typically, the estimate is based on a majority vote, which means that the soil type that is
most frequently represented around the unknown data point is the estimate.

Table 4. Accuracy rates of the site-specific classification models.

Parameter Tree Discriminant Naive Bayes Nearest Neighbor Neural Network

Soil Type 70.2 42.8 53.2 93.9 56.3

Site-specific models have significant limitations despite their accuracy in predicting
ground elevation, groundwater table elevation, SPT N-value, fines content, and soil type.
Due to the large number of variables involved, including spatial relationships, there is no
particular equation that can represent them. Therefore, there is no benefit to converting the
internal models into equations. These trained site-specific models are therefore commonly
referred to as black boxes.

3.1.2. Calibrated Models

The collected data from geotechnical investigations can be repurposed to generate
calibrated models that estimate the spatial geotechnical properties of other sites for which no
data are present. Once calibrated models have been developed, they can be deployed across
multiple locations in a region, enabling the delineation of maps. Calibrated models were
developed and characterized as soil strength, soil behavior, and liquefaction susceptibility
were developed. In contrast to site-specific models, which lack an equation form, calibrated
models are trained to include fewer parameters to represent the relationship between
parameters via an equation. Site-specific models have the disadvantage of being less
interpretable than calibrated models. By using an equation to represent the relationship
between parameters, it is easier to comprehend how the input parameter changes affect the
output. This makes calibrated models a valuable tool for comprehending soil behavior and
strength and predicting the probability of liquefaction.

In soil mechanics, the unit weight of the soil is an essential parameter that plays a
significant role in numerous geotechnical engineering analyses. The unit weight is affected
by several variables, including the soil’s water content and the level of compaction. To
obtain precise results, it is necessary to calibrate the unit weight parameter based on its
location and soil group. To accomplish this, four distinct calibrated models for the unit
weight of the soil were developed based on its location and soil group. These models
include the wet unit weight of coarse-grained soil, the dry unit weight of coarse-grained
soil, the wet unit weight of fine-grained soil, and the dry unit weight of fine-grained soil.

The natural in-situ unit weight of soil located above the groundwater table is the
moist unit weight. The data on moist unit weight were mined and calibrated to enable
data manipulation and facilitate the transformation of raw data into novel insights. As a
result, machine learning techniques were used to develop and train the unit weight models.
The neural network regression model has the strongest positive relationship (R2 = 0.70)
among the competing algorithms. Between SPT N-values 0 and 15, a sudden increase
in unit weight can be observed, indicating a range from very loose to loose. In addition,
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beginning with N-values between 15 and 50, the unit weight increases slowly but steadily,
as demonstrated by Equations (4) and (5).

γmoistCG = 0.2868N + 12.559 (4)

γmoistCG = 0.1066N + 15.171 (5)

where γmoistCG is the moist unit weight of coarse-grained soils (kN/m3), N is the SPT
N-value, and the SPT N-value range: 1 ≤ N ≤ 15 for Equation (4), and 15 < N ≤ 50 for
Equation (5). A new trend in unit weight estimation has emerged that differs from previous
trends established by notable researchers [23,47–51]. These earlier studies examined the
relationship between SPT N-values and the moist unit weight and discovered a consistent
increase. However, a significant limitation of these earlier models was that they did not
account for the situation in which an SPT value of “0” was present. For instance, both
Puri’s (2018) and Rahman’s (2019) models include an intercept when the SPT N-value is
“0,” leading to unreliable estimates of 12.25 kN/m3 and 16 kN/m3, respectively. Therefore,
this new trend in unit weight estimation is significant due to its capacity to address and
rectify the flaws of previous models.

The quadratic model won in the competition between models for the moist unit weight
of fine-grained soils, as represented by Equation (6). The sparse nature of the collected data
hinders the effectiveness of the model, resulting in a weak relationship with an R2 value of
0.16. Consequently, the linear model is also a viable option, although its performance is
inferior to that of the quadratic model.

γmoistFG = 0.0008N2 + 0.0418N + 14.849 (6)

where γmoistFG is the moist unit weight of fine-grained soils (kN/m3), and N is SPT N-value,
with a range of 1< N ≤ 50.

The proposed model follows the trend established by previous researchers [20,48],
which establishes a direct correlation between the SPT N-Value and the soil unit weight.
Peck et al. [20] explain that this trend is attributable to the compaction of soil particles
and the presence of an adequate amount of water in the soil layer above the groundwater
table. As the N-Value increases, so does the relative density of the soil particles, resulting
in greater compaction and, ultimately, a rise in unit weight.

In addition, the saturated unit weight is a distinct parameter used for subsurface soil
layers. Above the groundwater table, soil particles are not saturated with water, resulting
in a higher unit weight. However, the trained models contradict this notion because most
saturated soil layers are located below the groundwater table and are denser, accounting
for the additional weight of water due to its saturation in this property. Therefore, these
soil layers tend to have a higher unit weight, with a minimum of 15.63 kN/m3 and a
maximum of 21.53 kN/m3 for the saturated unit weight. The linear model is the preferred
and most accurate model for estimating the saturated unit weight of both coarse-grained
and fine-grained soil layers. With an R2 value of 0.30, the linear model for coarse-grained
soil has a moderately positive relationship. The linear model for fine-grained soil, on the
other hand, has a strong positive relationship, with an R2 value of 0.61. The coarse-grained
soil model has a lower R2 value than the fine-grained soil model, indicating that there
is less sparsity in the data. The model for the saturated unit weight of coarse-grained
soils is represented by Equation (7), while the model for the saturated unit weight of
fine-grained soils is represented by Equation (8). Based on the trend described by previous
studies [49–52] a linear relationship can be estimated between the SPT N-Value and the
saturated unit weight. Given the SPT N-value, it is possible to determine the saturated unit
weight of a soil layer.

γsatCG = 0.1197N + 15.454 (7)

γsatFG = 0.0998N + 15.531 (8)
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where γsatCG is the saturated unit weight of coarse-grained soils (kN/m3), γsatFG is the
saturated unit weight of fine-grained soils (kN/m3), and N is SPT N-value, with a range of
1< N ≤ 50.

The equations (Equations (4)–(8)) for the unit weight of soil layers are restricted to
the range of SPT N-values between 1 and 50. Values greater than 50 are indicative of
refusal (rocks).

Soil liquefaction is the phenomenon in which saturated soil loses its strength when
subjected to an external force, such as an earthquake. Peak ground acceleration (PGA) is
an essential factor in determining the likelihood of soil liquefaction, as it measures the
maximum acceleration that the ground reaches during an earthquake. This parameter is
directly correlated with the amount of ground shaking during an earthquake. The greater
the PGA, the greater the probability of soil liquefaction.

In engineering analysis and design of structures against liquefaction, PGA is typically
employed as an input variable via cyclic stress ratio (CSR). PGA data can be used to
generate seismic hazard maps, which aid in identifying areas that are highly susceptible
to liquefaction.

In this study, the deterministic seismic hazard assessment (DSHA) was used to calcu-
late peak ground acceleration (PGA), the maximum acceleration the ground experiences
during an earthquake. DSHA estimates ground motion by considering the maximum
magnitude of an earthquake attributable to a given seismic source and the shortest dis-
tance between the site and the fault. A limitation of DSHA is that it is site-specific and
may not apply to other regions; therefore, a separate assessment must be conducted for
other regions where structures are planned. Another limitation is that linear ground mo-
tion is assumed, which is not always the case during earthquakes. DSHA is still utilized
despite these limitations because it is generally simpler and easier to comprehend than
alternative methods.

DSHA provides an estimated PGA with a model or equation that describes the re-
lationships between PGA, earthquake magnitude, and distance from the seismic source.
In this study, deployment was based on the linear model, which revealed a very strong
positive relationship (R2 = 0.89), represented by Equation (9). Comparing the estimated
values to those of other studies revealed that the results fell within a reasonable range.
However, the formula for estimating PGA is restricted to locations within a 100 km radius
of the seismic sources, although the distance may exceed 100 km.

PGA =
[−335.58603 + (95.62499M)− (1.31834R)]

981
(9)

where PGA is the peak ground acceleration (m/s2), M is the expected magnitude of the
earthquake, with a range of 5 ≤ M ≤ 9, and R is the distance from the fault line which may
go beyond 100 km, however, the value of PGA becomes too small.

Various machine learning (ML) models, such as tree, ensemble, and neural network
models, demonstrate promising relationships between variables. These models are, how-
ever, highly susceptible to overfitting, which occurs when a model fits too closely to the
details and noise in the training data. Due to their inability to generalize beyond the
training set, overfitted models may have subpar performance when making predictions on
new data. To avoid overfitting and ensure that the models can make accurate predictions
on new data, care must be taken when selecting and deploying machine learning models.

3.2. Case Study: Metro Manila, Philippines

This research will focus on Metro Manila, also known as the National Capital Region
(NCR). The region consists of sixteen cities and one municipality and serves as a commercial,
educational, and cultural center for the Philippines. Metro Manila is the most densely
populated region in the country, with a population density of approximately 20,000 people
per square kilometer as of 2021, with an estimated population of approximately 13 million
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people. Due to migration from other parts of the country in search of better economic
opportunities, the population has increased rapidly.

In recent years, new residential and commercial developments have been constructed
to meet the rising demand for housing and office space because of the population increase.
For construction projects, a geotechnical investigation is necessary to determine the site’s
suitability for proposed developments. Due to its high population density, rapid urbaniza-
tion, and earthquake susceptibility, Metro Manila is an excellent location for a case study to
determine the significant liquefaction susceptibility.

As shown in Figure 8, a total of 1656 geotechnical investigation data were collected
from within and surrounding Metro Manila. Using GIS, the areas of each zone were then
determined, and any areas larger than 1 km2 were reduced through microzonation. This
resulted in an increase from the original 1690 zones to a total of 2036 zones, shown in
Figure 9. In addition, the centroids of each zone have been determined using GIS and are
provided in latitude and longitude format.
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Metro Manila’s susceptibility to liquefaction was evaluated in this study using the
methodology developed by Idriss et al. [1]. This methodology employs the equation for the
factor of safety (FS) against liquefaction, which is written in terms of the cyclic resistance
ratio for earthquakes (CRR) and the cyclic stress ratio (CSR) resulting from the earthquake’s
shaking. The CSR is the seismic demand placed on a soil layer and is computed using the
peak horizontal acceleration (PGA) at the surface of the ground caused by the earthquake.
As discussed in the previous section, the DSHA was employed to estimate PGA. DSHA
involves calculating the distance from the source of the fault and the magnitude of the
anticipated earthquake. Within the context of Metro Manila, it was discovered that the
Marikina West Valley fault has a prominent presence. The cities of Quezon City, Marikina,
Pasig, San Juan, Mandaluyong, Pateros, Makati, Taguig, Paranaque, and Muntinlupa are
at risk if the fault line ruptures, as they all lie within 0–2 km of the fault line, shown in
Figure 10. The NCR cities located farthest from the Marikina West Valley Fault are Malabon
and Navotas.

In this study, a parametric analysis was performed to determine the evolution of peak
ground acceleration (PGA) in Metro Manila for earthquakes with magnitudes ranging from
5.0 to 9.0. The Marikina West Valley Fault is a major contributor to seismic activity in Metro
Manila and poses a significant threat of a magnitude 6 to 7.5 earthquake. This earthquake
could cause a significant number of fatalities and injuries. In the National Capital Region,
Table 5 displays the range of peak ground acceleration at different earthquake magnitudes.
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Table 5. Range of PGA at different earthquake magnitudes in Metro Manila.
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5.0 0.12 0.15

6.0 0.22 0.24

7.0 0.32 0.34

7.5 0.37 0.39
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By conducting a parametric analysis and presenting the resulting data in Table 5, this
study contributes to our understanding of the seismic hazards this region faces and empha-
sizes the significance of proactive risk management and disaster preparedness measures. A
reference PGA map of Metro Manila at an expected magnitude 7.5 M earthquake is shown
in Figure 11.
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This study’s map of estimated peak ground acceleration (PGA) for Metro Manila is
consistent with the results of a previous study by Dungca and Montejo (2022) [53]. In
addition to assessing the amplification of seismic waves based on soil properties, their
study produced a seismic hazard map for Metro Manila with a 10% probability of ex-
ceedance (POE). In this study, the PGA values for Metro Manila and other important
geotechnical parameters were used to calculate the factor of safety (FS) against liquefaction.
The probability of liquefaction (PL) was then calculated, and the resulting liquefaction
severity index (LSI) was used to assess the liquefaction hazard of various zones within
Metro Manila. As depicted in Figure 11, a liquefaction hazard assessment was conducted
for an anticipated magnitude of 7.50 on the Marikina West Valley Fault, and a map was
produced using the methodology developed by Idriss et al. (2004) [1]. This map provides
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vital information regarding the likelihood of liquefaction and associated risks in various
areas of Metro Manila.

It is evident that the susceptibility of a layer to liquefaction is determined by its
N-value, and layers with N-values greater than 30 are not considered susceptible to liq-
uefaction, shown in Figure 12. In addition, the first 20 m of the investigated area in these
cities consists of clayey soils that are non-liquefiable. The liquefaction severity index varies
between various Metro Manila cities. There is a mixture of low, high, and very high values
in Caloocan, Las Pinas, and Quezon City. Some cities on the Central Plateau have non-
liquefiable areas due to the presence of sand in the shallow layers. However, the risk of
liquefaction is greater in Makati, Mandaluyong, and San Juan near the west. In contrast,
Marikina, Muntinlupa, Paranaque, Pasig, Pateros, Taguig, and Valenzuela have low, high,
and extremely high liquefaction severity index values. The cities on both the Central
Plateau and the Plain have a range of low, high, and extremely high liquefaction severity
index values. Malabon, Manila, Navotas, and Pasay are, however, the most common
locations with extremely high liquefaction severity index values. Consequently, coastal
cities have an exceptionally high liquefaction severity index, making them more susceptible
to liquefaction during earthquakes. The resulting liquefaction potential map concurs with
local findings, which determined that the coastal and plateau cities of Metro Manila have
the highest liquefaction potential.
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3.3. Validation

To validate the model’s accuracy, data that were not utilized during training were
used. Specifically, the unused data used for sample validation were located at 14.683126,
120.942226 (Latitude, Longitude) in Dampalit, Malabon City. The ground elevation was
estimated to be 3 m as the initial estimated parameter for site-specific properties. With an
accuracy rate of 83%, this estimate was found to be close to the USGS-obtained value of
2.5 m.

Estimating the depth of groundwater was also essential for geotechnical engineering,
particularly in Metro Manila’s coastal regions, where the depth of groundwater is typically
shallow. Both the estimated and collected data yielded a value of 1m, resulting in a
100 percent accuracy rate. The model framework permitted the estimation of several site-
specific parameters, including the SPT N-value, USCS (soil type), liquid limit, and plastic
limit of the target site. The accuracy of these estimates ranged between 75% and 86%,
indicating that the estimated parameters and the collected data are in excellent agreement.

However, it was determined that the average accuracy of the N-value estimates was
84%, with some layers exhibiting low accuracy. This can be attributed to the tree model’s
inability to account for erratic soil layer trends. This is applicable to USCS and Atterberg
limits. In contrast, the accuracy of unit weight estimates varied between 87% and 95%.

With regard to the seismic behavior of the target location, the estimated peak ground
acceleration was compared to the PHIVOLCS map of Metro Manila’s 1000-year return
period for peak ground acceleration. This comparison was found to be 96% accurate, indi-
cating a reliable estimate. In addition, both the estimated classification and the classification
from the Metro Manila Earthquake Impact Reduction Study (MMEIRS) concur that the
liquefaction classification for the target area is Very High. This is likely due to the target
area’s proximity to the coast and the prevalence of sand layers.

4. Conclusions

In conclusion, the successful application of machine learning algorithms to estimate
liquefaction susceptibility in the Metro Manila, Philippines study demonstrates the sig-
nificance of incorporating geotechnical factors and sufficient data for accurate modeling.
The study’s findings indicate that an increase in usable borehole data leads to improved
model performance, as evidenced by the decrease in RMSE and the increase in R2. These
results highlight the importance of data in improving the accuracy of machine learning
models and the potential of these algorithms to inform liquefaction risk assessments and
mitigation efforts beyond the study area.

In addition, this research has demonstrated the practicality of using latitude and longi-
tude as input variables to estimate site-specific characteristics such as ground elevation,
groundwater elevation, soil type, and various soil properties. The highly positive correla-
tion between the trained models for ground elevation, groundwater table elevation, SPT
N-value, and fines content indicates a good fit with the data. Moreover, among competing
models, the nearest neighbor model has demonstrated the highest level of accuracy in
estimating the soil type for each layer.

Nonetheless, the study also uncovered a significant limitation in site-specific models.
Due to the large number of variables, including spatial relationships, it is impossible
to represent them with a single equation. Thus, these site-specific trained models are
commonly known as black boxes. This limitation highlights the need for additional research
to develop more interpretable models that can shed light on the mechanisms underlying
the observed patterns.

In addition, a calibrated model represented by an equation was utilized in this study
to determine various soil properties, such as liquefaction susceptibility and maximum
surface ground acceleration (PGA). The linear model has demonstrated a highly significant
positive correlation for PGA, and the estimated values fall within a reasonable range when
compared to the findings of other studies. Nevertheless, the formula for estimating PGA is
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restricted to locations within a 100 km radius of seismic sources, even though the distance
can exceed 100 km.

In addition, the comprehensive study on seismic activity in Metropolitan Manila,
particularly on the Marikina West Valley Fault, has revealed alarming findings that pose an
important danger to the safety and security of the area’s residents. The conducted para-
metric analysis to determine the development of peak ground acceleration for earthquakes
ranging in magnitude from 5.0 to 9.0 resulted in a map of Metro Manila’s estimated PGA
that is consistent with previous research, thereby bolstering the validity of the study’s find-
ings.

In addition, the study’s calculations of probability of liquefaction (PL) and liquefaction
severity index (LSI) for each layer, as well as the resulting liquefaction potential map,
indicate that the coastal and plateau cities of Metro Manila have the highest liquefaction
potential. This emphasizes the need for immediate action to mitigate the threat and
safeguard the lives of area residents.

The validation process utilizing unused Dampalit, Malabon City data further demon-
strates the high degree of accuracy of the model developed in the study, thereby enhancing
confidence in the reliability of the model.
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