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Abstract: The internet of things (IoT) represents a disruptive concept that has been changing society
in several ways. There have been several successful applications of IoT in the industry. For example,
in transportation systems, the novel internet of vehicles (IoV) concept has enabled new research
directions and automation solutions. Moreover, reinforcement learning (RL), federated learning
(FL), and federated reinforcement learning (FRL) have demonstrated remarkable success in solving
complex problems in different applications. In recent years, new solutions have been developed
based on this combined framework (i.e., federated reinforcement learning). Conversely, there is a lack
of analysis concerning IoT applications and a standard view of challenges and future directions of
the current FRL landscape. Thereupon, the main goal of this research is to present a literature review
of federated reinforcement learning (FRL) applications in IoT from multiple perspectives. We focus
on analyzing applications in multiple areas (e.g., security, sustainability and efficiency, vehicular
solutions, and industrial services) to highlight existing solutions, their characteristics, and research
gaps. Additionally, we identify key short- and long-term challenges leading to new opportunities in
the field. This research intends to picture the current FRL ecosystem in IoT to foster the development
of new solutions based on existing challenges.

Keywords: internet of things (IoT); federated reinforcement learning (FRL); reinforcement learning
(RL); federated learning (FL); survey

1. Introduction

The internet of things (IoT) represents a disruptive concept that has changed society
in several ways. This paradigm connects businesses and optimizes operational factors in a
variety of industries [1]. The recent increase in IoT services has shed light on the valuable
resources it brings to operations and to society in general [2]. In fact, new technologies
are expected to be developed in the near future, and new solutions are currently under
development in different sectors.

There have been several successful applications of IoT in the industry. For example,
in transportation systems, the novel internet of vehicles (IoV) concept has enabled new
research directions and automation solutions [3]. Similarly, logistics have been supported
by new IoT-based solutions [4]. Finally, there are other successful IoT applications and
more opportunities to develop new solutions in the next few years [5,6].

With the increasing adoption of IoT, new cybersecurity threats have been engineered
to exploit the vulnerabilities of such devices [7,8]. The lack of standards regarding vulnera-
bility documentation [9]; the variety of devices, models, and brands [10]; and the simplicity
of IoT architecture (both in terms of software and hardware) [11] harden the mitigation
of such threats. Although current vulnerabilities can be addressed in future models in
IoT, new vulnerabilities can be discovered. Thus, security solutions are paramount for the
success of IoT operations.
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Furthermore, privacy concerns have become more relevant in the past few years [12].
The interaction with such devices can disclose private information in different forms, e.g., fi-
nancial transactions [13] and transportation states [14]. The need for privacy-preserving
solutions is critical in several applications. In fact, strategies to enable different IoT systems
to interact while preserving confidential information can be used in the development of
solutions in multiple domains.

Moreover, reinforcement learning (RL) has demonstrated remarkable success in solv-
ing complex problems in different scenarios [15,16]. Additionally, federated learning (FL)
has enabled global statistical models to be developed based on distributed remote sys-
tems in a way to reduce local error [17]. The combination of these two concepts, namely,
federated reinforcement learning (FRL), focuses on enabling joint and privacy-preserving
learning in sequential decision-making problems [18].

In recent years, new solutions have been developed based on this combined
framework [19,20]. These solutions enable different entities to work collaboratively to
achieve faster convergence and more robust results [21,22]. The same applies to IoT sys-
tems, where different systems can improve internal operations based on the experiences
collected from global systems.

Conversely, although some works focus on analyzing FRL contributions [23], there is a
lack of analysis concerning IoT applications. Additionally, an analysis of FRL applications
subdomains in the IoT context is necessary to shed light on short- and long-time research
directions. There is a lack of understanding regarding challenges and future directions
analysis of the current FRL landscape in different IoT applications. Finally, the description
of open challenges is important to foster the development of new solutions based on the
current issues faced in the intersection between FRL and IoT.

Thereupon, the main goal of this research is to present a literature review of federated
reinforcement learning (FRL) applications in IoT from multiple perspectives. We focus on
analyzing applications in multiple areas (e.g., security, sustainability and efficiency, vehicu-
lar solutions, and industrial services) to highlight existing solutions, their characteristics,
and research gaps. This is due to the fact that several solutions (both in terms of software
and devices) are under development in these sectors, and this presence is expected to
be even more significant in the next few years. Additionally, we identify key short- and
long-term challenges leading to new opportunities in the field. This research intends to
picture the current FRL ecosystem in IoT to foster the development of new solutions based
on existing challenges. In this context, the main contributions of this research are as follows:

• A comprehensive review of efforts regarding FRL-based solutions for IoT, and their
main contributions, methods, resources, and future directions;

• An analysis of timely solutions divided into categories concerning problems faced,
methods used, and immediate directions tailored to each domain;

• An extensive list of short- and long-term open challenges regarding the proposal of
new IoT solutions supported by federated reinforcement learning (FRL).

This paper is organized as follows: Section 2 presents the background of this research,
in which concepts related to reinforcement learning (RL), federated learning (FL), and fed-
erated reinforcement learning (FRL) are depicted. After that, Section 3 presents several
FRL applications in IoT solutions. The areas considered include security, sustainability and
efficiency, and vehicular and industrial solutions . Finally, Sections 4 and 5 present open
challenges concerning FRL applications in IoT and the conclusion of this research.

2. Background

This Section overviews critical topics for a better understanding of the FRL analysis in
IoT applications. First, we present the reinforcement learning (RL) characteristics. After that,
we define federated learning (FL) and federated reinforcement learning (FRL).
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2.1. Reinforcement Learning (RL)

Reinforcement learning (RL) is the result of the fusion between the trial-and-error
“law-of-effect” tradition, optimal control theory, the secondary reinforcement tradition,
and the use of different stimulus [24].

Reinforcement learning techniques have demonstrated their efficacy in various impor-
tant applications [25]. When applying reinforcement learning (RL) in complex applications,
it is common to use generalizing function approximators such as neural networks, decision-
trees, or instance-based methods [26]. RL studies how systems can learn and predict the
consequences of environmental interactions [27]; FL relies on an agent interacting with
these environments, learning an optimal policy in many fields [28], making a series of
decisions over time, aiming to achieve goals that may be delayed while also managing
uncertainty and randomness. It focuses on making decisions quickly rather than relying on
lengthy analysis or higher-level reasoning [29]. To solve problems related to reinforcement
learning, there are two primary approaches. The first involves exploring different behav-
iors to discover one that is effective in a given environment. The second approach is to
utilize dynamic programming methods and statistical techniques to gauge the usefulness
of actions taken in specific states of the world [30].

In the past few years, there have been several RL contributions across multiple fields.
Furthermore, there are several opportunities to use RL in new applications and develop
new RL approaches [15,16].

There are many important RL components. A state represents the configuration
of the environment for a given task [31,32], while actions are functions RL agents can
execute to change or interact with the environment [33,34]. These actions can generate
new states. In fact, the reward function produces a score for an action executed for a given
state [35] (the output—i.e., the reward—can be positive and negative. Although the term
“rewards” may lead to an understanding that the outcome is always positive, negative
signals are also provided to inhibit non-optimized decisions.). Furthermore, a policy
represents an association between actions and states from the reward standpoint [36,37].
Figure 1 illustrates the general RL process model.

Figure 1. Reinforcement learning (RL) process [38,39].

Moreover, several RL techniques have been proposed in the last decade. These models
are becoming more complex and solving challenging problems with high performance.
Although several efforts have been made in this direction, some of them can be considered
applications for different IoT systems.

Q-learning [40,41] has been used in IoT monitoring [42] and resource allocation [43].
Deep Q-learning [44] and double deep Q-learning (DDQN) [45] have supported transmis-
sion scheduling in IoT [46,47]. Proximal policy optimization (PPO) [48] and advantage
actor–critic (A2C) [49,50] were adopted for computation offloading [51,52], while the deep
deterministic policy gradient (DDPG) [53] can be adopted for intrusion detection [54] in
green IoT. Finally, the asynchronous advantage actor–critic (A3C) [55] has been adopted in
service placement [56].
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2.2. Federated Learning (FL)

Federated learning (FL) entails the process of learning a shared model from distributed
sources on various client systems in order to reduce prediction error [17]. Kairouz et al.,
define FL as “a machine learning setting where multiple entities (clients) collaborate in
solving a machine learning problem, under the coordination of a central server or service
provider. Each client’s raw data is stored locally and not exchanged or transferred; instead,
focused updates intended for immediate aggregation are used to achieve the learning
objective” [57].

A common training procedure comprises client identification, broadcast, local compu-
tation, aggregation, and local and global updates [57]. All of these phases are pivotal for
training and defining a federated model, and they can be performed in different ways.

For instance, the aggregation phases include the mixture of various factors (or weights)
executed by a centralized system as illustrated in Figure 2. This entity is in charge of
considering the various inputs provided by the different clients. An approach used in
several efforts is the FedAvg [58,59], which is based on merging clients’ weights considering
local updates.

FL has been successfully used in multiple scenarios [60–63] and presents pivotal advan-
tages (e.g., privacy). In reference [60], the authors suggest a federated learning (PEFL) method
for IAI that is both efficient and provides enhanced privacy. PEFL is designed to be non-
interactive and capable of protecting sensitive data from disclosure, even if multiple entities
cooperate to breach it. The authors of [61] introduce a novel architecture that enhances data
privacy through security. They propose a privacy-preserving federated learning mechanism,
incorporating a two-phase approach involving intelligent data transformation and collabora-
tive data leakage detection to mitigate privacy risks. By combining blockchain technology
with on-device learning, this [62] study proposes a novel approach to federated learning. This
offers a promising solution for securing machine learning while preserving privacy. Another
scenario proposed in [63] is a framework for privacy-preserving federated learning in smart
agriculture. The framework employs a deep privacy encoding method to protect the data
privacy of each participant in the federated learning process.

Figure 2. Federated learning (FL) overview [64,65].

There are different categories of FR models. Although new approaches are under
development by the scientific community, some of the most popular classes are as follows:

• Vertical FL: This strategy refers to scenarios where data samples present in each
client’s environment share the same target while presenting different features [66].
In other words, clients may have different features referring to the same target [67,68];

• Horizontal FL: Refers to the use of the same feature space by different clients while
considering different data samples [66]. This refers to a more structured way of
distributed learning as the model weights can be combined due to the reference to the
same features [69];
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• Cross-device FL: This refers to the utilization of multiple devices (e.g., IoT devices)
to train a global model in a likely massive distributed dataset [70]. In other words,
the number of training clients can be extremely large [71,72];

• Cross-silo FL: This approach is based on the consideration of entities (e.g., companies
or organizations) as training clients in different industrial sectors (e.g., transporta-
tion) [73]. Compared to cross-device FL, the number of clients tends to be smaller.
Furthermore, each entity participates in the entire training process [74,75].

There are new federated learning (FL) efforts under active development, e.g., trust-
worthy federated learning [76,77], and federated anomaly detection [78–80]. Finally, new
paradigms in artificial intelligence (AI) as well as in reinforcement learning (RL) are under
development and evaluation, e.g., data-centric AI and its applications to IoT [81].

2.3. Federated Reinforcement Learning (FRL)

RL is capable of solving a variety of complex problems with high performance. How-
ever, there are some challenges in its applications to practical scenarios, e.g., sampling is
a decisive factor in the agent’s experience, which entails that learning efficiency relies on
sample efficiency [23]. In fact, sample efficiency refers to the manifestation of the actual
decision-making challenge in reinforcement learning theory [82]. Although some efforts
have focused on distributed RL [83,84], protecting agents’ privacy represents an issue
to be faced. Moreover, the simulation-reality gap is another challenge once simulated
environments can present some limitations compared to real environments [23].

Moreover, federated reinforcement learning (FRL) aims to enable agents to jointly learn
how to solve a given RL task performing uniformly well across multiple environments [18].
FRL focuses on privacy-preserving sequential decision-making, in which the sample, feature,
and label are not used and the environment, state, and action are included [23]. In fact,
FRL extends RL capabilities regarding distributed learning, new sampling techniques, gener-
alization, and privacy. Conversely, it also entails new challenges to be faced (e.g., poisoning
threats [85]). Figure 3 illustrates the federated reinforcement learning (FRL) training process.

Figure 3. Federated reinforcement learning (FRL) overview [86,87].

FRL is a recent topic that has been successfully adopted in several works. For ex-
ample, there has been FRL application to 5G [88], autonomous driving [89], robotics [90],
healthcare [91], and transportation [92]. These examples demonstrate how FRL can tackle
several problems faced nowadays and foster the development of new approaches related to
this combined framework. Moreover, the use of deep reinforcement learning (DRL) in a fed-
erated environment is referred to as federated deep reinforcement learning (FDRL). Finally,
FRL can be applied to IoT solutions in several different ways and environments [91,93].

3. Methodology

This Section presents an in-depth analysis of FRL efforts in different IoT applications.
First, we consider efforts toward IoT security. Secondly, we consider FRL-based sustainabil-
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ity and efficiency solutions for IoT operations. After that, vehicular solutions are depicted.
Finally, we focus on industrial IoT (IIoT) applications.

3.1. FRL Applications in the IoT in Terms of Security

The authors of [94] propose a novel approach for dynamic spectrum access (DSA) in
the context of the IoT using federated deep reinforcement learning (FDRL). They present a
set of techniques to enhance the efficiency of dynamic spectrum access in IoT environments.
The complete system can be categorized into three stages: the first involves training a
local double deep Q-learning network (DDQN) model, the second consists of aggregating
the central model, and the third involves releasing the model parameters. Their findings
indicate that the reinforcement learning algorithm has a significantly higher success rate
than random channel access, particularly after several iterations. Incorporating FL into the
approach results in even faster convergence. The proposed scheme aims to address the
security of terminal data and personal privacy data in a context where multiple devices
communicate with each other. Additionally, it maintains IoT users’ confidentiality since the
FDRL method only requires the uploading of model parameters to edge servers.

In reference [95], the authors propose a framework that merges blockchain and feder-
ated learning to improve the protection and confidentiality of acquired model characteris-
tics. The structure comprises three components: local training, blockchain for parameter
verification, and global aggregation. The edge servers maintain the blockchain. The deep
reinforcement learning (DRL) method they use has three crucial elements: the main net-
work, the target network, and replay memory. The primary and target networks each
have two deep neural networks (DNNs): the actor DNN that links system states to actions,
and the critic DNN that evaluates the effectiveness of policies and directs actions toward
policy gradient direction. The objective network has a comparable arrangement to the
primary network, and it generates desired outputs that help train the main critic DNN.
The proposed approach suggests using blockchain to preserve learning parameters and
validate their accuracy, which can improve the security and quality of the learning process.

The authors of [88], similar to [95], present a new framework for channel resource
allocation in 5G/B5G networks using federated reinforcement learning (FRL). They suggest
utilizing FRL to enhance incumbent technologies’ security in beyond 5G networks. The
authors suggest using the FRL model for faster learning convergence and combining
RL and FL methods in the proposed framework. The framework involves both local and
global learning phases. The results of the study show that the FRL framework assembles
much more quickly than the standard RL approach, indicating a significant performance
improvement. The experimental results confirm that the presented technique improves the
ability of WiFi networks in regard to throughput by selecting the optimal channel access
parameters through collaborative learning.

In reference [96], the authors introduce a decision-making system called Devote, which
presents a solution to address security challenges in fog-based IoT environments. Devote
utilizes a great algorithm to prioritize data services according to their importance while
assuming the accessibility of resources at the fog node (FN). To deal with the playful
nature of the IoT domain, the authors process IoT data in a way to adapt to changing
conditions over time. In addition, they present a technique based on an online secretary
approach for selecting the appropriate candidate FN for data offloading. The results
demonstrate that Devote achieves lower service delay than other systems and a user
satisfaction rate of 88.4%.

The authors of [97] present a new approach to introduce a solution to address security
concerns regarding privacy-preserving offloading in IoT environments enabled by the
cloud. The proposed method combines the concepts of context awareness and privacy
preservation to make offloading decisions more securely and efficiently. The authors
use federated deep reinforcement learning (fDRL) to train an offloading policy that can
adapt to IoT environment changes while considering privacy requirements. This approach
allows for better control over the trade-off between offloading performance and privacy.
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The experimental results show that the C-fDRL approach outperforms traditional offloading
methods in terms of both efficiency and privacy protection. The authors conclude that using
fDRL in IoT offloading can deliver a more secure and efficient answer while preserving the
privacy of sensitive data.

Miao et al. [98] present a new method called FL2S, designed to provide secure data
sharing in IoT systems. The proposed approach utilizes federated deep reinforcement
learning (FDRL) to create a policy that can adapt to IoT environment changes. This policy
is designed to enhance data-sharing security in IoT systems. The proposed approach, FL2S,
employs fDRL to create a data-sharing policy that adapts to the context of each IoT device
and the requirements of each sharing scenario. The approach provides a more flexible and
secure way of managing data sharing in IoT systems, considering privacy and security risks.
Experimental results demonstrate that the fDRL-based approach outperforms traditional
methods regarding both efficiency and security. The authors conclude that using fDRL
in IoT data sharing can lead to a more secure and efficient solution while preserving the
privacy of sensitive data.

Zheng et al. [99] suggest a new method to solve security issues related to resource
allocation in privacy-preserving EdgeIoT, which involves using DRL to train a policy to
make online resource allocation decisions based on the context of each edge device. They
suggest a novel FL-enabled twin-delayed deep deterministic policy gradient (FL-DLT3)
framework to balance privacy preservation and resource utilization. This approach is
designed to optimize resource allocation by learning from experience, considering the
context of each edge device, and balancing privacy preservation with the efficient use of
resources. The proposed approach can potentially enhance the efficiency and security of
resource allocation by using deep reinforcement learning, federated learning, differential
privacy, and access control mechanisms. According to the numerical results, for the better
prediction of time-varying data size, bandwidth, channel gain, and remaining energy of
IoT devices, the authors developed a new state characterization layer based on LSTMs in
FL-DLT3. The FL-DLT3 that has been suggested achieves rapid convergence, taking fewer
than 100 iterations. By comparing it to the current leading benchmark, FL shows a 51.8%
improvement in accuracy-to-energy consumption.

Anwar et al. [100] present a new framework based on multi-task federated RL for learn-
ing multiple tasks while protecting against adversarial attacks. The suggested framework
utilizes federated RL to allow agents to learn from one another while defending against
adversaries. The multi-task RL formulation ensures that the agents can learn multiple tasks
while assessing the trade-off between task performance and adversary defense. This frame-
work can enhance learning efficiency in multi-agent systems in the presence of adversaries.
The effectiveness of the proposed method is assessed through simulated experiments,
revealing that the agents can effectively acquire knowledge for multiple assignments and
protect themselves from adversarial attacks. The authors proposed a new attack method
called AdAMInG that considers the aggregation operator used in federated RL. Further,
they proposed modifying the conventional federated RL algorithm called ComA-FedRL
to manage the issue of adversaries in the multi-task federated RL problem. The solution
incorporates FRL, differential privacy, and Byzantine-resilient aggregation mechanisms to
ensure the privacy and security of local models and detect malicious behavior.

The author in [20] proposes a federated RL-based clinical decision system for edge
computing environments with resource constraints and privacy preservation concerns.
The system uses multiple agents to collaborate and utilize each other’s experiences to make
clinical decisions collaboratively and optimizes decision-making policies using reinforce-
ment learning. The authors proposed a new algorithm called double deep Q-network
(DDQN) within a fully decentralized federated framework (FDFF) made possible by an
integrated system known as SMEC. This algorithm ensures the privacy and security of
patient data and detects malicious behavior by providing a reliable way to develop a
treatment policy in real-time using multiple distributed electronic medical records (EMRs).
To ensure the confidentiality of EMRs, additively homomorphic encryption is employed.
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Security issues related to traffic monitoring in SDN-based IoT networks are a big
problem. To overcome these issues, Nguyen et al. [101] suggest a method for monitoring
IoT network traffic based on SDN using FDRL. The proposed approach utilizes a control
algorithm based on double deep Q-network (DDQN) and a flow-rule matching field to
supervise a specific IoT edge, facilitating effective traffic monitoring. The authors suggest
utilizing federated RL to enhance the learning version of the DDQN algorithm mentioned
earlier and enable the SDN controllers to collaborate and make traffic monitoring decisions
based on shared data. Their results demonstrate that the system can allow SDN controllers
to monitor network traffic and make informed decisions efficiently. The study found
that using a federated DDQN approach can decrease learning loss and learning cycles by
66% and 40%, compared to the traditional approach, in situations with high granularity
requirements. Additionally, the deep monitor framework improved the IDS application’s
attack detection performance by 22.83% compared to the FlowStat solution.

In reference [86], the authors suggest a method called FRL for automatically control-
ling software-defined networking (SDN)-based IoT systems while prioritizing data security.
This approach allows IoT devices to independently learn and adjust to the network’s
changing conditions without needing a central controller. The experiments show that the
proposed approach can effectively optimize network performance while reducing the com-
putational burden on individual devices. They utilized the actor–critic PPO, which is a kind
of reinforcement learning algorithm. They also introduced two federation policies—transfer
learning and gradient sharing—to enhance learning speed and overall performance.

Wireless networks are vulnerable to security breaches and intrusions due to the lack of
clear boundaries. As cyber intruders continue to grow, the risk of compromising critical ap-
plications monitored by networked systems has also increased. A federated reinforcement
learning-based intrusion detection system (FRL-IDS) has been proposed in [91], for health-
care infrastructures in the IoT networks to address these security concerns. The system is
designed to manage the challenge of detecting attacks in IoT-enabled healthcare systems,
which are increasingly vulnerable to security threats due to many related devices and the
sensitive character of the data they control. FRL allows multiple IDSs to collaborate and
learn from each other without sharing sensitive data, thereby addressing the privacy issue
in healthcare systems. The suggested system comprises a central server that manages the
training of intrusion detection system (IDS) models using federated reinforcement learning
(FRL), along with several edge devices that operate local IDSs. The edge devices train
their IDSs on local data and periodically upload the trained models to the central server,
aggregating them to enhance the system’s overall performance.

Current research on IIoT routing primarily concentrates on latency and routing re-
liability but often overlooks the importance of privacy and security in the routing pro-
cess. Wang et al. [102] present a solution for quality of service (QoS) and privacy-aware
routing in the context of the 5G-enabled IIoT. The approach considers the constraints of
the IIoT environment and the communication requirements to create an efficient routing
mechanism that ensures QoS while protecting user privacy. This approach aims to optimize
routing decisions while ensuring that the privacy of the data transmitted is preserved.
The proposed approach utilizes an FRL method to optimize the QoS while ensuring the
confidentiality of the user. The experiment results show that the quality of service and
privacy-aware routing (QoSPR) protocol can serve as a routing method that considers data
privacy concerns, effectively reducing the average and maximum latency and ensuring
optimal load balancing in 5G-enabled IIoT networks.

The authors of [22] propose a new framework called MARL-FRL to improve the secu-
rity of ICPS. It encourages agents to work in the system’s best interest, thereby reducing
the risks of security threats and malicious attacks. They introduce the MA-FRL algorithm,
which aims to address the problem of nonstationarity that arises due to frequent interaction
between devices in FL without compromising privacy by sharing sensitive information.
The suggested methodology requires several agents to interact with each other and ac-
quire knowledge from their shared experiences, enabling the system to adjust to evolving
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circumstances and enhance its security measures. The authors illustrate the efficacy of
their suggested method through simulations, and the results indicate that the suggested
MARL-based mechanism can improve the security of intelligent cyber-physical systems by
providing a more robust and adaptive approach to managing incentives.

Virtual network functions (VNFs) are a collection of VNFs linked in a particular
sequence to make different network services compatible and flexible. The application
of network function virtualization (NFV) enables these VNF groups to work together
in a federated manner. Nevertheless, meeting the rising demands of network services
through NFV execution can be challenging, mainly because of the fixed orchestration of
service function chains (SFCs). NFV is necessary to obtain compatibility and scalability for
different network services in service function chains (SFCs). The NFV execution is difficult
to achieve the ever-increasing conditions of network services, especially due to the static
orchestrations of SFCs. To address this challenge, the authors of [103] present a scheme
based on scalable SFC orchestration (SSCO) for NFV-enabled networks via FRL. SSCO has
unique features that differentiate it from the prior work, such as (1) it allows for training an
international education prototype that utilizes time-variant regional sample investigations.
This framework makes it possible to orchestrate scalable benefit function chains (SFC)
on a large scale while also ensuring that stakeholder data is kept private. (2) The SSCO
approach permits parameter updates between local clients and the cloud server solely at
the start and finish of every episode. This guarantees that distributed clients can enhance
the model while reducing communication expenses. This approach is designed to improve
the security of NFV-enabled networks by optimizing SFC orchestration. This can enhance
network performance while minimizing the risk of security threats and attacks.

Similar to [88,95], Yu et al. in [104] discussed the 5G network. They proposed a
framework combining DRL and FL to allow intelligent resource management in 5G ultra-
dense networks. The framework utilizes a hierarchical architecture with global and local
controllers to handle resources at various timescales. It seeks to enhance resource allocation
and task offloading in a multi-access edge computing environment. They created a unique
and authentic direction to DRL called the “two-timescale deep reinforcement learning
(2Ts-DRL) approach”. This method contains two learning processes: one on a fast-timescale
and another on a slow-timescale. In addition, they use FL to train the 2Ts-DRL model in
a decentralized manner to safeguard data privacy on edge devices.Although the paper
does not mention any particular security concerns, it does address the overall security
challenges facing MEC networks. Such networks are susceptible to several security threats,
such as attacks on edge devices, data breaches, and denial-of-service attacks. The proposed
approach uses DRL and FL to optimize resource allocation and management to mitigate
these threats, enhancing network performance and lowering the risk of attacks and other
security threats.

While FRL has many potential applications, current research must address two crucial
problems. Firstly, there needs to be more theoretical analysis of the convergence of FRL
algorithms. Secondly, the recent works do not consider the effect of random system failures
or adversarial attacks on the execution of FRL. Xiaofeng et al. [105] propose the first FRL
framework that ensures convergence and is resilient to the failure or malicious behavior
of up to half of the participating agents.The proposed approach called FT-FRL with theo-
retical guarantees has been presented to improve the security of FRL. This can effectively
address the fault tolerance issue and enhance FRL’s overall security. This framework uses a
Byzantine fault-tolerant algorithm that allows the agents to exchange information securely
while ensuring that malicious agents cannot disrupt the learning process. The FT-FRL
algorithm is compared with existing reinforcement learning algorithms, demonstrating
that it performs better in system performance and accuracy in a decentralized environment.

In reference [86], the authors present an FRL architecture in which each agent operates
independently on their respective IoT device and shares their learning experience with
other agents in a decentralized way. This scheme addresses the security concerns related
to training control policies for IoT devices that arise due to scalability. Leveraging FRL to



Appl. Sci. 2023, 13, 6497 10 of 27

optimize the training process can significantly improve the overall security of these devices.
This technique lets agents learn from each other’s experiences without sharing raw data,
enhancing the system’s general performance. Using this FRL architecture, the data privacy
on the IoT devices is maintained, and the agents can cooperate effectively to acquire optimal
control policies for the given task. They combine the actor–critic proximal policy optimiza-
tion (actor–critic PPO) algorithm into each agent in the suggested collaborative framework.
They also present an effective method for exchanging gradients and transferring model
parameters to the agent.

The main focus of the authors of [106], is to tackle the security and privacy concerns
in FL, where clients provide their data to a central server for model training. The proposed
solution is to enhance the security and privacy of FL by carefully choosing reliable clients to
participate in the learning process. They offer a novel method for determining trustworthy
and reliable clients in federated learning systems. They implement their proposed method
in the healthcare sector, specifically for detecting COVID-19 using IoT devices. They use a
dataset of COVID-19 chest X-rays and apply the federated learning framework with the
proposed client selection mechanism to train a model for COVID-19 detection.

Finally, Table 1 provides a summary of all the works that were reviewed, taking into
account their areas of study, the technologies used, and the objectives pursued.
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Table 1. Overview of FRL-based solutions for secure IoT operations.

Number Work Domain Technology Research Purpose Research Problem Dataset Year

1 Li et al. [94] Wireless communication networks,
dynamic spectrum access FDRL Optimizing spectrum

allocation efficiency
Spectrum sharing

optimization problem Simulated data 2022

2 Lu et al. [95] 5G networks FL, blockchain, and 5G
Improving 5G networks,

integration of
blockchain and FL

Security, privacy, and scalability
challenges of 5G networks Simulated data 2020

3 Ali et al. [88] Dynamic spectrum FRL Improved
performance Incumbent interference Simulated environment 2021

4 Tiwari [96] Fog computing and IoT Federated
computing

Service
provisioning Criticality management Simulated data 2021

5 Xu et al. [97] Cloud-enabled IoT FDRL Privacy-preserving
offloading Privacy preservation Own dataset 2022

6 Miao et al. [98] IoT and data sharing FDRL Secure data sharing Secure and efficient data sharing Simulated data 2021

7 Zheng et al. [99] Edge computing and IoT DRL, FL,
and edge computing

Resource
optimization Privacy-preserving Real-world dataset 2022

8 Anwar et al. [100] Federated learning FL, RL, and federated RL
framework

Multi-task
RL efficiency

Privacy-preserving
federated learning N/A 2021

9 Xue et al. [20] Healthcare decision system FL,
edge computing, and RL

Privacy-preserving,
clinical decision

Resource constraints, privacy,
and clinical decision-making

MIMIC III dataset
[107] 2021

10 Nguyen et al. [101] Networking and IoT FL, DRL,
and SDN

Traffic monitoring
optimization

Traffic monitoring
scalability, and privacy N/A 2021

11 Lim et al. [86] SDN-based
IoT networks FRL, IoT, and SDN IoT network optimization,

automation

IoT control complexity,
IoT network performance, and

network management efficiency
Simulated environment 2020

12 Wang et al. [102] Wireless IoT networks FRL, IIoT,
and 5G

Improve IIoT routing,
improve IIoT communication Routing, privacy, and QoS Simulated data 2021

13 Xu et al. [22] AI, multi-agent systems MARL, FL,
and cybersecurity

Secure multi-agent
cyber-physical systems

Secure multi-agent collaboration and
privacy-preserving incentives FMNIST dataset 2021

14 Huang et al. [103]
Network function

virtualization (NFV) and
service function chain (SFC)

NFV, SFC,
and FRL

NFV service orchestration and
SFC orchestration enhancement

SFC inflexibility and
scalability problem Simulated data 2021

15 Yu et al. [104] Networking and
resource management

FL, DL, and multi-access
edge computing

Optimizing network resources and
edge computing,

Resource allocation
optimization Simulated environment 2020
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Table 1. Cont.

Number Work Domain Technology Research Purpose Research Problem Dataset Year

16 Xiaofeng et al. [105] Distributed systems and
fault-tolerance

FRL, FL,
and multi-agent systems

Secure FRL convergence,
develop fault-tolerant FRL

Faulty agent resilience and
faulty multi-agent learning N/A 2021

17 Lim et al. [86] Privacy preservation and IoT FL, RL Federated IoT control Federated IoT control Simulated environments 2020

18 rjoub et al. [106] Federated ML
trust FL, IoT Federated client selection,

enhancing FL security
Client trustworthiness

evaluation
COVID-19 radiography

database [108] 2022
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3.2. FRL Applications in the IoT in Terms of Sustainability and Efficiency

Qiu et al. [109] models an energy and carbon allowance trading mechanism as a
multiagent reinforcement learning (MARL) problem for a building community. The multi-
energy system (MES) is a pivotal pillar towards the future low-carbon energy system,
but some challenges harden its current exploration. For example, factors that make this
exploration complex include the complex operation of combining multi-energy sectors,
the privacy aspect of decentralizing the energy system, and the integration of energy and
carbon emission schemes. Thereupon, the authors adopt an abstract critic network using
a deep deterministic policy gradient method. This pipeline is, then, integrated into a
federated learning (FL) framework to preserve the information private of each building in
the community. The experiment showed that the proposed strategy achieves 5.87% lower
total energy cost and 8.02% total environment costs compared to baselines.

The authors of [110] introduce an edge-based backhaul selection method to enhance
traffic delivery based on multi-objective feedback. IoT adoption has substantially increased
backhaul traffic congestion. This new scenario demands effective traffic management
optimization at the network edge. In fact, edge devices can forward IoT traffic through
the backhaul network by choosing appropriate links for collected data flows. This se-
lection challenge requires efficient strategies to learn how to handle partially observable
components of the network. The authors employ different advantage-actor–critic deep rein-
forcement learning (DRL) and federated learning (FL) to train a shared backhaul selection
policy. Finally, the proposed solution can solve the backhaul selection problem effectively.

The contributions of [111–114] focus on offloading optimization. The authors of [111]
introduce FedAdapt as an adaptive offloading FL framework to tackle the efficiency aspects
of FL, e.g., consideration of limited computational capabilities, computational heterogeneity,
and variable network bandwidths. To accomplish this, this approach adopts the proximal
policy optimization (PPO) to identify which deep neural network (DNN) layers can be
offloaded for IoT devices onto a server to handle computational heterogeneity and changing
network bandwidth. Zang et al. [112] propose a federated DRL-based online task offloading
and resource allocation (FDOR) technique. The provision of cloud-like services to IoT
offered by mobile edge computing (MEC) is the target of this contribution. The authors also
consider wireless powered communication (WPC) technology, given that a base station (BS)
can transmit energy to edge users (EUs) and execute tasks via task off-loading. Thereupon,
DRL is executed in EUs with aggregated parameters and an adaptive learning rate.

The authors use multiple DRL agents situated on edge nodes to specify the offloading
choices of IoT devices in [113]. By transferring computationally demanding tasks to edge
nodes, the idea of offloading allows IoT devices to conserve energy and sustain the quality
of service. Conversely, federation and intricate resource management are dynamically
determined in real-time, considering varying workloads and radio conditions. To tackle
this, FL trains DRL agents in a spread approach. Furthermore, Chen et al.’s [114] objective
was to reduce the amount of energy used by IoT devices while satisfying the threshold for
delaying and resource constraints. They created a collaborative optimization challenge that
involved both task offloading and resource allocation in accomplishing this. The authors
emphasize that privacy disclosure is a present issue in MEC data exchange and that FL can
support these transactions. In this sense, a two-timescale federated DRL technique based
on the deep deterministic policy gradient (DDPG) is proposed.

Similarly, Zarandi et al. [115] introduce a federated DRL framework focused on multi-
objective optimization problems to decrease the delay and energy usage of IoT devices’ long-
term task completion. The main goal is to handle, in a distributed fashion, the offloading
decisions, resources, and transmit power allocation. The experiments demonstrated that
the proposed framework is effective in the cases considered.

Moreover, resource allocation is another aspect considered in many efforts. The authors
of [116] focus on resource allocation in device-to-device (D2D)-enabled 6G using FL. The
suggested approach takes into account a D2D-enabled wireless network in the underlay
mode and decentralized resource allocation to maximize the capacity while minimizing
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the overall energy usage. In fact, resource allocation and further improving spectrum
utilization are challenges faced nowadays. Thereupon, the authors considered the quality
of service (QoS) requirements of both cellular users and D2D users and demonstrated that
this method achieves significant network performance.

Tainqing et al. [117] propose a resource allocation method named concurrent feder-
ated reinforcement learning. The challenge considered relies on the limited information
faced when resource allocation is planned at edge hosts, whereas lack of privacy is the
result of moving this process to central servers. The primary concept is to control the
privacy-preserving aspect of FL combined with the RL efficiency. Then, the authors adopt
concurrency as joint decision-making to achieve global solutions. Similarly, the authors
of [118] adopt a DQN to optimize decisions regarding energy and WiFi channels without
any pre-existing network information. This method outperforms baseline approaches
and maximizes successful transmissions while reducing energy and channel expenses to
a minimum.

Cui et al. [119] present an FL protocol to enhance the efficiency of FL systems pow-
ered by renewable energy sources. This effort is motivated by the challenges of limited
device resources faced by industrial FL deployments. The authors focus on using RL for
scheduling devices to adjust to inconsistent renewable energy supply. Moreover, the au-
thors introduce an efficient bandwidth management scheme focused on communication
efficiency. The experiments showed that this proposal outperforms state-of-the-art meth-
ods. The authors of [120] present a residential energy management system (EMS) using
a personalized federated DRL (PFDRL) system to address the issue of reducing standby
energy consumption. This privacy-preserving and cloud-free proposal is motivated by
(i) the challenges of handling various in standby mode, consuming energy while waiting
for wireless communication, and (ii) the potential personal data leakage of existing solu-
tions. Moreover, global collaborative models produce unsatisfactory energy management
performance since capturing individual residential characteristics is complex.

The authors of [121] present a federated DRL-based cooperative edge caching (FADE)
framework to solve the lack of self-adaptivity in dynamic environments of most existing
methods. Current proposals focus on centralized solutions, so the authors enable base
stations (BSs) to develop a predictive model that can be shared. This strategy provides fast
training and separates learning from storage, relying on a distributed-centralized procedure.
Similarly, Majidi et al. [122] introduce a hierarchical federated DRL (HFDRL) method
to predict future users’ requests to identify appropriate content replacement strategies.
The efficiency of edge caching reduces access time and optimizes content transfer, and novel
smart caching solutions have been suggested during recent years. In addition to existing
methods, the authors categorize edge devices hierarchically and improve local and global
performance. The results obtained in the experiments showed that the proposed strategy
presents improvements in, e.g., hit rate and delay have improved over traditional methods.

Finally, the authors of [123] propose an RL-based request service provisioning system
as a component of smart edge orchestration. Although IoT is heavily supported by edge
computing and its short response times, solutions are required to maximize profitability
while minimizing response time. One possible approach is to integrate edge nodes forming
a federation. In this context, the authors implement the DRL dispatcher and compare it
with baseline methods, showing that their proposal is efficient in the cases considered.
Table 2 summarizes all of the works reviewed, considering their domains, technologies,
and objectives.
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Table 2. Overview of FRL-based solutions for sustainable and efficient IoT operations.

Number Work Domain Technology Goal Year

1 Qiu et al. [109] Multi-energy
systems (MES)

Deep deterministic policy gradient
and abstract critic network

Method to address the joint P2P energy and
carbon trading (JPC) problem in a local community 2023

2 Jarwan et al. [110] IoT traffic
management Advantage-actor–critic Propose an edge-based backhaul selection to improve

traffic delivery based on multi-objective feedback 2022

3 Wu et al. [111] Offloading
optimization

Proximal policy
optimization (PPO)

Adaptive offloading FL framework
to tackle efficiency challenges 2022

4 Zang et al. [112] Offloading
optimization

Federated DRL-based online
task offloading and resource allocation (FDOR)

Online task offloading and resource
allocation in WPC-MEC Networks 2022

5 Ren et al. [113] Offloading
optimization

Double deep Q-learning
(DDQN)

FL and DRL to optmize
IoT computation offloading 2019

6 Chen et al. [114] Offloading
optimization

Deep deterministic
policy gradient (DDPG)

Task offloading
and resource allocation 2022

7 Guo et al. [116] Resource
allocation Deep Q-network (DQN) FRL-based resource allocation

in D2D-enabled 6G 2022

8 Tianqing et al. [117] Resource
allocation Deep Q-network (DQN) Resource allocation

in IoT edge computing 2022

9 Nguyen et al. [118] Resource
allocation

Deep Q-network (DQN),
Deep Q-learning (DQL),

and double deep Q-network (DDQN)

Resource allocation in
mobility-aware networks 2020

10 Zarandi et al. [115] Offloading
optimization

Double deep Q-network
(DDQN)

Delay and energy minimization
in IoT networks 2021

11 Cui et al. [119] Energy
management

Adapter multi-armed bandit
(MAB) algorithm

Device scheduling for renewable
energy-powered federated learning 2022

12 Gao et al. [120] Energy
management

Personalized deep federated
reinforcement (PDRL)

Residential energy management system to tackle the
standby energy reduction in residential buildings 2022

13 Wang et al. [121] Caching Double deep Q-network
(DDQN)

Federated DRL-based cooperative edge caching (FADE)
framework to enable collaborative learning of

shared predictive models
2020

14 Majidi et al. [122] Caching
Hierarchical federated

deep reinforcement learning
(HFDRL)

Prediction of user’s future requests to determine
appropriate content replacement strategies 2021

15 Baghban et al. [123] Service
provision

Actor–critic (AC)
reinforcement learning (RL)

Propose an RL-based request
service provisioning system 2022

3.3. FRL Applications of IoT in the Vehicular Industry

The authors of [124] present an online federated deep Q-learning-based offloading
technique for Vehicular fog computing (FedDOVe). In an urban environment, connected
autonomous vehicles (CAVs) offload processing jobs to RSUs with restricted power, com-
putational abilities, and storage powered by renewable energy. In this context, although ve-
hicular fog computing can perform computation-intensive tasks, defining which RSUs
can be associated with fog servers is challenging since offloading demands robust power
consumption and varying offloading rates across uneven computation loads. To tackle
these issues, the authors optimize RSUs’ energy consumption and perform load balancing
across fog servers using a model-free RL approach based on global information to iden-
tify appropriate connections among fog servers and RSUs. The experiments demonstrate
that this strategy reduces energy consumption and enhances load balancing compared to
existing offloading methods.

In reference [125], the authors face the ultra reliable low-latency communications
(URLLC) resource slicing and scheduling challenge focusing on trustworthy 6G vehicular
services. New technologies aim to connect vehicles to roadside units (RSUs), which can lead
to security problems. The authors target mitigating malicious attacks by unauthorized edge
access points using a reputation score based on a personal logic sample. In this scenario,
offloading is conducted based on such a reputation, which is supported by a federated
asynchronous RL algorithm. In addition to that, the authors of [126] present a federated
multi-agent DRL method to optimize task-offloading decisions at local and global scales.
Focusing on vehicular fog computing, this effort focuses on fast convergence by fostering
a local learning approach with limited information sharing, reducing the communication
overhead and improving overall privacy.
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Lee et al. [127] focus on developing an unmanned aerial vehicles (UAVs) swarm
system for aerial remote sensing. By merging FL with RL, this strategy establishes bet-
ter, trustworthy, and more robust swarm intelligence (SI) in the UAV system. Similarly,
Salameh et al. [128] present a cooperative FRL approach to support search missions us-
ing UAVs. The central idea is to enable cooperation through experience exchange while
maintaining privacy.

Zhang et al. [129] propose a vehicle–road–base position partnership architecture,
along-side task offloading and aid distribution algorithm in CAVs. The main goal is to
decrease performance delays with various restrictions. In fact, despite the importance of
joint optimization of multiple resources to ensure the implementation of automatic driving
protection, existing efforts do not target low-latency requirements in exceptional cases (e.g.,
raw perception data sharing with specific constraints). This aspect can intimidate suitable
automatic driving safeness in CAVs networks. Then, the authors introduce a DRL method
to perform optimal assignment offloading and resource allowance and an FRL-enabled
algorithm to minimize the implementation delay.

Ye et al. [130] introduce a novel FRL strategy to optimize signal control policy genera-
tion for multi-intersection traffic scenarios. Given the current problems of elevated mean
vehicle travel duration and delayed optimization faced by existing solutions, the authors
focus on fostering knowledge sharing in a decentralized procedure. Indeed, despite the
current difficulty concerning optimization targets at a global level for complicated traffic sit-
uations, the authors demonstrate that it is possible to enhance both the general convergence
rate and the quality of control.

Kwon et al. [131] present an FL-baed multiagent DRL in the context of internet-
of-underwater-things (IoUT) devices that operate in the ocean environment. The main
goal is to design a joint cell association and resource allocation (JCARA) technique in
an application that faces challenges in setting up reliable links. Each device in the IoUT
conducts local training, and the accumulated knowledge is merged at a centralized system
located in the smart ocean base stations (BSs). The experiments performed proved that
the suggested approach results in better performance than alternative methods in terms of
downlink throughput.

Finally, Table 3 summarizes all of the works reviewed in this context, considering their
domains, technologies, and objectives.

Table 3. Overview of FRL-based solutions for vehicular IoT operations.

Number Work Domain Technology Goal Year

1 Sethi et al. [124] Offloading
Optimization Deep Q-learning Optimize energy consumption across Roadside Units (RSUs)

and load balancing across fog servers 2022

2 Hao et al. [125] Offloading
Optimization

Asynchronous Advantage
actor–critic (A3C)

Resource slicing and scheduling for
trustworthy 6G vehicular services 2021

3 Salameh et al. [128] Search
Cooperation

SARSA and
Q-learning

Uncertain
Deceptive Target Detection 2023

4 Lee et al. [127] Aerial Remote
Sensing

Proximal Policy
Optimization (PPO)

Propose a UAV Swarm System
for Aerial Remote Sensing 2022

5 Zhang et al. [129] Offloading
Optimization

Deep Reinforcement
Learning (DRL)

Optimization of Resources Allocation in
Connected Automated Vehicles Networks 2022

6 Ye et al. [130] Traffic Control Advantage
actor–critic (A2C)

Autonomous Multi-Intersection
Traffic Signal Control 2021

7 Shabir et al. [126] Offloading
Optimization

Asynchronous Advantage
actor–critic (A3C)

Optimization of task-offloading decisions at
multiple tiers in vehicular fog computing 2022

8 Kwon et al. [131] Resource
Allocation

Multiagent Deep Deterministic
Policy Gradient (MADDPG)

Propose a method for joint cell
association and resource allocation 2020

3.4. FRL Applications in the Industrial Internet of Things

Guo et al. [132] developed a federated learning-based approach that allows for efficient
and adaptable management of mobile edge computing (MEC) in the context of the industrial
internet of things (IIoT). More specifically, to handle the problem of network optimization
and resource allocation in IIoT networks, the authors deployed a DRL algorithm with FL
settings. The proposed system can optimize three essential attributes, i.e., the proportion
of task offloading, the allocation of bandwidth, and transmission power. Comprehensive
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experimental results showed that their optimization approach can decrease the cost of
the system while also decreasing the cost of communication, expressed in normalized
terms. Lim et al. [133] proposed a DRL-based framework to determine the most efficient
control approach and learning effectiveness in practical use cases, such as autonomous
driving and robotics. In particular, the multi-agent environment is considered to perform
training and share learning parameters (e.g., gradient) to enhance the training quality and
performance. Similar to [134], the actor–critic PPO algorithm is deployed within different
RL experimental simulations, namely, OpenAI Gym’s CartPole, MoutainCar, Acrobot,
and Pendulum. The designed weighted federation policy management enables parameter
sharing to solve the multi-agent control problem more effectively and efficiently. At last,
the authors demonstrated that the proposed policy control system can be used in more
complex and realistic application scenarios. Zhang et al. [135] focused on the research
problem of device assignment and resource allocation in distributed IIoT platforms. They
designed a three-layer collaborative architecture in FL settings for optimizing device
selection and computational resource allocation. By minimizing the training loss with
a stochastic optimization approach, the proposed architecture can reduce the delay in
data transmission and reduce long-term energy consumption. Moreover, a reinforcement
on federated (RoF) scheme is designed and executed in a decentralized manner at edge
servers based on deep multi-agent RL. By utilizing a device refinement subroutine that is
integrated into the RoF-based method, the suggested architecture can speed up the rate of
convergence while still keeping the on-device energy consumption low. The comprehensive
simulated experimental evaluation demonstrated that the proposed scheme outperforms
the benchmark techniques with regard to both performance and efficiency.

With the explosive availability of smart devices in IIoT, Industry 4.0, and digital twin,
many smart devices should be deployed and executed at the same time. As a result,
device task assignment and scheduling have become another fundamental problem in
industrial applications. Zhang et al. [136] introduced a three-layer collaborative FL-based
architecture to find a solution for the resource management and the problem of managing
the schedule for devices in IIoT. In particular, the DNN model is trained locally at each
industrial device side, and then the model parameters (e.g., the gradients) are aggregated,
as described in FedAvg algorithm. In order to enhance the efficiency in FL training among
resource-limited devices, an optimization algorithm is created to provide a solution for
the resource allocation issue while still strictly following the requirements of the FL epoch
and device resource consumption. Consequently, the resource management problem is
transferred to Markov’s decision process based on a DRL model, which can significantly
facilitate the FL training process with satisfied performance. Ho et al. [134] studied the
issue of organizing the sequence of tasks in automated warehouses by considering the
heterogeneous nature of autonomous robotics. Specifically, the authors defined the long-
perspective non-convex queuing control system as an optimization problem by reducing
the number of tasks waiting to be processed in the system. Unlike the traditional task-
scheduling solutions, the proposed techniques utilized the DRL approach, which can
employ the proximal policy optimization method (PPO) to handle the stochastic nature of
the task flow and the significant quantity of robots in the system. After that, a proximal
weighted FL-based algorithm is implemented to enhance the performance of the PPO
agents in geographically distributed warehouses. The experimental results showed that
the proposed technique outperforms the current approaches based on simulated data.
Yang et al. [137] defined a novel digital twin architecture empowered by IIoT, where
the real-time status of the industrial devices can be captured and processed for better
intelligent decision making. In the Industry 4.0 environment, regarding the prevalence of
the availability of smart industrial devices, the efficiency of data transmission and potential
privacy leakage poses significant challenges for both researchers and industrial participants.
The proposed architecture can cope with the heterogeneous IIoT devices by optimizing the
digital twin platform with FL and DRL. Systematic experiments are conducted to present
the advantages of the suggested method over the existing solutions. It is shown that an
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asynchronous FL architecture is better for solving the discrete effects issues due to the
heterogeneous nature of the IIoT devices. Additionally, the designed digital twin system
can make the convergence faster while still keeping high performance in the training phase.

In addition, numerous studies are concentrating on how to enhance the performance
of FL-based IIoT applications and the quality of online services as well. Sun et al. [138]
deployed a unique structure of digital twin (DT) to authorize IIoT for Industry 4.0 applica-
tions. Specifically, in their designed framework, the DT sensors are capable of detecting
the features of industrial devices in order to aid and enhance FL performance. In order to
alleviate the effects of estimation deviations from the actual value of the DT device state,
the authors adaptively adjust and design the aggregation frequency of FL models based
on the Lyapunov dynamic deficit queue and DRL under resource constraints. Further-
more, the heterogeneity of IIoT devices is adapted with a clustering-based asynchronous
FL framework. Their experimental results confirmed the excellence of their suggested
framework over the current benchmark approaches. Messaoud et al. [139] presented a new
DRL scheme for federated and dynamic network management in IIoT applications. More
specifically, under the circumstance that IIoT devices have a stronger computational capac-
ity, the designed architecture is developed to solve the quality-of-service (QoS) satisfaction
and secure data sharing issues. By taking into account transmission power and spreading
factors across IIoT slices, the authors can deploy effective resource allocation solutions
for differentiated QoS services. There are major two steps in the proposed architecture.
First, a multi-agent deep Q-learning-based technique is designed for maximizing self-QoS
requirements. Second, a DRL-based framework is implemented for optimal decision mak-
ing on transmission power and spreading factors based on the shared information among
agents. The simulated results showed that the proposed architecture is more sufficient than
the latest techniques.

Even though FL is popular in real-world industrial applications, there are still some
limitations that may hinder its further adaptation. One of the major challenges is that FL
suffers from the heterogeneous nature of the participating workers because the FL system
treats all the workers equally without fully considering their computational resources
and capacity. To cope with the above issues, several studies focus on optimizing the
worker-selection problem to increase training efficiency in FL. Zeng [140] focused on
the task-assignment problem in which the participant with weak computational capacity
will significantly drag the model training process in the synchronous FL architecture.
The key idea of the proposed technique is that worker selection in FL should be based on
computational resources . Workers with high/low training resources and computational
capacities should be assigned with more/less training intensity. After formulating this
research problem to a novel heterogeneous training intensity task, the authors deployed an
optimal deterministic algorithm and a DRL approach to evaluate each worker’s current
capability and network condition. Finally, workers can be assigned adaptively based
on their training intensities in a real-time manner. The simulation results demonstrated
that the proposed scheme is effective in terms of reducing the waiting time, accelerating
the convergence rate and improving the overall training speed in FL applications. In a
very similar study, Pang et al. [141] proposed an RL-based algorithm that can be used
to select more qualified workers with higher probabilities. In particular, the FL center
platform will first evaluate the situation of different collaborations based on each worker’s
rating feedback in real-time. After that, each worker’s weight will be updated iteratively
until an optimal group of workers is selected. The proposed solution was found to be
superior to other existing approaches based on the experimental results obtained from a
real-world dataset.

Except for the major research problems of quality assurance, task assignment, and task
scheduling, cybersecurity has become an emerging and extremely important topic for every
IIoT application. As malicious attacking models become more and more sophisticated,
a large number of novel studies are proposed to cope with the potential privacy and security
issues. Wang et al. [142] aimed at detecting anomaly smart devices in IIoT environment.
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The motivation behind this work is that even though IIoT is emerging and has significant
potential for improving production efficiency and performing better industrial decision
making, the anomalies of the smart devices in IIoT are still the major issues and concerns,
which may cause serious privacy leakage consequences and cyber threats to real-world
IIoT applications. Particularly, the authors deployed the FL technique for establishing a
universal anomaly detection framework, where each local model was trained by the DRL
algorithm. Since the consideration of the DRL approach is on the local side, the privacy
of the client’s data can be further protected. The experimental results are evaluated by
two novel proposed metrics, namely, the privacy leakage degree and the action relation.
Their results validated that the proposed DRL-based architecture can achieve better perfor-
mance in terms of high accuracy and low latency. Zhang et al. [143] studied the problem of
managing time series data efficiently and securely in IIoT applications in a wireless net-
work environment. In particular, DRL was applied to IIoT equipment nodes with accurate
models to manage industrial smart equipment data in a wireless network environment.
The proposed technology considers both privacy and utility in model training and presents
valid corroboration on the effectiveness and security of real-world datasets, such as MNIST,
fashion MNIST, and CIFAR-10. Zhang et al. [144] proposed an AI-based collaboration
architecture for secure data computation and offloading in cloud-edge power internet of
things (PIoT). With blockchain-based techniques, the proposed architecture enables secure
and flexible data sharing, resource allocation, energy scheduling, access authentication,
and differentiated services. After that, the authors designed and developed a blockchain-
empowered FL algorithm for addressing the secure and low-latency issue in computation
offloading with the consideration of long-term security constraints and short-term queuing
delay. Experimental results verified the efficacy of the suggested techniques.

In summary, both DRL and FL have been widely used in the real-world industrial
environments for facilitating intelligent business decision-making, improving the efficiency
and quality of the production line, and collaborating with multi-agents simultaneously.
In this section, we summarize related works in terms of the domain of interest, proposed
technologies, the research problem that is being addressed, and the major research mo-
tivations. The detailed comparison between different methods is presented in Table 4.
Even though the major issues are well studied and addressed in the existing solutions,
cybersecurity-related problems are not defined and evaluated systematically. For instance,
even though data privacy can be protected in FL due to the fact that the local data is not
transferred to the cloud center. Many studies [145–147] have proved that there is still a
big privacy leakage potential in FL settings since the model parameters (e.g., gradients)
can still reveal important information about the original data and can be used to infer
sensitive knowledge by the attackers. Therefore, knowing how to protect the privacy of the
model parameters during their transmission between local clients to the cloud server can
be considered an interesting and essential research topic for future work.
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Table 4. Overview of FRL-based solutions for industrial IoT (IIoT) operations.

Number Work Domain Technology Research Purpose Research Problem Dataset Year

1 Wang et al. [142] IIoT DRL, FL Privacy preservation Anomaly detection Simulated data 2022

2 Yang et al. [137] IIoT, digital twin, and industrial 4.0 DRL, FL Mitigation for data
transmission Burden

Real-time device
evaluation MNIST data 2022

3 Zeng [140] IoT DRL, FL Efficient improvement Task assignment in FL Simulated Data,
MNIST, and CIFAR-10 2022

4 Ho et al. [134] Autonomous robotic system DRL, proximal policy optimization Efficient queue control Task scheduling Simulated data 2022

5 Zhang et al. [144] Power internet of things (PioT) DRL, FL, and blockchain Data security, intelligent computation Cloud-edge
collaboration Simulated data 2022

6 Guo et al. [132] IIoT, mobile-edge computing DRL, FL Efficient resource allocation Management
optimization Simulated data 2021

7 Sun et al. [138] IIoT, digital twin DRL, FL Performance enhancement
with resource constraints Deviation reduction MNIST data 2021

8 Messaoud et al. [139] IIoT DRL, deep federated Q-learning Resource allocation,
data sharing Quality-of-service Simulated data 2021

9 Zhang et al. [143] IIoT, industrial 4.0 DRL, FL Efficient and secure
data training

Training data
management

MNIST,
Fashion MNIST,
and CIFAR-10

2021

10 Lim et al. [133] Robotics, autonomous driving DRL Control policy
optimization

Multi-agent control
and management

Simulated data and
QUBE-servo system 2021

11 Zhang et al. [135] IIoT DRL, FL Device assignment and
resource allocation On-device resource-consumption management Simulated data 2021

12 Zhang et al. [136] IIoT DRL, FL Efficient resource
allocation

Management
optimization Simulated data 2021

13 Pang et al. [141] IoT DRL, FL Efficient improvement Task assignment in FL
MNIST,

Fashion MNIST, and
CIFAR-10

2020

4. Open Challenges

The insights described in the previous section show that there are multiple research
gaps in specific areas. Figure 4 summarizes important aspects of the efforts reviewed in
this research and highlights their main focuses.

Figure 4. Summary of the main focus of state-of-the-art FRL solutions regarding IoT subdomains.

Based on that, several future directions can be identified. Considering all of the appli-
cations of FRL in IoT presented in the previous sections, the immediate future directions are
as follows:

• Integration of adaptable offloading methods, resource allocation, and energy man-
agement: Different solutions focus on individual challenges alongside specific con-
straints. Future efforts are expected to introduce an integrated approach to cover
multiple tasks while offering flexibility regarding important systems’ constraints.
In fact, the combination of energy management constraints with offloading and alloca-
tion solutions can further optimize existing solutions;

• Mitigation of security threats again distributed learning: In the past few years, there
has been an increase in attacks again federated learning (FL) methods. These attacks
threaten the integrity of the knowledge shared and can impact the performance
of the overall system. Thereupon, new solutions are needed to mitigate attacks
against FRL initiatives to ensure the learning process is not severally affected in
different applications;

• Caching across multi-tenant applications: As presented in the reviewed papers,
caching is a pivotal solution to improve the system performance in different IoT appli-
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cations. In this sense, one future direction relies on caching solutions for multi-tenant
and multi-service applications, in which separate logical infrastructures operated on
the same physical topology with traffic isolation;

• Prioritized training: Due to the increasing number of IoT devices across different
applications, it becomes challenging to identify trustworthy data feeds throughout the
IoT network topology. In this context, another future direction focuses on prov-
ing a trust score for different training agents in order to define priorities in the
FL aggregation procedure. This can mitigate attacks and ensure legitimate feeds
are prioritized;

• Layered knowledge sharing based on service license agreements (SLA): Assuming
that all knowledge can be shared across different agents, an application can diverge
from real-world requirements, in which different organizations can establish special
agreements regarding resource sharing. In this sense, the definition of logical channels
for knowledge sharing in different FRL applications in IoT is an important direction
for future works.

Moreover, there are areas that require solutions for long-term challenges. These
areas refer to fundamental contributions in how FRL is used in this context. Examples of
long-term open challenges are as follows:

• Application-specific solutions: The reviewed efforts adopt different RL methods to
solve multiple problems. However, future efforts are expected to include problem-
specific mechanisms in the agents’ internal training process. This also extends to the
aggregation procedure, e.g., methods focused on offloading optimization can have
tailored training mechanisms not necessarily present in caching solutions;

• Continuous adaptability: The training process of FRL applications in IoT consid-
ers several components and constraints. A future direction in this regard relies on
adopting dynamic constraints in which initial assumptions evolve throughout the
system’s operation. These changes can comprise states, prioritized, temporary goals,
and special conditions;

• Large-scale solutions: Unfolding the solutions proposed by the reviewed works, it
is possible to generalize different applications to operate on a global scale. However,
scalability can bring multiple obstacles to efficient operations (e.g., global knowledge
sharing, the balance of local and global influence, and multi-regional collaborations).
In this sense, future endeavors can focus on the aspects of scaling FRL applications in
different IoT domains;

• New FL aggregation methods: In recent years, there has been an increase in the
number of FL aggregation algorithms. In fact, a future direction relies on designing
and evaluating new aggregation methods that can consider specific aspects related
to the IoT operation. These new methods can simplify global convergence as well as
enable more secure training procedures;

• Deployment and evaluation in a real environment: Although the solutions reviewed
present high-performance solutions for the cases investigated, there is a need for
evaluating such strategies in realistic testbeds. Indeed, these efforts involve both
the replication of realistic testbeds (e.g., topologies, devices, and connections) and
the use of the proposed methods in real operations. Future endeavors can focus on
establishing a safe and secure environment for testing such methods.

Finally, several future directions for FRL architectures and approaches can also be
identified. Such directions include the design of IoT-specific vertical and horizontal FL,
the intersection between security and efficiency, and the use of shared models in IoT and
non-IoT scenarios.

5. Conclusions

In the past few years, new FRL solutions have been proposed. Some of these new
efforts focus on providing efficient solutions to different IoT problems. In this context, this
research presented a literature review of FRL applications in IoT, focusing on analyzing
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applications in multiple areas. Throughout the paper, we highlighted existing solutions,
their characteristics, and research gaps. Finally, critical short- and long-term challenges were
identified to foster the development of new solutions. The application of this promising
paradigm in IoT can be beneficial in several ways, and this paper highlighted new research
opportunities given the review presented.
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