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Abstract: Artificial Intelligence (AI) applications in different fields are developing rapidly, among
which AI painting technology, as an emerging technology, has received wide attention from users for
its creativity and efficiency. This study aimed to investigate the factors that influence user acceptance
of the use of AIBPS by proposing an extended model that combines the Extended Technology Accep-
tance Model (ETAM) with an AI-based Painting System (AIBPS). A questionnaire was administered
to 528 Chinese participants, and validated factor analysis data and Structural Equation Modeling
(SEM) were used to test our hypotheses. The findings showed that Hedonic Motivation (HM) and
Perceived Trust (PE) had a positive effect (+) on users’ Perceived Usefulness (PU) and Perceived Ease
of Use (PEOU), while Previous Experience (PE) and Technical Features (TF) had no effect (−) on
users’ Perceived Usefulness (PU). This study provides an important contribution to the literature
on AIBPS and the evaluation of systems of the same type, which helps to promote the sustainable
development of AI in different domains and provides a possible space for the further extension of
TAM, thus helping to improve the user experience of AIBPS. The results of this study provide insights
for system developers and enterprises to better motivate users to use AIBPS.

Keywords: AI-Based Painting Systems (AIBPS); Technology Acceptance Model (TAM); behavioral
intentions; user experience; Structural Equation Modeling (SEM)

1. Introduction

Artificial Intelligence (AI) is rapidly developing and is becoming more widely used as
computer technology and algorithms continue to advance. The International Data Corpora-
tion (IDC) reports that global spending on AI will more than double between 2023 and 2026,
with spending exceeding USD 300 billion [1]. Since the end of the 20th century, applied
research on AI has been widely used in various fields as an interdisciplinary approach,
subtly transforming industries such as automotive, finance, healthcare, retail, journalism,
media, education, gaming, online assistants, payments, art, and smart homes [2,3], and
previous scholars have related AI art through literature and case studies [4,5]. Examples
include the AI video content generation system Runway, the AI image processing system
Toolkit, the AI automatic social media posting system Repurpose IO, the AI music system
Amper Music, and the AI art image system Dall-E2.

AI art is widely used in the field of AI-Generated Content (AIGC) [6], and various
related systems have been developed to facilitate and enhance the capabilities of users [7].
The chatbot product Chat GPT, based on AIGC, has surpassed 100 million active users in
only two months since its launch, making it the fastest-growing application in history [8].
Scholars have prospectively discussed the potential of AI art technology applications [9–11].
Deng explores the application of AI in art design [12]; Liu analyzes the relationship between
the integration of traditional and AI painting [13]; Köbis and Mossink experimentally assess
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whether users distinguish AI-generated poetry [14]; De Mantaras, RL, and Arcos, J.L study
the relationship between AI and music [15]; and Jeon studies film creation through an
AI-generated system that generates stories, narratives, images, and sounds in films using
AI [16]. Therefore, the application of AI in the field of art is promising, and more AI will be
applied to art creation in the future.

Driven by AI art, the application of AI in the field of painting continues to mature
and develop [13]. AIBPS can generate paintings by learning and simulating the process of
human painting [5], and can also generate a large number of images and works in a short
time [17]. Therefore, more and more artists and designers are applying it to practical cre-
ations. In 2022, the first prize winner of the Colorado State Fair Art Competition, “Théâtre
D’opéra Spatial”, made headlines with a painting by designer Jason M. Allen using the
AIBPS Midjourney [18]. However, according to the interview, he generated images more
than 800 times through the AI system and repeatedly performed tests to obtain satisfac-
tory work, meaning the system did not directly generate the expected satisfactory work.
Academics also continue to discuss user acceptance regarding AI-generated paintings,
such as whether AI-generated paintings are art [19,20], whether users accurately recognize
AI-generated paintings [21], whether AI is imaginative [5], whether AI can create artistic
paintings autonomously [22], whether AI-generated art can be considered human-created
works like “Art”, and whether users accept AI-generated paintings. Therefore, user accep-
tance and behavioral intentions towards AIBPS may be a real issue, as it can directly affect
user engagement and sustained usage. If users do not accept and use AIBPS, this may lead
to lower user retention, lower user activity, and reduced revenue for AIBPS [23]. Thus, AI
is widely used in fields such as art creation and design, and research is needed to optimize
user acceptance and behavioral intentions to improve its effectiveness.

The Technology Acceptance Model (TAM) is the most prevalent theory used to evalu-
ate user acceptance of new AI technologies [24] and was first proposed by Davis [25]. TAM
is now widely used in different aspects of new technologies and confirmed that Perceived
Usefulness (PU) and Perceived Ease of Use (PEOU) have a significant impact on user
acceptance. Researchers have continuously upgraded and extended TAM based on TAMs
such as TAM2, TAM3, UTAUT, UTAUT 2, etc. [26–32]. Moreover, the Robotic Architectural
Technology Acceptance Model (RATAM), a new high-tech acceptance theory model for AI
robot architecture design contexts, provides new insights into the future development of
AI in architectural design [33].

Due to AI-Based Painting Systems (AIBPS) being an emerging technology, scholars
have predominantly focused on comparing algorithms and functionalities across different
systems, with limited research on users’ specific experiences, attitudes, and acceptance
when using AIBPS. Despite the crucial importance of user acceptance and usage for the
successful application of AIBPS, there is a lack of empirical research that applies Extended
Technology Acceptance Model (ETAM) to systematically explore the factors influencing
users’ acceptance and usage of AIBPS. Therefore, this study aims to fill the existing research
gap and provide research directions for further in-depth exploration of user acceptance of
AIBPS. By investigating and analyzing the factors influencing user acceptance and usage
of AIBPS, this study will offer valuable insights into the development and application of
this field. Therefore, this study aims to explore the factors that influence users’ acceptance
and behavioral intentions toward AIBPS using an extended TAM framework, and extends
previous discussions on AIBPS to help evaluate and improve the experience and effective-
ness of using the technology in practical applications. In general, this study aims to answer
the following questions. (1) What are the factors that influence users’ acceptance and use
of AIBPS? (2) What are the relationships among the influencing factors? (3) How can the
development and improvement of AIBPS features used by users be facilitated in response
to these factors?

The research framework of this paper is as follows: Section 2, which reviews AIBPS and
technology acceptance models, presents the research model and hypotheses of this paper and
explores the determinants that influence the acceptance and use of AIBPS. In Section 3, we
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collect user data through questionnaire surveys and analyze them. Section 4 evaluates the
measurement model and Structural Equation Model. In Section 5, we present our discussion
and realizations. In Section 6, the conclusions of this paper are summarized. Section 7
discusses the limitations of the study and future directions. It is hoped that these findings
will help system developers better understand users’ preferences and acceptance of AIBPS,
facilitate the development of new features, and thus, guide users to accept and use AIBPS
more rationally, and consequently, promote the sustainable development of artistic creativity.
Figure 1 shows a workflow diagram of the research methodology in this paper.
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2. Theoretical Background and Hypothesis Development
2.1. Overview of Artificial Intelligence (AI) in Painting

In recent years, AI techniques have gained popularity in the field of painting art, and
the current mainstream AIBPS is based on semantic analysis [34]. This technique uses a
huge database of text and images to train a machine-learning model that generates images
by learning based on the textual input given by the user [35]. AIBPS uses deep learning
algorithms to analyze and learn existing images, enabling the creation of new images. For
example, Edmond de Belamy, a generative adversarial network portrait painting produced
by the Parisian art collective Obvious in 2018, sold for USD 432,500 at Christie’s New York
in October 2019 [36]. Existing generative classes of neural networks include Generative
Adversarial Networks (GANs), Convolutional Neural Networks (CNNs), Creative Adver-
sarial Networks (AICANs), and Contrastive Language–Image Pre-training Models (CLIPs).
The early AIBPS include DeepDream, Prisma, and Dall-E, and the current AIBPS include
Disco Diffusion, Dall-E2, Imagen, Midjourney, and Stable Diffusion. Currently, there are
two types of generative model of AIBPS on the market: one is diffusion-based and the
other is sequence-to-sequence [37]. Therefore, generating high-quality, realistic images that
accurately match the text descriptions is still a challenging task for AI systems.

Previous scholars have explored the relationship between AI and painting, such as
creativity in AI painting [38], reflections on AI painting techniques [13], the attitudes of
art and non-art majors towards AI painting [17], comparing human and AI painting [39],
and applying AI painting techniques to cultural and creative products [40]. The art of AI
painting incorporates a wide range of techniques and styles, using machine learning to
improve the user’s painting ability. Whether or not they have or specialize in painting skills,
with the help of AIBPS, art major and non-art major users can easily create impressive
works [17]. The intervention of AI in the creation of painting art not only brings more
possibilities, but also overturns the paradigm of art creation and changes the way we
think about viewing and evaluating artworks [39]. Thus, humans and AI can form a
good partnership when making art, thus allowing for maximum creativity [38]. Since
AI-generated paintings are based on technology, while human-generated paintings are
based on emotions, fundamental differences remain in some aspects [41]. More and more
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users are now interested in the AIBPS creation method; however, whether users are willing
to accept this art creation method, what factors contribute to user acceptance, and whether
frequent use of AI painting systems will lead to the homogenization of creation, are the
topics of this paper’s research.

2.2. Technology Acceptance Model (TAM)

The Technology Acceptance Model (TAM) is used to explain and predict the adoption
of computer technology. Davis argued that for a new technology to be accepted, it is
crucial that it be used and easily identified [25]. His research developed and validated
new scales for two specific variables: Perceived Usefulness (PU) and Perceived Ease of
Use (PEOU) [42]. TAM is also one of the most commonly used models to understand
the level of user adoption of emerging and communication technologies [43]. A meta-
analysis conducted by some scholars proved that TAM is a valid and robust model and has
been widely used [44]. In addition, PU and Attitude toward Using (ATT) directly affect
Behavioral Intention (BI), whereas PEOU affects BI by PU directly or indirectly [45]. In the
context of this study, users’ ATT and BI were higher if they perceived that using AIBPS in
their painting creation process was beneficial.

TAM is an important theoretical basis for studying users’ acceptance of new tech-
nologies. In this model, PU and PEOU are two important influencing factors and they are
both influenced by external variables, and many scholars have proposed new models by
combining these variables. These models provide system developers with a better way to
control user Behavioral Intention (BI) [46]. For example, the Technology Acceptance Model
for the Elderly (STAM) explores the acceptance of new technologies among older Hong
Kong residents [47]; the Technology–Organization–Environment (TOE) framework com-
bined with TAM examines the factors influencing end-user ATT and BI regarding AI-based
technologies in construction companies [28]; and the Learning Behavior Acceptance Model
(T-LBAM) explores the intrinsic influences of students’ participation in gamified online
courses on willingness [26]. It is important to note that there are many influencing factors
in TAM, and these factors vary significantly across different research areas. Therefore, in
order to better understand the extent to which users accept new technologies, it is essential
to thoroughly consider the influence of various external variables on user perception [27].
Several external variables, based on different research subjects, have been identified and
incorporated into studies by scholars [26–33]. The inclusion of these external variables
helps expand our understanding of user acceptance of new technologies and provides a
more comprehensive analysis of the related phenomena. In addition, TAM has been used
by many scholars as a theoretical basis for research describing users’ ATT and BI regarding
new systems or technologies for AI, and the model has been validated in areas such as
Smart Banking [48], mobile payments [49], healthcare [50], service delivery [51], learning
platforms [52], architecture companies [28], and digital libraries [46].

Although many scholars have applied TAM to the AI field, no scholars have yet
combined TAM with the AI art field in an empirical study. The process by which various
TAM factors in the AI field influence the acceptance of AIBPS is not clear. Therefore, this
study aims to propose an Extended Technology Acceptance Model (ETAM) and combine
it with AIBPS to investigate the factors that influence users’ acceptance and use of AIBPS.
Through this study, we can provide new ideas for applying the ETAM model in the AI field,
and also help to promote the development of the AI art field.

2.3. Research Hypotheses
2.3.1. Previous Experience (PE)

Previous Experience refers to the fact that experienced users will find this new tech-
nology more useful and easier to use, and will be more likely to use it more often [53].
Although TAM has been shown to be applicable to experienced users, Previous Experience
(PE) is still one of the main predictors of users’ behavioral intentions [54,55]. In a meta-
analysis of 107 papers, scholars identified 152 external variables that influence Perceived
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Usefulness (PU) and ease of use, of which they identified Previous Experience (PE) as
particularly important [56]. Experienced users are more receptive to new technologies,
and thus, Previous Experience (PE) is an important factor influencing users’ adoption of
new technologies [57]. Studies have shown that experience is one of the most adequate
moderating variables in TAM [44]. Therefore, we propose the following hypotheses:

Hypothesis 1 (H1a). The user’s Previous Experience of AIBPS will positively influence their
Perceived Usefulness of AIBPS.

Hypothesis 1 (H1b). The user’s Previous Experience of AIBPS will positively influence their
Perceived Ease of Use of AIBPS.

2.3.2. Technical Features (TF)

Technical Features need to be applicable and easy to use, and compatible with prior
art, to reflect the advantages of functionality [28]. Some scholars have argued that AI
device-specific technology preferences play an important role in user acceptance of new
technologies [58]. Thus, in some cases, users’ ATT and BI may vary depending on the
Technical Features (TF) of the system and the differences between users [59]. According to
previous studies, the Technical Features (TF) of a new technology or device can directly
affect the user’s PEOU and PU of the system [46,60,61]. Thus, the inclusion of Technical
Features as external variables in TAM can help to better understand user acceptance and
the adoption of AI painting technology. Consequently, we offer the following hypotheses:

Hypothesis 2 (H2a). The Technical Features of AIBPS will positively influence users’ Perceived
Usefulness of AIBPS.

Hypothesis 2 (H2b). The Technical Features of AIBPS will positively influence users’ Perceived
Ease of Use of AIBPS.

2.3.3. Hedonic Motivation (HM)

Hedonic Motivation refers to the pleasure or expectation of pleasure that an individual
obtains through the use of AI devices [51]. Furthermore, previous studies have used
hedonism as a major predictor of user behavior regarding technological systems [62].
With the continuous development of AI technologies, Hedonic Motivation (HM) has been
widely used in terms of users’ acceptance of AI [63,64], involving applications such as
smart banking [48] and smart voice assistants [65], and some scholars have shown that
Hedonic Motivation (HM) also significantly influences the social presence of AI chat
systems, and thus, the intention to use AI chat services [66]. For users, when using AI
devices for hedonic motives, these devices can provide benefits by satisfying personal
interests and entertainment needs [67]; in other words, hedonic motives are the pleasure
or joy derived from using the technology or system and are important determinants of
users’ acceptance and continued use of the technology [68]. In addition, several related
studies have extended the TAM model to include Hedonic Motivation (HM) factors, and
one such study proposed the Hedonic Motivation System Adoption Model (HMSAM) [69].
Accordingly, the following hypotheses are proposed:

Hypothesis 3 (H3a). The user’s Hedonic Motivation for AIBPS will positively influence their
Perceived Usefulness of AIBPS.

Hypothesis 3 (H3b). The user’s Hedonic Motivation for AIBPS will positively influence their
Perceived Ease of Use of AIBPS.
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2.3.4. Perceived Trust (PT)

Perceived Trust refers to the user’s recognition of the reliability and trustworthiness
of a system [70]. As people become increasingly dependent on new technologies, trust
in new technologies has become increasingly important [71,72]. Perceived Trust (PT),
as a predictor of technology acceptance [73,74], is central to explaining the relationship
between users’ beliefs about new technologies and acceptance behavior [73]. Studies have
shown that users’ Perceived Usefulness (PU) and Perceived Ease of Use (PEOU) for new
technologies have an influential role in their trust [53]. Lockey et al. conducted a literature
review survey of AI trust, assessing what is known about AI trust [75], while Choung
et al. examined the role of trust in AI voice assistants based on college students [76];
Łapińska et al. investigated the extent to which company employees trust AI [77]; and
Jacovi et al. explored the prerequisites, reasons, and goals for human trust in AI, with the
aim of designing trustworthy AI products and evaluating their trustworthiness [78]. At the
same time, users’ trust and reliance on AI decision aids may be fragile [79]. Schnall et al.
investigated the relationship between Perceived Trust (PT) and intention to use, as well
as between PU and PEOU [80]. As AI technologies become common in various domains,
trust has a significant impact on the intention to use AI and plays an important role in the
acceptance of AI technologies [81]. For example, Perceived Trust (PT) influences the BI of
intelligent healthcare services [81]. Solberg et al. proposed a conceptual model of perceived
risk and dependence for AI decision making that helps researchers to study trust in and
dependence on AI decision aids [82]. Thus, we propose the following hypotheses:

Hypothesis 4 (H4a). The user’s Perceived Trust of AIBPS will positively influence their Perceived
Usefulness of AIBPS.

Hypothesis 4 (H4b). The user’s Perceived Trust of AIBPS will positively influence their Perceived
Ease of Use of AIBPS.

2.3.5. Perceived Usefulness (PU) and Perceived Ease of Use (PEOU)

Perceived Usefulness (PU) refers to the extent to which individuals believe that a
new technology can improve their efficiency [83] and has also been interpreted as the
subjective likelihood of potential users [30]. Perceived Ease of Use (PEOU) refers to the
extent to which individuals accept that a new technology can be easily adopted without
requiring significant time to learn [39]. Perceived Ease of Use (PEOU) not only affects
users’ PU, but also affects their Attitude toward Using (ATT) regarding their acceptance of
new AI technologies [46]. As the main determinants of users’ use and acceptance of new
technologies [25], PU and PEOU equally have a positive impact on the Attitude toward
Using (ATT) aspect of chat AI robots [84,85]. The development of new systems that are
easy to use will become increasingly common in the future, and adherence to or deviation
from commonly understood standards of ease of use may have a significant impact on the
acceptance of a system [86]. By providing an intuitive user interface, easy-to-understand
steps, and a quick feedback mechanism, users can quickly master the use of AIBPS, making
it easier for non-professional users to create paintings, while also helping professional users
to gain inspiration and improving the efficiency and quality of their creations. Therefore,
we offer the following hypotheses:

Hypothesis 5 (H5). The user’s Perceived Usefulness of AIBPS will positively influence their
Attitude towards AIBPS.

Hypothesis 6 (H6). The user’s Perceived Usefulness of AIBPS will positively influence their
Behavioral Intention towards AIBPS.

Hypothesis 7 (H7). The user’s Perceived Ease of Use of AIBPS will positively influence their
Perceived Usefulness of AIBPS.
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Hypothesis 8 (H8). The user’s Perceived Ease of Use of AIBPS will positively influence their
Attitude towards AIBPS.

2.3.6. Attitude toward Using (ATT)

The use of new technologies has been shown to depend on users’ Attitude toward
Using (ATT) and their influence on decision-making [73], and users’ ATT is also a determi-
nant of the use of new technologies [51,86–88]. BI depends on a person’s ATT regarding
the behavior in question. Attitudes and emotions toward the use of AI devices will deter-
mine their attitudes toward the use of AI devices in the service delivery process and their
willingness to use them in service delivery [51]. In a study by Sánchez-Prieto et al., student
users’ ATT regarding an AI learning program was a factor in determining whether they
actively used the program or not [89]. Therefore, users’ decision to use AIBPS may depend
on their Attitude toward Using (ATT). As such, we propose the following hypothesis:

Hypothesis 9 (H9). The user’s Attitude toward Using AIBPS will positively influence their
Behavioral Intention towards AIBPS.

2.4. Research Model

This study analyzes the factors that influence users’ willingness to use and acceptance
of AI painting systems. Expanding on Davis’ Technology Acceptance Model (TAM),
external variables were derived from the literature survey and prior research analysis.
Table 1 outlines our hypotheses.

Table 1. Research hypotheses.

Variables Hypotheses Description

Previous Experience
(PE)

H1a The user’s Previous Experience of AIBPS will positively
influence their Perceived Usefulness of AIBPS.

H1b The user’s Previous Experience of AIBPS will positively
influence their Perceived Ease of Use of AIBPS.

Technical Features
(TF)

H2a The Technical Features of AIBPS will positively influence users’
Perceived Usefulness of AIBPS.

H2b The technical features of AIBPS will positively influence users’
Perceived Ease of Use of AIBPS.

Hedonic Motivation
(HM)

H3a The user’s Hedonic Motivation for AIBPS will positively
influence their Perceived Usefulness of AIBPS.

H3b The user’s Hedonic Motivation for AIBPS will positively
influence their Perceived Ease of Use of AIBPS.

Perceived Trust
(PT)

H4a The user’s Perceived Trust of AIBPS will positively influence
their Perceived Usefulness of AIBPS.

H4b The user’s Perceived Trust of AIBPS will positively influence
their Perceived Ease of Use of AIBPS.

Perceived Usefulness
(PU)

H5 The user’s perceived usefulness of AIBPS will positively
influence their Attitude toward Using AIBPS.

H6 The user’s Perceived usefulness of AIBPS will positively
influence their Behavioral Intention towards AIBPS.
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Table 1. Cont.

Variables Hypotheses Description

Perceived Ease of Use
(PEOU)

H7 The user’s Perceived Ease of Use of AIBPS will positively
influence their Perceived Usefulness of AIBPS.

H8 The user’s Perceived Ease of Use of AIBPS will positively
influence their Attitude toward Using AIBPS.

Attitude toward Using
(ATT) H9 The user’s Attitude toward Using AIBPS will positively

influence their Behavioral Intention toward Using AIBPS.

Based on the above hypotheses, this study proposes a research model for acceptance
behavior toward AIBPS. Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Attitude
toward Using (ATT) to use, and Behavioral Intention (BI) were taken as basic variables.
Four external variables were deduced through a literature survey and previous research
analysis: Previous Experience (PE), Technical Features (TF), Hedonic Motivation (HM),
and Perceived Trust (PT). According to the characteristics of AIBPS, a research model of AI
painting service acceptance is proposed. Figure 2 shows the proposed research model [30].
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3. Methods
3.1. Questionnaire Design

The study’s questionnaire was divided into three parts: Section 1 provided a brief
description of and introduction to AI painting, as well as relevant images; the second
section asked respondents about their gender, age, educational background, frequency of
use, and experience level. Section 2 aimed to explore users’ willingness to utilize AIBPS,
and it contained 8 variables with 4–5 options to measure each, making a total of 34 items.
The details and references of the variable item questionnaire are shown in Table 2. To
ensure that the questionnaire was accurately represented in terms of clerical wording,
substance, and ambiguity, we first sent it to five expert university professors with an av-
erage of eight years of experience teaching AI and art for checking. All data submitted
by the participants will be kept confidential and used for academic purposes only and
will not be shared with third parties, and their identifying information will not be made
public. Each user who completed the questionnaire received a WeChat bonus of 5 RMB as
a reward to express our appreciation for their time and truthful answers to each question.
As a large scale performed better than a small scale in terms of reliability and validity
in an empirical study [90], all items in Section 3 were measured on a 7-point Likert scale
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(1: “strongly disapprove”, 2: “disapprove”, 3: “somewhat disapprove”, 4: “fair”, 5: “some-
what approve”, 6: “approve”, and 7: “strongly approve”).

Table 2. Questionnaire for variable items and reference.

Variables Items Issue Reference

Perceived
Usefulness

(PU)
(five items)

PU1 Using AIBPS would enable me to accomplish tasks more quickly.

Davis (1989) [25],
Venkatesh and Davis (2000) [84],

Lee et al. (2003) [84],
Chatterjee et al. (2021) [30]

PU2 Using AIBPS would help me learn a lot more.

PU3 Using AIBPS saves time and effort and increases my efficiency.

PU4 Using AIBPS would make it easier to do my job.

PU5 Using AIBPS would help create new ideas for my work

Perceived Ease
of Use

(PEOU)
(five items)

PEOU1 Learning to operate AIBPS would be easy for me.
Davis (1989) [25],

Lee et al. (2003) [83],
Venkatesh et al. (2003) [91],
Yousafzai et al. (2007) [92]

PEOU2 I would find it easy to get AIBPS to do what I want them to do.

PEOU3 I would find AIBPS easy to use.

PEOU4 My interaction with AIBPS would be clear and understandable.

PEOU5 It would be easy for me to become skillful at using AIBPS.

Davis (1989) [25],
Davis et al. (1989) [42],

Na et al. (2022) [28]

Attitude
toward
Using
(ATT)

(four items)

ATT1 Using AIBPS is a good idea.

ATT2 I am positively impressed with the ability of the AIBPS.

ATT3 I find AIBPS to be valuable systems for creating works.

ATT4 I am very satisfied with the artwork generated by AIBPS.

Behavioral
Intention (BI)
(four items)

BI1 I find it worthwhile to create with AIBPS.
Davis (1989) [25],

Taylor and Todd (1995) [93],
Venkatesh et al. (2003) [91],

Castiblanco Jimenez et al. (2021) [29]

BI2 I find it beneficial to create with AIBPS.

BI3 I intend to use AIBPS to create in the future.

BI4 I would recommend AIBPS to others.

Previous
Experience

(PE)
(four items)

PE1 It would have been easier to use if I had previous experience with AIBPS.

Gefen et al. (2003) [53],
Liu et al. (2010) [94],

Abdullah and Ward (2016) [95]

PE2 If the website had an online guide feature, I would know how to use
it better.

PE3 By following the step-by-step instructions on the website, it will be easy
to operate.

PE4 I would have better understood how to use the AIBPS if a friend had first.

Technical
Features

(TF)
(four items)

TF1 AIBPS can output quality work without the need for mastering the basics
of painting.

Castiblanco Jimenez (2020) [96],
Wang et al. (2020) [60],

Na et al. (2022) [28]

TF2 AIBPS can provide me with the content I need whenever I need it.

TF3 AIBPS create works quickly and in a very short time.

TF4 AIBPS can meet the needs of non-professional people

Hedonic
Motivation

(HM)
(four items)

HM1 I enjoyed interacting with AIBPS.

Alenezi et al. (2010) [97],
Venkatesh et al. (2012) [98],

Lu et al. (2019) [99]

HM2 Interacting with AIBPS is fun.

HM3 Interacting with AIBPS is entertaining.

HM4 The actual interaction process with the AIBPS would be pleasant.

Perceived Trust
(PT)

(four items)

PT1 I trust AIBPS to ensure that I can use them properly.
Lee (2005) [100],

Lean et al. (2009) [101],
Liu and Yang (2018) [102],

Vimalkumar et al. (2021) [103]

PT2 I have more trust in the works created by AIBPS.

PT3 I have more trust in the data sources of AIBPS

PT4 I have more trust in the privacy protection of AIBPS.

3.2. Participants and Data Collection

From September to December 2022, a total of 568 completed questionnaires were
collected through the online questionnaire platform Questionnaire Star, a Chinese platform
specialized in providing online questionnaire services. Some questionnaires were also
considered invalid. As the study was conducted among users who had accessed or used
AIBPS, the second part on demographics was closed with a skip option, i.e., “You have not
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accessed or used AIBPS”, and in these cases, the questionnaires were considered invalid.
According to the questionnaire system, only 6 of the respondents in this study had not
been exposed to or used AIBPS, accounting for 0.01% of the total, and a total of 40 invalid
questionnaires were removed. In order to reduce the influence of typical technique bias, the
questionnaire was set up in such a way that, firstly, it took no less than 120 s to complete,
and any questionnaire that took less than 120 s to complete was considered unreliable;
secondly, invalid questionnaires, such as those with obvious contradictions and those with
the same answer given consecutively, were excluded. Finally, the Harman single factor
test [104] was used to test for typical technique bias, and a reshuffled principal component
factor analysis was performed on each variable. As shown in Table 3, the first unrotated
factor explained 28.927% of the total variance, which is well below the critical threshold of
40%, indicating that the data contained no common method bias (see Table 3).

Table 3. Common method deviation test (Harman single factor test).

NO.

Initial Eigenvalues Extraction Sums of Squared
Loadings Rotating Sum of Squared Loadings

Total % of
Variance

Cumulative
% Total % of

Variance Cumulative% Total % of
Variance

Cumulative
%

1 9.835 28.927 28.927 9.835 28.927 28.927 3.806 11.196 11.196

The sample size of this study is an important factor for SEM analysis, and too small
a sample size may affect the model fit. Therefore, after rigorous screening, 528 valid
questionnaires were used in this study for research and analysis, with a valid return rate
of 93%. It is worth mentioning that this sample size meets the required sample size for
SEM analysis, which is greater than 200 [105]. Additionally, the content of this study was
approved by the Academic Ethics Committee of University X in May 2022.

3.3. Demographic Information

In this study, the data of 528 valid samples were analyzed demographically (Table 4),
and then, processed using SPSS software. In terms of gender, there were 274 males (51.89%)
and 254 females (48.11%). In terms of age, 134 respondents (25.38%) were aged 18–25,
122 respondents (23.11%) were aged 26–30, and 93 respondents (17.61%) were aged 31–40,
with these three age groups dominating the sample. In terms of educational background,
214 respondents (40.53%) were below undergraduate, and 251 (47.53%) were undergradu-
ates. In terms of frequency of use, 153 (28.97%) used AIBPS once a day, 267 (50.57%) once a
week, 23 (4.36%) once a month, and 85 (16.1%) other. The percentage of users with previous
painting experience was 90.72%. The demographic profile of respondents reported in this
study was similar to the demographic profile reported in previous technology acceptance
studies, and therefore, warrants further statistical analysis.

The results of the study of the AI paintings systems encountered are listed in Table 5,
with Dall-E2 having the highest degree of familiarity at 80.68%, followed by Midjourney
at 72.16%, Disco Diffusion at 59.28%, Stable Diffusion at 52.27%, WOMBO at 50.57%, and
NovelAI at 33.14%. It is worth noting that DALL-E1 was released in 2021 and was known
and used by a wide range of users early on, so more users will start using DALL-E2 when it
is released, which is one of the reasons for its high percentage of familiarity. Midjourney can
be used on the communication software Discord to easily talk to others and obtain paintings,
while Disco Diffusion can be run directly in Google Drive and generates paintings with the
highest accuracy, making it one of the AIBPS most often used by professional users.
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Table 4. Demographic characteristics of the respondents.

Category Sub-Category Frequency (n = 528) Percentage %

Gender
Male 274 51.89

Female 254 48.11

Age (years)

<18 59 11.17
18~25 134 25.38
26~30 122 23.11
31~40 93 17.61
41~50 53 10.04
51~60 40 7.58

>61 27 5.11

Education level

Below undergraduate 214 40.53
Undergraduate 251 47.54
Post-graduate 50 9.47

Doctor 13 2.46

Frequency of use of AIBPS

At least once a day 153 28.97
At least once a week 267 50.57

At least once a month 23 4.36
Other 85 16.1

Previous painting experience YES 479 90.72
NO 49 9.28

Total participants 528 100.00

Table 5. Percentage of exposure to and use of AIBPS.

Items Percentage (n = 528)

Disco Diffusion 59.28%
Dall-E2 80.68%

Midjourney 72.16%
Stable Diffusion 52.27%

WOMBO 50.57%
NovelAI 33.14%

4. Results

Based on the theory of previous studies, it was suggested that the analysis be con-
ducted in two parts [106]. The first one assesses the measurement model and the second
assesses the Structural Equation Model.

4.1. Measurement Model Assessment

To ensure the quality of the data analysis, we performed Confirmatory Factor Analysis
(CFA) on the data. The valid sample size for the analysis of these test data was 528, which
exceeded the number of analyzed items 10-fold, and the sample size was moderate.

4.1.1. Results of the Reliability and Validity Test

First, we performed a reliability analysis and calculated Cronbach’s Alpha (CA) and
Composite Reliability (CR). Since the reliability should be greater than at least 0.8 [106],
the final values obtained by the test were both greater than 0.8. Therefore, it could be
proven that the findings of the variables were reasonable, the items were retained, and the
model was reliable. The Convergence Validity was then tested, and the study showed that
the average variance (AVE) extracted was to be greater than 0.5 [107,108]. Factor loading
analysis measures the correlations between individual variables and factors, which are
usually substantial and significant for all items and need to be greater than 0.7 [109]. The
significance levels of the current items were all below 0.05, the Average variance Extractions
(AVE) of the variables were greater than 0.5, and the standardized factor loading coefficients
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were all above 0.7. Therefore, the validation factors for the variables were measured at
good levels, indicating convergent validity and meeting the requirements for further model
analysis (see Table 6).

Table 6. Reliability and validity analysis.

Variables Items Standardized Factor
Loadings Cronbach’s α CR AVE

Perceived
Usefulness

(PU)

PU1 0.804

0.903 0.903 0.651
PU2 0.798
PU3 0.816
PU4 0.805
PU5 0.810

Perceived Ease
of Use

(PEOU)

PEOU1 0.806

0.887 0.887 0.611
PEOU2 0.806
PEOU3 0.762
PEOU4 0.728
PEOU5 0.803

Attitude
toward Using

(ATT)

ATT1 0.808

0.854 0.855 0.595
ATT2 0.740
ATT3 0.778
ATT4 0.759

Behavioral
Intention

(BI)

BI1 0.821

0.858 0.859 0.603
BI2 0.759
BI3 0.758
BI4 0.767

Previous
Experience

(PE)

PE1 0.928

0.964 0.964 0.871
PE2 0.919
PE3 0.939
PE4 0.947

Technical
Features

(TF)

TF1 0.929

0.952 0.954 0.837
TF2 0.902
TF3 0.915
TF4 0.914

Hedonic
Motivation

(HM)

HM1 0.841

0.874 0.874 0.635
HM2 0.770
HM3 0.774
HM4 0.801

Perceived Trust
(PT)

PT1 0.822

0.868 0.868 0.623
PT2 0.766
PT3 0.776
PT4 0.791

Secondly, KMO and Bartlett’s tests were conducted to analyze the overall question-
naire for validity. The results are shown in Table 7. The KMO value for this part of the
questionnaire was 0.914 and Bartlett’s spherical test chi-square value was 12,816.192, with a
degree of freedom of 561 and a significance of 0.000 < 0.05, which indicates that the data
passed the validity test and were suitable for subsequent factor analysis.

Table 7. Validity analysis (KMO and Bartlett’s test).

Kaiser–Meyer–Olkin Measure of Sampling Adequacy 0.914

Bartlett’s Test of Sphericity

Approx. chi-square 12,816.192

df 561

Sig. 0.000

4.1.2. Discriminant Validity

In this study, two methods were used to evaluate discriminant validity. First, a method
of assessing the square root of AVE was conducted to demonstrate that the factors have
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discriminant validity based on previous research [110], and the square root of AVE for each
factor must be greater than the correlation coefficient for each pair of variables [111]. The
values of the square root of the AVE for the discriminant validity of this measurement were
all higher than the correlation coefficients under the items, indicating that the measurement
questions had good discriminant validity (see Table 8).

Table 8. Discriminant validity (Fornell–Larcker criterion).

PU PEOU ATT BI PE TF HM PT

PU 0.807
PEOU 0.390 0.782
ATT 0.317 0.356 0.772
BI 0.470 0.489 0.562 0.777
PE 0.139 0.198 0.189 0.254 0.933
TF 0.129 0.155 0.140 0.192 0.151 0.915

HM 0.365 0.402 0.370 0.567 0.206 0.103 0.797
PT 0.278 0.311 0.321 0.438 0.110 0.096 0.323 0.789

Secondly, this study used the heterotrait–monotrait ratio of validity method, which
assesses the correlation between different factors and the consistency within the same factor,
with an HTMT value limit of less than 0.85 [112]. Upon measurement, all HTMT values in
this study were less than 0.85, indicating that each variable had good discriminant validity.
The discriminant validity of the variables is reasonably demonstrated in Table 9.

Table 9. Discriminant validity (HTMT values).

PU PEOU ATT BI PE TF HM PT

PU -
PEOU 0.435 -
ATT 0.362 0.409 -
BI 0.533 0.561 0.655 -
PE 0.149 0.215 0.209 0.279 -
TF 0.139 0.169 0.156 0.215 0.158 -

HM 0.411 0.457 0.428 0.655 0.225 0.114 -
PT 0.315 0.355 0.373 0.508 0.121 0.108 0.371 -

4.2. Structural Equation Assessment
4.2.1. Model Fit Index

As demonstrated in Table 10, the CMIN/DF value for the model analyzed in this study
was 1.843, and the value for the remaining fit indicators NFI was 0.928, IFI was 0.966, TLI
was 0.962, CFI was 0.965, GFI was 0.901, and RMSEA was 0.040. All of the fit indicators
reached higher than the minimum values recommended by previous studies [113], indicat-
ing that the model scales match well. This indicates a good model fit [114], and therefore,
the model test results could be analyzed.

Table 10. Recommended and actual values of fit indices.

Fit Index CMIN/DF RFI NFI IFI CFI PCFI GFI AGFI TLI (NNFI) RMSEA

Recommended value ≤3.0 >0.9 >0.9 >0.9 >0.9 >0.8 >0.9 >0.8 >0.9 <0.08

Measurement model 1.843 0.921 0.928 0.966 0.965 0.885 0.901 0.886 0.962 0.040

4.2.2. Model Path Analysis

The evaluation was conducted using the Structural Equation Modeling (SEM) model,
and path analysis was performed using IBM AMOS 25. The results are presented in
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Table 11 and Figure 3. Eleven out of thirteen hypotheses were confirmed, indicating a
positive influence. Among the four external variables, Previous Experience (PE), Technical
Features (TF), Hedonic Motivation (HM), and Perceived Trust (PT), the study found that PE
and TFs ultimately had a negative influence on users’ PU (-), so hypotheses H1a (PE→PU,
β = 0.026, t = 0.616, p > 0.05) and H2a (TF→PU, β = 0.060,t = 1.419, p > 0.05) were not
confirmed. However, PE and TFs eventually positively influenced users’ PEOU (+); thus,
H1b (PE→PEOU, β = 0.107, t = 2.475, p < 0.05) and H2b (TF→PEOU, β = 0.102, t = 2.339,
p < 0.05) were verified, which is consistent with the results of previous studies.

Table 11. Path coefficients of the Structural Equation Model.

Hypotheses Relationship β Estimate S.E. C.R./t-Value p-Value Significance

H1a PE→PU 0.026 0.015 0.024 0.616 0.538 Not Supported
H1b PE→PEOU 0.107 0.057 0.023 2.475 0.013 Supported
H2a TF→PU 0.060 0.037 0.026 1.419 0.156 Not Supported
H2b TF→PEOU 0.102 0.058 0.025 2.339 0.019 Supported
H3a HM→PU 0.254 0.239 0.047 5.054 0.000 Supported
H3b HM→PEOU 0.377 0.331 0.044 7.594 0.000 Supported
H4a PT→PU 0.149 0.159 0.050 3.206 0.001 Supported
H4b PT→PEOU 0.229 0.228 0.047 4.875 0.000 Supported
H5 PU→ATT 0.206 0.170 0.043 3.964 0.000 Supported
H6 PU→BI 0.351 0.343 0.043 7.989 0.000 Supported
H7 PEOU→PU 0.276 0.296 0.057 5.177 0.000 Supported
H8 PEOU→ATT 0.347 0.307 0.049 6.320 0.000 Supported
H9 ATT→BI 0.539 0.638 0.059 10.877 0.000 Supported

β: standard rate, S.E.: standard error, C.R.: critical ratio (t-value), p: p-value.

HM and PT eventually had a positive influence on both the PU and PEOU of users
(+). Thus, hypotheses H3a (HM→PU, β = 0.254, t = 5.054, p < 0.05), H3b (HM→PEOU,
β = 0.377, t = 7.594, p < 0.05), H4a (PT→PU, β = 0.149, t = 3.206, p < 0.05), and H4b
(PT→PEOU, β = 0.229, t = 4.875, p < 0.05) were verified.

In this study, we assumed the following hypotheses: H5 (PU→ATT, β = 0.206,
t = 3.964, p < 0.05), H6 (PU→BI, β = 0.351, t = 7.989, p < 0.05), H7 (PEOU→PU,
β = 0.276, t = 5.177, p < 0.05), H8 (PEOU→ATT, β = 0.347, t = 6.320, p < 0.05), and H9
(ATT→BI, β = 0.539, t = 10.877, p < 0.05), which are also consistent with the results of
previous studies. The hypotheses were valid and were all verified.
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5. Discussion and Implications
5.1. Discussion

This study aims to investigate the determinants that influence users’ acceptance and
Behavioral Intention (BI) toward AIBPS. First, the findings indicate that the external variable
Previous Experience (PE) has a positive influence on users’ Perceived Ease of Use (PEOU),
which is consistent with previous research by scholars studying new AI technologies and
systems. The same is true of the inclusion of the variable PE in the external variables of
the scholars’ studies; the difference is that for different subjects, PE interacts with different
external variables, thus affecting PU and PEOU [54,55,57], and that Previous Experience
(PE), as a variable that can influence users’ attitudes and adoption of technology, is more
likely to be accepted by experienced users [115]. However, PE has a negative influence
on users’ Perceived Usefulness (PU). One possible reason is that AIBPS has a simple and
easy-to-use user interface and interaction design, and users may be more concerned with
the artistic effects generated by the system itself, so PE is not necessary for users. To
improve the AIBPS user experience, AIBPS developers can continuously optimize AIBPS by
collecting user feedback and requirements and providing tutorials to help users understand
AIBPS. In summary, if users have Previous Experience with AIBPS, they are more likely to
be satisfied with other AIBPS and willing to use them repeatedly. In addition, developers
can customize their AIBPS according to the needs and expectations of their target users.

Second, TFs have a positive influence on users’ Perceived Ease of Use (PEOU), accord-
ing to previous studies confirming that the Technical Features (TFs) of a new technology or
device directly affect users’ PU and PEOU of that system [46,60,61], thus confirming that
TFs have a positive influence on Attitude toward Using (ATT) and Behavioral Intention
(BI) regarding new technology [58]. However, TFs have a negative influence on users’ PU,
which indicates that AIBPS, which generates paintings by simply typing text in a dialog
box, has no learning cost for even inexperienced users who have never been exposed to AI
painting. However, users cannot be satisfied by the TFs of AIBPS and cannot achieve their
expected goals. Therefore, developers can improve the TFs of AIBPS by developing new
features, which, in turn, improve the quality of painting generation, the user interface, and
the ease of use of the service. In addition, developers can combine advanced algorithms,
machine learning, and natural language processing techniques to enhance the capabili-
ties of AIBPS. For the development of AIBPS, this can include an adjustment function of
painting parameters, an editing and processing function, a voice recognition function, and
a virtual reality function. The editing and processing function allows the user to resize
and add filters to their generated paintings, thus enhancing the user’s sense of operation
and control; the voice recognition function allows the user to control the painting process
through voice commands, further improving the interaction and user experience between
the user and AI; and the virtual reality function allows users to feel the charm of creating
artworks in an immersive way.

Then, Hedonic Motivation (HM) has a positive influence on both the Perceived Useful-
ness (PU) and Perceived Ease of Use (PEOU) of users, a finding that is also consistent with
previous findings obtained by authors studying new AI technologies [48,65,97,116,117].
Specifically, users are hedonically motivated to create art using AIBPS, and AIBPS provides
a platform to create paintings without the need for manual painting skills, which further
facilitates users’ use of the system. Therefore, developers can increase users’ enjoyment
and motivation, and subsequently improve their BI to use the AIBPS system by providing
diverse functionalities and a good user experience. In addition, to enhance users’ Hedonic
Motivation (HM), system developers can provide a series of painting styles and themes
that cater to users’ emotional and aesthetic preferences. Meanwhile, in line with the devel-
opment trend of the Metaverse, developers can create virtual communities or galleries to
enable users to share their paintings created through AIBPS with others, and add functions
to enable users to receive feedback and support within the virtual community.

Moreover, Perceived Trust (PT) has a positive influence on both the PU and PEOU
of users, a result that confirms previous scholars’ views [76,118] that trust is particularly
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important when users try to use AI technologies [119]. The user’s consideration of trust is
crucial in the use of AI systems. The higher the trust level, the more it helps to promote user
acceptance of the AI system’s services [50], while PT also predicts PU [76]. McKnight argues
that to build initial trust, perceptions of risk must be overcome, which, in turn, increases the
willingness to use these new technologies [120]. Therefore, developers can enhance users’
PT by protecting the security and privacy of user data, maintaining sufficient transparency,
providing a good user feedback mechanism, and offering clear and concise terms of service
and privacy policies to ensure that AIBPS quickly fixes and addresses issues and vulnerabilities
that arise during the creation process. This lets users know how AIBPS uses their data, ensures
that paintings on AIBPS do not infringe on the intellectual property rights of others, and
protects the independent copyright of paintings created by users.

Users’ Perceived Usefulness (PU) and Perceived Ease of Use (PEOU) have a positive
influence on Attitude toward Using (ATT) and Behavioral Intention (BI). Numerous scholars
have previously confirmed this result [25,46,82,86]. Previous research applied TAM to new
technologies and systems and found that these factors have a positive impact on users’
ATT and BI. However, previous studies did not apply TAM to AIBPS. Therefore, this study
builds on previous research and finds that these factors are also applicable to AIBPS, and
that developers need to focus on the factors (PE, TFs, HM, and PT) that affect users’ PU
and PEOU, as summarized in this study, in order to better improve users’ ATT and BI. The
simple interface of AIBPS allows users to understand its functionality intuitively. As a
result, users choose to use AIBPS much more efficiently, which leads to a more positive ATT
for AIBPS. Studies have shown that the development of new technologies and systems that
are easy to use can increase user acceptance, and this trend will become more common in the
future [121]. Thus, to increase user satisfaction with AIBPS, it is recommended that similar
products offer higher-quality input images, more diverse shortcut keys, and more advanced
features, such as generating a combination of multiple artworks, the clearer presentation
of descriptive vocabulary, and faster modification modes. In addition, to enhance the
user’s knowledge, developers can visualize the algorithm process in more detail, including
various parameter changes, so that users can understand how the program works. In
summary, it is recommended that developers continue to enhance the PU and PEOU of
AIBPS by providing better features and an enhanced user experience, thus promoting the
development of ATT and BI.

5.2. Implications

The results of this study have important implications. Upon reviewing the application
of TAM theory to AIBPS and exploring the applicability of the theory in studying user
acceptance of AI technology, our research results show that both users’ PU and PEOU of
AIBPS have a positive impact on their Attitude toward Using (ATT) and Behavioral Inten-
tion (BI), which represents an important theoretical contribution to the existing literature
on AIBPS and TAM. As the research on AI applications in fields such as art creation and
design is enhanced, factors related to user needs and behavioral habits can be explored to
improve the adaptability and practicality of AI in these fields [19,20], reduce user resistance,
increase their acceptance and use intentions, and thus, better meet user needs and promote
the development of AI technologies in fields such as art creation and design. As a premise
for system design and enhancement, these research findings can assist system designers in
comprehending users’ acceptance of AIBPS and their behavioral intentions.

In terms of relevant policies, attention should be paid to the impact of AIBPS on
the arts, culture, and other fields, and relevant policy norms should be introduced to
promote its sustainable development. To this end, policymakers can adopt a series of
policy measures, such as protecting intellectual property rights, encouraging innovative
design, and regulating data use. Enterprises and organizations should strengthen the
management and application of AIBPS to ensure that it is legal, standardized, reliable,
and secure. In addition, they should pay attention to the users’ feedback and evaluation,
continuously improve system performance, enhance user experience and satisfaction, and



Appl. Sci. 2023, 13, 6496 17 of 22

promote the market competitiveness and share of AIBPS, so as to gain more users and
profits. Therefore, when developing AIBPS, researchers can refer to TAM and use it to
evaluate the user acceptance of AIBPS, so as to improve the efficiency of system design
and development, continuously optimize the system’s functionality and ease of use, and
increase user acceptance of and satisfaction with the system.

6. Conclusions

The aim of this study was to investigate the factors that influence user acceptance and
usage of AIBPS. By extending the external variables and incorporating AIBPS as a new
technology into the Technology Acceptance Model (TAM), we used Structural Equation
Modeling (SEM) to verify the effects of these factors on users’ Attitude toward Using (ATT)
and Behavioral Intention (BI). AIBPS plays a vital role in improving the quality and creative
efficiency of users’ paintings, reducing unnecessary human and material costs, and enabling
sustainable AI development. It was found that Hedonic Motivation (HM) and Perceived
Trust (PT) had a positive influence on users’ Perceived Usefulness (PU) and Perceived Ease
of Use (PEOU). Among them, Hedonic Motivation (HM) had the most significant effect on
Perceived Usefulness (PU) and Perceived Ease of Use (PEOU), indicating that users enjoy
interacting with AIBPS, find the process of AI painting generation interesting, and enjoy
the process of creating artworks. Therefore, the facilitators presented in this study should
be considered when developing new features. However, the effects of Previous Experience
(PE) and Technical Features (TF) on Perceived Usefulness (PU) were not significant, and
despite the ease of operation and user comprehension of AIBPS, users were not satisfied
with the artwork generated by AI painting and failed to achieve the desired goal. This
suggests that system developers should focus on improving user satisfaction in generating
paintings. This study highlights the strengths of TAM theory and provides new empirical
research on user acceptance and use of AIBPS, as well as important implications for the
design and development of new features for the same type of AIBPS. In summary, although
the development of AIBPS is still in its early stages, these research findings indicate that
it has demonstrated practical value and will play an increasingly important role in the
future of art creation and design. At the same time, these studies have raised some issues
related to technology acceptance and the user experience of AIBPS, which need to be further
explored and addressed in future research.

7. Research Limitations and Future Research

This study has several limitations. First, although a large number of respondents
participated in this study, the data were only from the Chinese region and did not have a
global scope. Therefore, future studies could consider collecting and comparing data from
different countries to expand the impact of the study. Second, this study used an online
questionnaire, which makes it difficult to understand users’ attitudes comprehensively.
Therefore, future studies could use user interviews or discussion groups to gain an in-depth
understanding of user needs. In future research, the model can be used to cross-validate
and generalize other factors to delve deeper into the AI field, study the pain points of AIBPS
users, analyze the applicability of different models, and summarize the differences between
the AIBPS creation process and the human painting process. This will contribute to the
development of new features for similar AIBPS, improve user experience and satisfaction,
and have important theoretical and practical implications.
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