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Abstract: The accurate prediction of the state of charge (SOC) of Ni-Cd batteries is critical for
developing battery management systems for high-speed trains. To address the challenges of the large
floating charge voltage of Ni-Cd batteries and the vulnerability of a battery’s SOC to environmental
factors such as temperature, this paper proposes an adaptive adjustment mechanism-based particle
swarm optimization (APSO) generalized regression neural network (GRNN) model. The proposed
model introduces the concept of the particle aggregation degree to quantify the convergence of
the particle swarm optimization (PSO) algorithm. Furthermore, the speed weight of the particle
swarm is adaptively adjusted using a comprehensive loss function to optimize the parameters of the
GRNN model. To validate the proposed method, simulation experiments are conducted under test
conditions using Ni-Cd batteries, and the prediction accuracies of various algorithms are compared.
The experimental results demonstrate that the APSO-GRNN model significantly reduces the model’s
prediction error. In addition, under the influence of different temperatures and noises, this method
demonstrates strong robustness and high practical application value by accurately predicting the
SOC, even with limited data samples.

Keywords: Ni-Cd battery; particle swarm optimization; GRNN; adaptive regulation; estimation
of SOC

1. Introduction

Railway transportation is one of the most critical modes of transportation in China, and
high-speed electric multiple units (EMUs) have become a popular choice due to their high
carrying efficiency. However, the existing equipment associated with high-speed EMUs in
China is not flawless. The Ni-Cd battery management system in the vehicle cannot predict
the state of charge (SOC) of the battery [1]. The SOC of the battery can directly reflect its
sustainable power supply capacity and is essential for battery energy management [2]. To
address this issue and alleviate “range anxiety”, it is imperative to develop an accurate SOC
prediction model [3]. Such a model would aid in formulating an appropriate battery energy
management strategy, extending the battery’s service life, and ensuring its safe operation [4].
As the SOC of the battery cannot be directly measured, it can only be indirectly estimated by
parameters such as the voltage and current [5,6]. Additionally, the battery SOC is affected
by temperature and aging, making precise estimation a challenging task [7,8]. For Ni-Cd
batteries, which have a large capacity and extended discharge cycle [9,10], establishing an
SOC prediction model is even more complex compared to lithium batteries.

Establishing an accurate state-of-charge (SOC) prediction model is a research focus
worldwide. Several methods have been proposed in the literature to address this issue. For
instance, Zhang et al. [11] proposed an adaptive adjustment mechanism for an unscented
Kalman filter algorithm to predict the SOC based on stochastic difference equations of
the battery model. However, since numerical methods were used to solve the system
state equation, calculation errors increased over time and failed to respond to abrupt
changes in the SOC. Chen et al. [12] used gray theory for parameter analysis and behavior
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prediction during battery charging and discharging and proposed a piecewise gray model
based on extensive battery aging data to enhance SOC prediction accuracy. Yan et al. [13]
developed an extended Kalman filter based on Lebesgue sampling to estimate the SOC,
which can reduce computational complexity and cost. Wang et al. [14] used particle swarm
optimization to predict the SOC of supercapacitors but the prediction range was limited.
Neural networks have been increasingly used due to their strong nonlinear processing and
adaptive learning abilities. For example, Hong et al. [15] used multiple linear regression to
optimize a long short-term memory (LSTM) network for the dual control of SOC prediction
accuracy and range. Mao et al. [16] optimized a backpropagation neural network (BPNN)
using a flight strategy and particle swarm optimization to minimize prediction errors.
Zhao et al. [17] used a recurrent neural network (RNN) as the prediction model and
a convolutional neural network (CNN) to extract relevant features from battery data,
enhancing the model’s generalization ability. The estimation algorithm for the SOC based
on recurrent neural networks offers high prediction accuracy. However, it has a complex
model structure and long training time, particularly for nickel-cadmium batteries, as in
the case of LSTM [18]. A feedforward neural network, known for its simple structure and
suitability for online systems due to its limited data requirements, is another option [19].
However, its prediction accuracy is dependent on the initial parameter settings [20,21], as in
the case of a GRNN. It is feasible to optimize its parameters using an optimization algorithm
to make the feedforward neural network suitable for adaptive adjustment. Given its simple
structure, fewer parameters, strong nonlinear mapping ability, and fast learning speed,
a GRNN is ideal for predicting small sample data and can handle unstable data [22,23].
However, the prediction results obtained using the GRNN model are highly susceptible to
the initial parameters. Manual parameter adjustment proves challenging in attaining the
optimal model parameters, hindering its adaptability to varying battery working conditions.
Furthermore, the prediction outcomes are vulnerable to noise interference and ambient
temperature fluctuations. To address these limitations, we propose an adaptive particle
swarm optimization APSO-GRNN prediction model.

The APSO-GRNN model employs the particle swarm algorithm to optimize the pa-
rameters of the GRNN model. It incorporates a scoring function to evaluate the prediction
effectiveness of each neuron within the model. Additionally, it dynamically adjusts the
weight of the particle swarm’s velocity based on the prediction results. This adaptive ad-
justment allows the model to prioritize training data that exert a more significant influence
on the current SOC prediction, thereby mitigating the impact of battery rebound voltage
on the model’s prediction outcomes under various working conditions [24]. Furthermore,
it enhances the model’s resilience to diverse ambient temperatures.

To assess the robustness and anti-interference capability of the APSO-GRNN model,
experiments are conducted considering two factors: noise and temperature. A comparative
analysis is performed, where APSO-GRNN is compared with SVR, XGBoost, and GRNN
to elucidate the advantages of APSO-GRNN over other prevalent regression algorithms.
Ultimately, the efficacy of the APSO-GRNN model is confirmed based on the experimen-
tal findings.

2. Optimal Feature Selection

The selection of input features can significantly impact a model’s training time and
prediction accuracy. Thus, choosing the appropriate input features to optimize the algo-
rithm is crucial. In this study, we utilize a random forest (RF) algorithm to improve the
electrical characteristics of batteries during discharge.

RF consists of different decision trees [25], where each tree selects a feature as the
splitting feature for a node. The importance of each feature on the prediction accuracy can
be estimated by the out-of-bag error rate [26,27]. In particular, we employ random forest to
predict the state of charge (SOC) and select the following features as candidates: voltage,
current, temperature, voltage change rate (dV/dt), and current change rate (dI/dt). These



Appl. Sci. 2023, 13, 6494 3 of 16

features are used to construct the feature matrix, F = [ f1, f2, . . ., fN ]. The feature fi scoring
function is shown in Equation (1):

Fs =
eT
ei

(1)

where ei is the out-of-bag error after random rearrangement of the feature fi, and eT
is the sampling error in the decision tree T. Figure 1 displays the results, which show
that the voltage, current, and ambient temperature are influential factors for predicting
the SOC. In contrast, for predicting the rates of dV/dt and dI/dt, only factors of 0.765
and 0.382, respectively, are influential. Although these influencing factors are small, the
data acquisition system can directly obtain the battery’s working voltage, current, and
temperature in practical applications. These electrical characteristics are chosen as input
features for the model.

Figure 1. Degree of influence of features.

3. APSO-GRNN Algorithm
3.1. The GRNN Model

A GRNN is a type of feedforward network that exhibits superior nonlinear mapping
capability and faster learning speed than the radial basis network. Additionally, it can
achieve better prediction performance in scenarios with limited data volume and high
data noise. As a result, a GRNN is commonly utilized in regression analysis. The network
architecture of a GRNN includes four layers: the input layer, mode layer, summation layer,
and output layer. A detailed explanation of each layer is presented below:

1. Input layer
The number of neurons in the input layer is equal to the vector dimension of the
sample dataset, and each neuron in the input layer is equivalent to an identical
function, which directly passes the input variable to the pattern layer.

2. Pattern layer
The pattern layer is fully connected and the number of neurons is set to the total
number of training samples n. Each neuron corresponds to a different training sample.
The value of the Gassu function for any training sample trxi and test sample texj is
shown in Equation (2).

Gauss(texi − trxj) = e−
‖texi−trxj‖

2σ2 (2)

where σ is the model smoothing factor.
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3. Summation layer
The number of neurons in the summation layer is one more than the sample dimension.
The summation layer has two outputs: the first neuron output is the summation of the
pattern layer outputs. For any summation layer neuron with inputs {g1, g2, g3, . . ., gi},
the transfer function for the first summation layer neuron is as follows:

SD =
m

∑
i=1

gi (3)

The remaining neuron outputs are the weighted sum of the pattern layer outputs,
with a transfer function as follows:

SNj =
m

∑
i=1

k jgi (4)

where kj is the corresponding eigenvalue of any training sample.
4. Output layer

The number of neurons in the output layer is equal to the output vector dimension
of the training samples, and the output is a vector consisting of the quotient of each
SN j and SD. The transfer function is shown in Equation (5), and the structure of the
GRNN is shown in Figure 2.

yi =
SNj

SD
(5)

Figure 2. GRNN structure diagram.

3.2. Optimization Process of APSO Algorithm

According to the model’s prediction error, APSO automatically adjusts the velocity
weight of the particles to control the convergence speed and improve the model’s prediction
accuracy. Assuming that the number of particles is n, the particle search space dimension is
M and the basic particle swarm algorithm formula is

vk+1
i = wvk

i + c1r1(pk
i − xk

i ) + c2r2(gk
M − xk

i ) (6)

xk+1
i = xk

i + vk+1
i (7)
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{
−vmax vk+1

i < −vmax

vmax vk+1
i < −vmax

(8)

where k is the number of iterations, xi is the position vector of the particle, the corresponding
velocity vector is vi, pi is the historical optimal value of the particle, gM is the group optimal
value in the current particle population, c1 and c2 are the learning factors, c1 > 0, c1 > 0, r1,
r2 are random numbers in the range of [0,1], and vmax is the maximum velocity limit for
the particle.

The weight parameter, denoted as w, is a critical component in particle swarm opti-
mization. When the speed weight increases, the global optimization ability of the particle
swarm improves while the local optimization ability decreases, and vice versa. Static weight
parameters are insufficient to meet the requirements for convergence speed and global
optimization simultaneously. Additionally, the number of neurons in the output layer of
the GRNN is determined by the number of samples in the prediction set. However, due to
the long discharge time of Ni-Cd batteries, the voltage drop gradient changes significantly
at different times, resulting in decreased prediction accuracy. Moreover, the historical data
of input samples exert various influences on the current SOC prediction results, and using a
uniform weight in the summation layer further increases the error. To address these issues,
the speed weight of particles requires adjustment. Specifically, we define the prediction
model as f (x) and the loss function as

Ek = | f (x, σ)− yk| (9)

where yk is the true value of the training set. To measure the magnitude of the error in the
output of individual pattern layer neurons relative to the global one, a conditioning scoring
function is introduced:

hk =
Ek −min(Ek)

max(Ek)−min(Ek)
(10)

The matrix Ek represents the errors of the kth iteration output. The scoring function
measures the magnitude of the prediction error relative to the overall prediction error.
To obtain the score matrix h, the scores of n neurons are calculated and organized as
hk = [hk1, hk2, . . ., hkn]

T . Although the scoring function indicates the size of the prediction
error relative to the overall prediction error, larger values of hk correspond to worse
prediction performance of the particle and thus require a higher weight. However, when
the overall prediction error of the particle swarm is large, some particles may account
for only a small fraction of it, which diminishes the global search ability of the swarm.
Therefore, the bias vector B needs to be added to ensure the strong global optimization
ability of the particle swarm in the early stages of iteration:

B =
2
T

ln
Ek

Etarget
(11)

T represents the number of iterations and Etarget is the error threshold the particle
swarm should reach to stop the iteration. The bias vector decreases as the error decreases,
enhancing the particle swarm’s global search ability in the early stages.

Although the scoring function can adjust the weight based on the error, it cannot
evaluate the convergence of the particle swarm optimization algorithm. There may be
a large prediction error but the algorithm has converged. Therefore, the polymerization
degree is introduced to further optimize particle performance. This degree is defined
as follows:

d =
Egbest

Embest
(12)

Egbest is the prediction error of the global optimal particle, Embest is the average optimal
fitness of all particles in the current era, and 0 < d ≤ 1. The degree of polymerization
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indicates the degree of aggregation of the particle swarm. The larger the value of d, the
more concentrated the particles. When d = 1, the particles converge at one point, indicating
complete algorithmic convergence. If the particles are concentrated, the particle weight
increases to enhance global optimization ability, whereas if they are dispersed, the particle
weight is reduced to promote local search. The weight parameter expression is

w = B + β1hk + β2d (13)

The weight of fractional control is denoted by β1 and the weight of aggregation control
is denoted by β2. The scoring function and the aggregation degree quantify the particle
swarm’s individual error and convergence degree, respectively, and control the particles’
inertia weight w. This approach balances the particle swarm’s global and local search
performance, and the scoring function determines the particles’ evolution direction. As
a result, the model prioritizes data that have a more significant impact on the SOC at the
current time, thereby improving the accuracy of SOC prediction.

3.3. Prediction Process of Battery SOC Based on APSO-GRNN Model

Although a GRNN is suitable for regression analysis, it is easily affected by the initial
parameter matrix. To overcome this limitation, the APSO algorithm proposed in this
paper has faster convergence and better global optimization ability than ordinary PSO.
Optimizing the GRNN’s parameters using APSO can compensate for the GRNN’s defects.
The GRNN model uses the battery terminal voltage V, output current I, and temperature T
as input values, and the GRNN prediction model is used as the evaluation function f (x).
The specific steps in this approach are as follows:

1. Initialize the particle swarm algorithm parameters. The initial particle population size
is m × n, where m is the number of particle vectors, n is the number of neurons in
the summation layer, and the number of iterations is T. The smoothing factor of each
neuron in the summation layer is taken as the position attribute of the particle xi, and
the particle position parameters and matrix parameters are randomly initialized.

x =

σ11 ... σ1n
...

...
...

σm1 · · · σmn

 v =

v11 .... v1n
...

...
...

vm1 ... vmn

 (14)

2. Assuming that the GRNN model is a fitness calculation model, the error matrix of the
particle swarm is calculated using Equations (9) and (13) as e, and the error vector of
a single particle is Ei.

e =

E11 · · · E1n
... · · ·

...
Em1 · · · Emn

Ei =

Ei1
...

Ein

 (15)

3. The local optimal value pi and each particle’s global optimal value gM are updated
according to the error matrix. The particle swarm velocity weight matrix w is modified
using Equation (13), and the particle swarm position vector and velocity vector are
updated using Equations (7) and (8).

4. Repeat Steps 2 and 3 until the error of the global optimal particle is less than the target
error Etarget or the maximum number of iterations Tmax and then end the iteration.
The algorithm’s structure is shown in Figure 3.
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Figure 3. APSO-GRNN model structure diagram.

4. Analysis of SOC Prediction Results of Ni-Cd Battery Using APSO-GRNN
4.1. Test Platform and Experimental Method

A Ni-Cd battery installed on a 380A high-speed locomotive was used as the test object,
and Table 1 shows the detailed battery parameters. The nickel-cadmium battery was tested
in a constant-temperature test chamber using the BTS-3000n power battery detection cabinet
as the charging and discharging experimental platform. The charging and discharging
voltage and current were adjusted to meet the experimental conditions and the acquisition
module was used to measure them. The voltage measurement accuracy was ±0.1 mV,
the current measurement accuracy was ±0.01 mA, and the battery discharge capacity
was calculated accordingly. Multiple batteries were subjected to repeated experiments to
verify the validity of the experimental data. The voltage, current, and other electrical data
were transmitted to the host computer and stored in the database. Figure 4 shows the
experimental platform used in the study.

Figure 4. Experimental platform.

The working condition method is widely considered the most scientific battery testing
method. It involves splitting, cutting, simplifying, and statistically analyzing the power
distribution of the battery to obtain a dataset that can be conveniently tested using charging
and discharging equipment. This method can simulate the actual use of the battery and is
suitable for evaluating the effectiveness of battery SOC prediction models.
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Table 1. Detailed battery parameters.

Item Parameter

Nominal capacity 190 Ah
Initial weight 6.1 kg
Initial voltage 1.35 V

Resistance 1.35 Ω
Initial density 1.23 g/cm3

In this study, we employed three different battery test conditions, a dynamic stress
test (DST), a federal urban driving schedule (FUDS), and cyclic pulse conditions, to charge
and discharge the battery. The DST and FUDS testing procedures outlined in the battery
test manual are widely used and enable the formulation of battery charge and discharge
strategies based on actual battery usage. Consequently, they comprehensively reflect
feature vectors in battery usage and are suitable for training and testing SOC prediction
models. Meanwhile, the pulse-discharge conditions reflect the electrical characteristics of
the battery at different temperatures. A power battery cabinet was used to simulate these
three test conditions, and the resulting data, including the discharge voltage, current, and
temperature, were collected and used as the training data for the prediction model. The
experimental steps are outlined in Table 2.

Table 2. Experimental procedure for a battery.

Test Type Experimental Process

DST

Step 1: The battery is discharged to the cutoff voltage (1 V) at a constant current rate of 0.5 C and a set
temperature of 20 °C. Step 2: Static battery for one hour. Step 3: The battery is charged to the cutoff

voltage (1.52 V) at a rate of 1 C and then charged to the cutoff current (20 A) at a constant voltage. Step
4: The charge-discharge cycle is set to 6 min and the charge-discharge experiment is carried out

according to the DST power meter.

FUDS

Step 1: The battery is discharged to the cutoff voltage (1 V) at a constant current rate of 0.5 C and a set
temperature of 20 °C. Step 2: Static battery for one hour. Step 3: The battery is charged to the cutoff

voltage (1.52 V) at a rate of 1 C and then charged to the cutoff current (20 A) at a constant voltage. Step
4: Discharge under FUDS conditions.

Cyclic Pulse

Step 1: The battery is discharged to the cutoff voltage (1 V) at a constant current rate of 0.5 C and set
temperature. Step 2: Static battery for one hour. Step 3: The battery is charged to the cutoff voltage

(1.52 V) at a rate of 1 C and then charged to the cutoff current (8.5 A) at a constant voltage. Step 4: The
discharge cycle is set to 15 min and the pulse-discharge experiment is carried out.

The experiments were carried out in a constant temperature test chamber at 20 °C for the
DST and FUDS and at 0 °C, 10 °C, 30 °C, and 40 °C for the pulse-discharge experiments. The
sampling period T was set to 1 s. Before the experiments, the discharge parameters such
as the voltage, current, and power were loaded into the battery test cabinet. The changes
in the battery voltage and current under these three working conditions are depicted in
Figure 5.

Figure 5b,d illustrate the current under the DST and FUDS working conditions, respec-
tively. These conditions involve three distinct states: discharging, standing, and charging.
They provide a comprehensive description of the actual working state of the battery and
can be used as training data for the model. Figure 5e,f demonstrate that transitioning from
resting to discharging induced a noticeable voltage rebound. Therefore, the model must
possess the ability to focus on correlated data, prioritizing the historical data that are most
relevant to the test point. This correlation-focused ability enhances the accuracy of the
model’s predictions.
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Figure 5. Voltage and current under different conditions: (a) DST voltage; (b) DST current; (c) FUDS
voltage; (d) FUDS current; (e) cyclic pulse voltage; (f) cyclic pulse current.

4.2. SOC Prediction Algorithm Results and Discussion
4.2.1. APSO-GRNN Model Training Results

The estimation of Ni-Cd battery SOC values is expected to have errors. Therefore, error
assessment is an essential aspect of analyzing the accuracy of prediction algorithms [28,29].
Using only one form of error calculation is insufficient to assess the overall accuracy of
the model. Thus, multiple forms of error calculation, such as the mean absolute error (δ),
root mean square error (δRMSE), and Pearson correlation (δp), are commonly used to
comprehensively assess the accuracy of a model [30,31].

δ =
1
N

N

∑
i=1

∣∣∣∣yi − y∗i
yi

∣∣∣∣ (16)

δRMSE =

√√√√ 1
N

N

∑
i=1

(yi − y∗i )
2 (17)

δp =
∑N

i=1(yi − ȳi)(y∗i − ȳ∗i )√
∑N

i=1(yi − ȳi)
√

∑N
i=1(y

∗
i − ȳ∗i )

(18)

To verify the accuracy and advantages of the model proposed in this paper, three
common regression prediction models were selected for comparison with the APSO-GRNN:
the support vector regression algorithm (SVR), unoptimized generalized neural network
(GRNN), and extreme gradient boosting algorithm (XGBoost). The parameters of each
model are shown in Table 3:

The training process for estimating Ni-Cd battery SOC values began with the FUDS
data, with a 7:3 ratio used to divide the data into training and verification sets. Cross-
validation was used to enhance the efficiency of data utilization. The proposed model was
used as the pre-training model, and the training continued based on the pulse-discharge
experimental data acquired at 40 °C. The use of pre-trained models can enhance the
robustness of the algorithm. Finally, the model was evaluated using a noisy DST dataset
and cyclic pulse dataset at different temperatures.
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Table 3. Initial parameters of the model.

Model Parameter

SVR Kernel function: radial basis; Penalty factor: 2.5

XGBoost Number of decision trees: 200; Learning rate: 0.05;
Depth of a single tree: 6

GRNN Smoothing factor: 0.2; Number of neurons: 100

APSO-GRNN Initial particle position: random numbers ranging from 0.01 to 0.5;
Initial velocity weight: 1; Learning factor: 2

The FUDS adopted a discharge strategy that accounted for the actual power change of
the battery, resulting in significant differences in voltage and current distribution compared
to the pulse-discharge experiments. Using these data to train the model can enhance
the robustness of the model. The APSO-GRNN model demonstrated better stability and
prediction accuracy than the other three models under the FUDS conditions, with more
minor prediction errors and fluctuations, as shown in Figure 6a. The APSO-GRNN model
maintained high prediction accuracy even under conditions where there were significant
differences in the voltage and current distribution. Moreover, Figure 6b shows that the
correlation between the APSO-GRNN model’s predicted results and the actual values was
more robust than that of the other three models. Combined with Figure 5e, it can be seen
that the APSO-GRNN model can reduce the impact of voltage rebound on battery SOC
prediction and improve prediction accuracy. The degree of polymerization indicates the
degree of particle aggregation and its stabilization indicates algorithm convergence.

Figure 6. Prediction results based on test set: FUDS prediction results (a), pulse condition prediction
results (b), FUDS prediction error (c), pulse condition prediction error (d).

The degree of polymerization represented the degree of aggregation of the particles,
and as the degree of polymerization no longer changed, this indicated the algorithm’s
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convergence. Figure 7a shows that APSO converged faster than PSO, with a final particle
aggregation degree of 0.66, which was lower than that of PSO at 0.78. These results support
the conclusion that APSO has a stronger local search ability compared to PSO. Figure 7b
also shows that the APSO-GRNN model can enhance particle diversity compared to the
unoptimized GRNN model, making it less likely to fall into local optima and improving
the comprehensive search for optimal values.

(a) (b)

Figure 7. Convergence curve of polymerization degree (a), smoothing factor distribution diagram (b).

4.2.2. Model Robustness Test Results for Noise

To further verify the superiority of the APSO-GRNN model, Gaussian white noise was
introduced into the original DST working condition data, and the processed data were used
as input in the trained model for prediction. The prediction results are shown in Figure 8a,b.
After adding Gaussian white noise, each model’s error and mean square error increased. To
further observe the prediction errors of the three prediction algorithm models, the average
relative error, root mean square error, and Pearson correlation of the three average models
were calculated, and the data are shown in Table 4.

Table 4. Prediction errors of noisy data.

δ δRMSE δp

SVR 4.58 0.0237 0.9597
XGBoost 3.59 0.0184 0.9656
GRNN 3.86 0.0189 0.9534

APSO-GRNN 1.70 0.0107 0.9789

Figure 8. Prediction results based on test set (a), prediction error based on test set (b).
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Table 4 shows that the model developed in this study produced better prediction
results on the noisy DST dataset than the other three models. The mean absolute error of
the state-of-charge (SOC) prediction was less than that of the GRNN, XGBoost, and SVR
models by 57.25%, 58.12%, and 63.97%, respectively. Moreover, the correlation coefficient
of the predicted values was more robust compared to the other three models. Additionally,
Figure 8 shows that the variation in the relative error of the model developed in this study
was smaller compared to the GRNN and XGBoost models. The SVR model exhibited
overfitting due to the limited amount of data used, leading to a significant increase in
the error on the training set. The decision tree in the XGBoost model was susceptible
to interference effects, resulting in a significant variation in the prediction error. The
unoptimized GRNN model had the same neuron weight as the model layer, leading to a
more significant influence of historical time data on the current time node, especially toward
the end of the discharge process. The adaptive particle swarm optimization algorithm used
in the model developed in this study adjusted the velocity weight of the particle swarm
to converge the neuron weights to the corresponding optimal value. This allowed the
model to prioritize the historical data that had a more significant impact on the current
moment, thereby improving the prediction accuracy and anti-interference ability of the
model, reducing the variation in the prediction error, and accelerating convergence.

4.2.3. Model Robustness Test Results for Temperature

The temperature greatly influenced the available capacity and discharge time of
the battery [32]. To study the prediction effect of the model at different temperatures,
pulse-discharge experiments of the battery at different temperatures were carried out.
The experimental results are shown in Figure 9.

Figure 9. Pulse discharge curves at different temperatures.

The results in Figure 9 indicate that an increase in temperature led to an increase
in both the available capacity and discharge time of the battery, whereas a decrease in
the temperature resulted in a lower available capacity and shorter discharge time. Thus,
temperature is a critical parameter in the SOC prediction model. Since the model training
set only included battery discharge data at 20 °C and 40 °C, this study used 10 °C pulse-
discharge data to verify the advantages of the APSO-GRNN model over the other models
in terms of prediction accuracy and robustness. Figure 10a,b display the experimental
outcomes, and the data are presented in Table 5.
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Table 5. Pulse data prediction error.

δ δRMSE δp

SVR 6.86 0.0378 0.9421
XGBoost 5.09 0.0326 0.9561
GRNN 7.11 0.0418 0.9452

APSO-GRNN 2.56 0.0176 0.9746

Figure 10. Model prediction results (a), model prediction error (b).

An implicit relationship between the battery discharge data at different tempera-
tures can be established by introducing a pre-training method. The experimental results
demonstrated that the prediction errors of the SVR, XGBoost, and GRNN models increased
significantly and fluctuated considerably when experiments were conducted at different
temperatures, especially in the early and late stages of discharge, where different temper-
atures led to a substantial variation in the voltage distribution, thereby amplifying the
prediction errors. The APSO-GRNN model fine-tuned the model based on the previous
training results using the pre-training model and adaptive adjustment mechanism, ac-
quiring a mapping of the implicit relationship between the different temperatures, which
improved the model’s robustness. Although the prediction error of the APSO-GRNN
model also increased, the error fluctuated considerably only in the early stage of discharge,
as seen in Figure 10b. As the battery SOC decreased, the voltage distribution difference
gradually decreased, thereby reducing the prediction error of the APSO-GRNN model.

Figure 9 shows a clear degradation in the battery capacity when operating below 0 °C,
accompanied by a voltage distribution that significantly deviated from the discharge data
observed at room temperature. To investigate the prediction accuracy of the model at
different temperatures, prediction experiments were conducted at different temperature
nodes. The corresponding experimental outcomes are presented in Figure 11.

The results presented in Figure 11 indicate that the model exhibited its highest pre-
diction accuracy at approximately 30 °C, yielding an average relative error of 2.51%. Con-
versely, the lowest prediction accuracy was observed at −20 °C, with an average relative
error of 4.11%. As the temperature decreased, both the battery’s discharge capacity and the
magnitude of the prediction error increased. Notably, the prediction error in the early stage
was large, and the stability of the model decreased. This phenomenon can be attributed
to the reduced available capacity of the battery and the substantial voltage rebound expe-
rienced under low ambient temperatures. When the battery was discharged rapidly, its
terminal voltage declined sharply. Compared to normal temperature conditions, the rate of
the voltage decline exhibited a significant increase, which resulted in a substantial disparity
in the voltage distribution, leading to a drop in the accuracy of the model predictions.
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Figure 11. Prediction results at different temperatures.

5. Conclusions

• The advantages and disadvantages of SOC prediction models proposed in the liter-
ature were analyzed, and a GRNN model with adaptive adjustment was proposed
based on the characteristics of nickel-cadmium batteries. This contribution enriches
the research methods for the SOC prediction of nickel-cadmium batteries and provides
a new theoretical reference for developing energy management strategies for train
battery packs.

• A comparison of the prediction results of the APSO-GRNN and GRNN models showed
that APSO can enhance the diversity of mode-layer smoothing factors and improve
the accuracy of SOC prediction. It was demonstrated that APSO can filter the time
series and adjust the size of each neuron smoothing factor based on the correlation of
the time series. Thus, the model prioritizes historical data that has a more significant
impact on the current moment.

• Two experimental scenarios were designed to verify the robustness of the APSO-
GRNN model against noise interference and temperature changes. The prediction
results were compared with those of the GRNN, SVR, and XGBoost models. The
experimental results demonstrated that the APSO-GRNN model can maintain a high
prediction accuracy, even under changing experimental conditions, temperatures, and
noise interference.

• The APSO-GRNN model is suitable for the online prediction of the SOC of nickel-
cadmium batteries due to its reduced number of parameters, shorter training time, and
stronger real-time performance. It can be deployed in an onboard battery management
system (BMS) to provide a theoretical basis for battery energy management strategies.
In future research, we plan to broaden the scope of this study by incorporating real-
world applications of train Ni-Cd batteries.
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Nomenclature

F Multidisciplinary Digital Publishing Institute.
ei The out-of-bag error after random rearrangement of the feature fi.
eT The error of the sample in the decision tree T.
trxi The i-th training sample.
texj The j-th testing sample.
σ The model smoothing factor.
gi The output of the i-th pattern layer neuron.
kj The corresponding eigenvalue of any training sample.
xi The position vector of the particle.
vi The velocity vector of the particle.
pi The historical optimal value of the particle.
gM The group optimal value in the current particle population.
yk The true value of the training set.
Ek The prediction error matrix of the k-th iteration of the model.
h The error score matrix.
Etarget The error threshold that the particle swarm should reach to stop the iteration.
Egbest The prediction error of the global optimal particle.
Embest The average optimal fitness of all particles in the current epoch.
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