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Abstract: Cylindrical vector beams (CVBs) are the product of polarization modulation of optical fields,
and possess both unique focusing characteristics and excellent properties applicable to machining,
imaging, communication and other fields. Mode selection couplers comprise a promising new
method to realize the long-term stable output of cylindrical vector beam all-fiber lasers. Mode
selection couplers have the advantages of a simple structure, high mode conversion efficiency and
high mode purity. However, the production process of conventional asymmetric mode selection
couplers is more complicated. Therefore, in this paper, a symmetric two-mode coupler with a 1 µm
band is designed and fabricated using the finite element method, beam propagation method and fused
pull-cone method, and a set of all-fiber passive mode-locked lasers based on symmetric dual-mode
couplers are constructed. Finally, we obtain cylindrical vector beam outputs with central wavelengths
of 1038.97 nm/1067.72 nm, a repetition rate of 8.78 MHz, pulse durations of 660 ps/656 ps, maximum
average powers of 5.25 mW/5.2 mW, and the high mode purity of TM (transverse magnetic)01 mode
and TE (transverse electric)01 mode is 97.18% and 97.07%, respectively.

Keywords: symmetric two-mode coupler; cylindrical vector beams; high mode purity; mode-locked

1. Introduction

CVBs have axisymmetric intensity and polarization distribution, and under strong
focusing conditions, a unique and strong local longitudinal electric field is formed in any
plane parallel to the optical axis [1,2]. Relying on this feature, in terms of laser cutting,
smaller and stronger light spots can be generated after CVB focusing; thus, the cutting
depth-to-width ratio can be significantly improved using CVB cutting, and the cutting
speed can be increased to 1.5–2 times that of conventional cutting [3,4]. CVB cutting has a
wide range of applications in thick-plate cutting. In terms of laser drilling, CVB drilling
can obtain straight holes with favorable height–width–depth ratios and a high punching
rate [5,6]. Therefore, CVB processing is an effective scheme to improve processing quality
and efficiency. In addition, under strong focusing conditions, CVB has a small focusing
spot, and its application in high-resolution optical imaging system can greatly improve
system resolution [7–9]. The TM01 mode generates a large gradient and light field scattering
force; therefore, it has a stronger trapping ability than Gaussian light, and can be used for
particle trapping [10,11] and particle acceleration [12,13]. In the environment constituting
strong scattering in water, CVB has a higher transmittance than traditional Gaussian light
and can be used for wireless optical communication [14–16].

Appl. Sci. 2023, 13, 6490. https://doi.org/10.3390/app13116490 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116490
https://doi.org/10.3390/app13116490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13116490
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116490?type=check_update&version=1


Appl. Sci. 2023, 13, 6490 2 of 10

Initially, research related to CVBs has mainly focused on solid-state lasers. However,
solid-state lasers have serious thermal effects and poor system reliability, coupled with
the insertion of specially designed conical elements [17], birefringence elements [18], in-
terference elements [19], sub-wavelength gratings [20], and other spatial devices, which
seriously limit the capabilities of CVBs in practical applications. Compared with solid-state
lasers, all-fiber lasers are convenient for thermal management and have a flexible structure,
high beam quality, and high stability; therefore, all-fiber lasers are likely to become the
main development direction for high-power CVBs. After nearly 10 years of development,
the realization of mode conversion mainly includes bias-core coupling [21–24], long-period
grating [25], special optical fibers [26–28], spatial Q-wave chips [29], mode selection cou-
plers [30–33], etc., among which the use of mode selection couplers is the simplest way to
achieve mode conversion and can obtain high mode purity, while offering low production
costs, strong stability, and adaptability to complex engineering application environments.

To date, a number of institutions have carried out research on asymmetric structural
mode selection couplers. In 2014, Ismaeel Rand et al. of the University of Southampton [30]
made an asymmetric mode selection coupler, which realized the conversion of an LP01
(linear polarized) mode to an LP11 mode when the transmission wavelength was 1550 nm,
with a coupling efficiency of 91%, a mode purity of 92%, and an insertion loss of 0.5 dB.
In 2017, Hongdan Wan et al. of Nanjing University of Posts and Telecommunications [31]
made an asymmetric mode selection coupler and built a figure-8-shaped mode-locked
resonator, obtaining an LP11 mode output with a central wavelength of 1556.3 nm, and a
pulse width of 17 ns, with a mode purity of 94.2% and an insertion loss of 0.65 dB. In 2018,
Yiping Huang et al. of Shanghai University [32] fabricated an asymmetric mode selection
coupler, and built a passive mode-locked fiber laser, obtaining an LP11 mode output with
an average power of 75 mW, a coupling efficiency of 89%, and a central wavelength
of 1043 nm. In 2018, Mao Dong et al. of Northwestern Polytechnical University [33]
made a 1550 nm band asymmetric mode selection coupler, and built a ring-cavity passive
mode-locked laser, which realized an LP11 mode output with pulse width adjustable from
39.2/31.9 ps to 5.6/5.2 ps. In 2019, Ya Shen et al. of Beijing Jiao Tong University [34] made
an asymmetric mode selection coupler in the 1550 nm band and built a doped annular
cavity fiber laser, and obtained an LP01 mode output with a central wavelength of 1550 nm
and a mode purity of 94%. In 2019, Zhang Jiaojiao et al. of Nanjing University of Posts and
Telecommunications [35] made an asymmetric mode selection coupler to obtain an LP11
mode output, and built a mode-locked laser to achieve an LP11 mode output with a pulse
width of 629 ps and a mode purity of 94.5%.

Based on the coupling principle, we design and manufacture an all-fiber symmetrical
two-mode coupler (STMC) in the 1 µm band for the first time that can achieve high-purity
conversion from an LP01 mode to an LP11 mode. Then, we provide a feasible solution for
CVB all-fiber lasers.

2. Materials and Methods

As shown in Figure 1, the STMC is made of two identical two-mode fibers (Corning
SMF-28e, core/cladding = 8.2/125 µm, ncore = 1.4637, ncladding = 1.457), and completes
the excitation of the LP11 mode in the conical region and the output of the LP11 mode in
the coupling region to realize the conversion of the LP01 mode to the LP11 mode.
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The coupling region working mechanism of the STMC conforms to mode-coupling
theory, and the coupling equation is [36] as follows:

dA(z)
dz

= jK21B(z)ej(βA−βB)z (1)

dB(z)
dz

= jK12 A(z)ej(βB−βA)z (2)

In the equation, A(z) and B(z) are the power distributions of the two modes along the
axis; β is the propagation constant; z is the distance that light travels along the coupling
region; and K is the coupling coefficient.

If light is incident only from the first two-mode fiber (TMF), the boundary conditions
A(0) = 1 and B(0) = 0 are met. From this, Equation (2) is integrated:

B(L) = jK12

∫ L

0
A(z)ej(βB−βA)zdz (3)

It can be seen that when the light transmission distance is L in the second FMF or TMF,
a light wave field with power B(L) is established. When βA − βB 6= 0, Equation (3) is equal
to an effective value within the coupling distance L, that is, only if there are two modes or
the same mode with similar propagation constants (equal effective refractive index) can a
valid value be obtained, in which case effective coupling occurs.

In traditional mode selection couplers, direct coupling between LP01 and LP11 modes
occurs, while in the STMC, taper pulling of the TMF can excite the LP11 mode in the
fiber [37]; therefore, there is a coupling of two modes in the coupling region of the STMC,
that is, the coupling between the two LP01 modes and the coupling between the two LP11
modes. By controlling the cone size of the TMF, the LP01 mode can be limited to the fiber
core with minimal coupling to the other fiber, and the LP11 mode can be leaked into the
cladding in order to be more coupled; specific size control is shown in the simulation
analysis below.

We used the finite element method (FEM) to calculate the variation in the effective
refractive index of LP01 and LP11 modes with the fiber diameter (cladding diameter) as
in the SMF-28e fiber; the results are shown in Figure 2. According to the principle of
total internal reflection, the condition under which the mode is tethered to the core in the
SMF-28e fiber is 1.457 < neff < 1.4637. When the effective refractive index of the mode is
less than 1.457, the mode leaks into the cladding.
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15–85 µm, the blue line is the cladding index of TMF.) by controlling the tensile diameter
of the fiber, the LP01 mode in the TMF can be bound in the core, and the LP11 mode leaks
into the cladding, so that the LP01 mode is separated from the LP11 mode. According to the
simulation results, when the fiber diameter is 75 µm, the effective refractive index of the
LP11 mode in the TMF is 1.457; at this time, the LP11 mode begins to leak into the cladding,
and LP11 mode coupling begins to occur in the coupling region of the STMC, while the
effective refractive index of the LP01 mode is 1.457 < neff < 1.4637. At this time, the LP01
mode is bound to the core for transmission; therefore, the coupling of the LP01 mode occurs
only to a minor degree in the coupling region of the STMC. Similarly, when the diameter
of the fiber is 29 µm, the effective refractive index of the LP01 mode in the TMF is 1.457,
at which time the LP01 mode begins to leak into the cladding, and LP01 mode coupling
begins to occur in the coupling region of the STMC. When this happens, the purity of the
LP11 mode at port2 decreases. Therefore, in order to minimize LP01 mode coupling in the
coupling region and improve the output purity of the LP11 mode, the diameter of the fiber
cone should be between 29 µm and 75 µm.

We used the beam propagation method (BPM) to creatively establish a conical three-
dimensional waveguide model of the STMC. According to the cone simulation results
shown in Figure 3, as the diameter of the TMF gradually decreases, the LP11 mode gradually
leaks from the core to the cladding for transmission. When the fiber diameter is stretched
to 30 µm and 31 µm, the LP11 mode has completely leaked out of the core and, at this time,
the LP01 mode is still bound in the core, only minimally leaking into the cladding. It can be
seen that when the TMF fiber diameter is stretched to 30 µm and 31 µm, the separation of
LP01 and LP11 modes can be effectively realized.
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Figure 3. LP11 mode longitudinal energy flow simulation during TMF cone pulling, diameter (µm)
after TMF cone pulling: (a) 30 µm; (b) 31 µm.

Referring to the simulation results of the cone region, we used the BPM to estab-
lish a three-dimensional waveguide model of the coupling region of the STMC, and the
simulation results are shown in Figure 4.

According to the simulation results of the energy flow shown in Figure 4, regardless of
whether the stretch is 30 µm or 31 µm, the energy exchange between the two fibers shows
a periodic change law, and when the coupling length is chosen properly, the LP11 mode
in the first fiber can be almost completely coupled to the other fiber. In this paper, it is
said that the optimal coupling length is the shortest distance transmitted when the LP11
mode energy is coupled from the first fiber to the second fiber maximally. According to
the simulation results shown in the figure, when the diameter of SMF-28e’s coupling zone
is 30 µm, the optimal coupling length is about 4.5 cm and 5.5 cm for the first and second
fibers, respectively. Finally, based on the above simulation results of the STMC, we used the
fused tapered method to complete the STMC. The physical picture of the STMC is shown
in Figure 5.
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3. Nonlinear Polarization Rotation Principle

The structure of nonlinear polarization rotation principle (NPR) mode clamping
is shown in Figure 6, including two polarization controllers (PC) and a polarization-
dependent isolator (PDI). PC1 is equivalent to a 1/2 wave plate, PC2 is equivalent to
a 1/4 wave plate, and the PDI has three functions, namely as an isolator, polarizer, and
polarization detector. Its working principle is as follows: light after PDI is converted into
linear polarized light and after PC2, into elliptically polarized light. Elliptical polarized
light can be regarded as the superposition of two orthogonal linear polarized lights; the
light intensity of these two decomposed lights is different. Due to the influence of nonlinear
effects, different intensities of light produce different nonlinear phase shifts in the transmis-
sion of optical fibers. When the light pulse returns to PC1, the polarization direction of the
optical pulse is changed by adjusting PC1, so that the part with higher light intensity near
the center of the light pulse passes through with low loss, and the part with weak light
intensity near the edge of the light pulse is filtered; thus, the light pulse is continuously
narrowed in multiple cycles. Finally, a stable mode-locked pulse laser output is obtained.
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4. Experimental Setup

We use NPR technology to carry out CVB mode-locked laser research, as shown in
Figure 7. The current laser cavity comprises a 980/1064 nm wavelength division multiplex-
ing (WDM) and a 2 m ytterbium-doped fiber (YDF, Nufern SM-YSF-HI-HP) pumped by
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a 976 nm laser diode (LD). The absorption coefficient of the YDF at 975 nm is 250 dB/m
and the polarization-dependent isolator (PDI) and the polarization controller (PC) together
form an NPR mode-locked module. A 7 m long single-mode fiber (SMF, Nufern 1060XP)
was used for nonlinear and dispersion management; the length of the current laser cavity
is about 23 m. Using a 45/55 single-mode fiber coupler as the LP01 mode output of the
current laser cavity, because YDF and SMF have positive dispersion in the 1 µm band, the
entire laser works in the full positive dispersion region. The LP01 mode is converted to the
LP11 mode by the STMC with the output of the pulse laser, which is received by the CCD
after attenuation, and the output of TM01 and TE01 modes can be realized by adjusting PC3.
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5. Results and Discussion

When the pump power is greater than 300 mW, by adjusting PC1 and PC2, the mode-
locked laser output with two central wavelengths of 1038.97 nm and 1067.72 nm can
be realized.

When the central wavelength is 1038.97 nm, the output of the mode-locked CVB fiber
laser is as shown in Figure 8. Figure 8a shows the output spectrum, which yields a 3 dB
linewidth of 2.99 nm. Figure 8b is a pulse train, wherein the pulse interval is 113.8 ns and
the repetition frequency is 8.78 MHz, which is consistent with the theoretical calculation
value of 23 m cavity length, referring to the formula f = c/nL. Figure 8c is the corresponding
single pulse; the single pulse has Gaussian distribution, and the pulse width is 660 ps.
Figure 8d is the change curve of laser output power with pump power. It can be seen that
the average output power of the laser is linearly positively correlated with the pump power.
This experiment is limited by cavity loss and pump power; the maximum average output
power of the LP11 mode is 5.56 mW. When PC3 is properly adjusted, we obtain CVBs with
a maximum output average power of 5.2 mW. This is illustrated in the mode intensity
distribution of the laser output.

When the central wavelength is 1067.72 nm, the output of the mode-locked CVB
fiber laser is as shown in Figure 9. The laser output pulse train and repetition rate are
consistent with the output results when the central wavelength is 1038.97 nm; the pulse
width of the single pulse is 656 ps. Figure 9d is the change curve of laser output power
with pump power. We can see that the average output power of the laser and the pump
power also have a linear positive correlation, also limited by cavity loss and pump power;
the maximum average output power of the LP11 mode is 5.5 mW and the maximum output
average power of CVBs is 5.2 mW. This is illustrated in the mode intensity distribution of
the laser output.
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The relatively low CVB output power is determined by the design and production
process of the STMC itself. The specific reason is that in order to obtain a high-purity LP11
mode during the production process of the STMC, the LP11 mode should leak into the
cladding as much as possible, while the LP01 mode should be restricted in the fiber core.
Thus, the separation of LP01 and LP11 modes is maximized, which requires a specific fiber
diameter range in the coupling region, thus limiting the CVB output power of the STMC.
According to the simulation results above, when the diameter of the STMC-coupling region
is larger than 75 µm, both LP01 and LP11 modes are bound in the fiber core and are not
coupled to the second TMF. When the diameter of the STMC-coupling region was 29–75 µm,
the evanescent field of the LP11 mode was not strong, while the LP01 mode was still bound
in the fiber core, and the optical power coupling was very weak, which resulted in low
optical power coupling efficiency and CVB output power. When the diameter of the fiber
in the coupling region is further reduced to less than 29 µm, the LP01 mode begins to be
coupled to the second TMF. At this time, the output power is increased, but the increased
power is the power of the LP01 mode, and the purity of the LP11 mode is reduced. Although
the output power is low, the production process of the STMC is simple and the production
cost is low, which eliminates the complicated pre-taper process used in the production of
mode selection couplers. In addition, the commercial Corning SMF-28e is used to design
and manufacture the STMC, so as to avoid the complicated design and production process
of 1 µm band TMFs, which has great engineering application potential.

By adjusting PC3, CVBs with a torus intensity pattern distribution can be obtained,
and TM01 and TE01 modes can be distinguished by rotating the polarizer. The mode
intensity distribution of TM01 and TE01 modes was obtained using a CCD camera (DataRay,
WinCamD-LCM). The results are shown in Figure 10. The purity of TM01 and TE01 modes
was measured to be 97.18% and 97.07%, respectively. We can conclude that the STMC
achieves a high-quality TM01 or TE01 mode output, and the output mode is tunable.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 12 
 

 
Figure 10. (a) TM01 mode; (b–e) mode distribution after TM01 mode passes through polarizers in 
different directions; (f) TE01 mode; (g–j) mode distribution of the TE01 mode passes through polar-
izers in different directions. 

6. Conclusions 
In this paper, an all-fiber symmetrical two-mode coupler with a 1 µm band that can 

realize the conversion of the LP01 mode to the LP11 mode with high purity is designed and 
produced, and a feasible solution for CVB all-fiber lasers is provided. Finally, we obtain a 
CVB output with working central wavelengths of 1038.97 nm/1067.72 nm, a repetition of 
8.78 MHz, pulse widths of 660 ps/656 ps, and maximum output average powers of 5.25 
mW/5.2 mW. By adjusting PC3, we can obtain TM01 and TE01 modes with mode purity 
values of 97.18%/97.07%, respectively. To our knowledge, this is the first time that a sym-
metrical two-mode coupler has been obtained using two identical commercial Corning 
SMF-28e fibers, and the highest mode purity 1 µm all-fiber CVB output was obtained, 
which minimizes the manufacturing process of mode selection couplers and reduces man-
ufacturing costs. In future work, the process of taper excitation of the LP11 mode should 
be simulated and analyzed to investigate the factors affecting the mode conversion effi-
ciency of the STMC, and special optical fibers should be designed to improve the mode 
conversion efficiency of the STMC. 

Author Contributions: Conceptualization, B.Y. and X.L.; methodology, B.Y., X.L., Y.L. and Z.W.; 
formal analysis, H.H., K.Z. and Y.Z.; investigation, S.P. and T.Z.; data curation, B.Y.; writing—orig-
inal draft preparation, B.Y.; writing—review and editing, B.Y.; supervision, T.L. and A.Y.; project 
administration, X.L.; funding acquisition, X.L. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This research was funded by the Beijing Municipal Natural Science Foundation(1212009); 
the Basic Scientific Research(JCKY2021110B175); the Rapid Support Programme(80914020105); and 
the Open Fund for Key Laboratory of Solid-State Laser Technology. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data underlying the results presented in this paper are not publicly 
available at this time but may be obtained from the authors upon reasonable request. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 
1. Youngworth, K.; Brown, T. Focusing of High Numerical Aperture Cylindrical-Vector Beams. Opt. Express 2000, 7, 77–87. 
2. Zhan, Q.W.; Leger, J.R. Focus shaping using cylindrical vector beams. Opt. Express 2002, 10, 324–331. 
3. Niziev, V.G.; Nesterov, A.V. Influence of beam polarization on laser cutting efficiency. J. Phys. D Appl. Phys. 1999, 32, 1455–1461. 
4. Weber, R.; Michalowski, A.; Abdou-Ahmed, M.; Onuseit, V.; Rominger, V.; Kraus, M.; Graf, T. Effects of Radial and Tangential 

Polarization in Laser Material Processing. Phys. Procedia 2011, 12, 21–30. 

Figure 10. (a) TM01 mode; (b–e) mode distribution after TM01 mode passes through polarizers
in different directions; (f) TE01 mode; (g–j) mode distribution of the TE01 mode passes through
polarizers in different directions.

6. Conclusions

In this paper, an all-fiber symmetrical two-mode coupler with a 1 µm band that can
realize the conversion of the LP01 mode to the LP11 mode with high purity is designed and
produced, and a feasible solution for CVB all-fiber lasers is provided. Finally, we obtain
a CVB output with working central wavelengths of 1038.97 nm/1067.72 nm, a repetition
of 8.78 MHz, pulse widths of 660 ps/656 ps, and maximum output average powers of
5.25 mW/5.2 mW. By adjusting PC3, we can obtain TM01 and TE01 modes with mode
purity values of 97.18%/97.07%, respectively. To our knowledge, this is the first time
that a symmetrical two-mode coupler has been obtained using two identical commercial
Corning SMF-28e fibers, and the highest mode purity 1 µm all-fiber CVB output was
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obtained, which minimizes the manufacturing process of mode selection couplers and
reduces manufacturing costs. In future work, the process of taper excitation of the LP11
mode should be simulated and analyzed to investigate the factors affecting the mode
conversion efficiency of the STMC, and special optical fibers should be designed to improve
the mode conversion efficiency of the STMC.
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